diff --git a/rtdata/languages/default b/rtdata/languages/default index 4c5957e0a..7ee50152b 100644 --- a/rtdata/languages/default +++ b/rtdata/languages/default @@ -1788,6 +1788,7 @@ TP_RAW_PIXELSHIFTSMOOTH_TOOLTIP;Smooth transitions between areas with motion and TP_RAW_PIXELSHIFTSTDDEVFACTORBLUE;StdDev factor Blue TP_RAW_PIXELSHIFTSTDDEVFACTORGREEN;StdDev factor Green TP_RAW_PIXELSHIFTSTDDEVFACTORRED;StdDev factor Red +TP_RAW_RCD;RCD TP_RAW_SENSOR_BAYER_LABEL;Sensor with Bayer Matrix TP_RAW_SENSOR_XTRANS_DMETHOD_TOOLTIP;3-pass gives best results (recommended for low ISO images).\n1-pass is almost undistinguishable from 3-pass for high ISO images and is faster. TP_RAW_SENSOR_XTRANS_LABEL;Sensor with X-Trans Matrix diff --git a/rtengine/demosaic_algos.cc b/rtengine/demosaic_algos.cc index 4a82dd720..d83b90cef 100644 --- a/rtengine/demosaic_algos.cc +++ b/rtengine/demosaic_algos.cc @@ -3928,6 +3928,299 @@ void RawImageSource::cielab (const float (*rgb)[3], float* l, float* a, float *b } } + +/** +* RATIO CORRECTED DEMOSAICING +* Luis Sanz Rodriguez (luis.sanz.rodriguez(at)gmail(dot)com) +* +* Release 2.3 @ 171125 +* +* Original code from https://github.com/LuisSR/RCD-Demosaicing +* Licensed under the GNU GPL version 3 +*/ +void RawImageSource::rcd_demosaic() +{ + // RT --------------------------------------------------------------------- + if (plistener) { + plistener->setProgressStr(Glib::ustring::compose(M("TP_RAW_DMETHOD_PROGRESSBAR"), "rcd")); + plistener->setProgress(0); + } + + int width = W, height = H; + + std::vector cfa(width * height); + std::vector> rgb(width * height); + +#ifdef _OPENMP + #pragma omp parallel for +#endif + for (int row = 0; row < height; row++) { + for (int col = 0, indx = row * width + col; col < width; col++, indx++) { + int c = FC(row, col); + cfa[indx] = rgb[indx][c] = LIM01(rawData[row][col] / 65535.f); + } + } + + if (plistener) { + plistener->setProgress(0.05); + } + // ------------------------------------------------------------------------ +/* RT + int row, col, indx, c; +*/ + int w1 = width, w2 = 2 * width, w3 = 3 * width, w4 = 4 * width; + + //Tolerance to avoid dividing by zero + static const float eps = 1e-5, epssq = 1e-10; + +/* RT + //Gradients + float N_Grad, E_Grad, W_Grad, S_Grad, NW_Grad, NE_Grad, SW_Grad, SE_Grad; + + //Pixel estimation + float N_Est, E_Est, W_Est, S_Est, NW_Est, NE_Est, SW_Est, SE_Est, V_Est, H_Est, P_Est, Q_Est; + + //Directional discrimination + //float V_Stat, H_Stat, P_Stat, Q_Stat; + float VH_Central_Value, VH_Neighbour_Value, PQ_Central_Value, PQ_Neighbour_Value; +*/ + float ( *VH_Dir ), ( *PQ_Dir ); + + //Low pass filter + float ( *lpf ); + + + /** + * STEP 1: Find cardinal and diagonal interpolation directions + */ + + VH_Dir = ( float ( * ) ) calloc( width * height, sizeof *VH_Dir ); //merror ( VH_Dir, "rcd_demosaicing_171117()" ); + +#ifdef _OPENMP + #pragma omp parallel for +#endif + for (int row = 4; row < height - 4; row++ ) { + for (int col = 4, indx = row * width + col; col < width - 4; col++, indx++ ) { + //Calculate h/v local discrimination + float V_Stat = max(epssq, - 18.0f * cfa[indx] * cfa[indx - w1] - 18.0f * cfa[indx] * cfa[indx + w1] - 36.0f * cfa[indx] * cfa[indx - w2] - 36.0f * cfa[indx] * cfa[indx + w2] + 18.0f * cfa[indx] * cfa[indx - w3] + 18.0f * cfa[indx] * cfa[indx + w3] - 2.0f * cfa[indx] * cfa[indx - w4] - 2.0f * cfa[indx] * cfa[indx + w4] + 38.0f * cfa[indx] * cfa[indx] - 70.0f * cfa[indx - w1] * cfa[indx + w1] - 12.0f * cfa[indx - w1] * cfa[indx - w2] + 24.0f * cfa[indx - w1] * cfa[indx + w2] - 38.0f * cfa[indx - w1] * cfa[indx - w3] + 16.0f * cfa[indx - w1] * cfa[indx + w3] + 12.0f * cfa[indx - w1] * cfa[indx - w4] - 6.0f * cfa[indx - w1] * cfa[indx + w4] + 46.0f * cfa[indx - w1] * cfa[indx - w1] + 24.0f * cfa[indx + w1] * cfa[indx - w2] - 12.0f * cfa[indx + w1] * cfa[indx + w2] + 16.0f * cfa[indx + w1] * cfa[indx - w3] - 38.0f * cfa[indx + w1] * cfa[indx + w3] - 6.0f * cfa[indx + w1] * cfa[indx - w4] + 12.0f * cfa[indx + w1] * cfa[indx + w4] + 46.0f * cfa[indx + w1] * cfa[indx + w1] + 14.0f * cfa[indx - w2] * cfa[indx + w2] - 12.0f * cfa[indx - w2] * cfa[indx + w3] - 2.0f * cfa[indx - w2] * cfa[indx - w4] + 2.0f * cfa[indx - w2] * cfa[indx + w4] + 11.0f * cfa[indx - w2] * cfa[indx - w2] - 12.0f * cfa[indx + w2] * cfa[indx - w3] + 2.0f * cfa[indx + w2] * cfa[indx - w4] - 2.0f * cfa[indx + w2] * cfa[indx + w4] + 11.0f * cfa[indx + w2] * cfa[indx + w2] + 2.0f * cfa[indx - w3] * cfa[indx + w3] - 6.0f * cfa[indx - w3] * cfa[indx - w4] + 10.0f * cfa[indx - w3] * cfa[indx - w3] - 6.0f * cfa[indx + w3] * cfa[indx + w4] + 10.0f * cfa[indx + w3] * cfa[indx + w3] + 1.0f * cfa[indx - w4] * cfa[indx - w4] + 1.0f * cfa[indx + w4] * cfa[indx + w4]); + + float H_Stat = max(epssq, - 18.0f * cfa[indx] * cfa[indx - 1] - 18.0f * cfa[indx] * cfa[indx + 1] - 36.0f * cfa[indx] * cfa[indx - 2] - 36.0f * cfa[indx] * cfa[indx + 2] + 18.0f * cfa[indx] * cfa[indx - 3] + 18.0f * cfa[indx] * cfa[indx + 3] - 2.0f * cfa[indx] * cfa[indx - 4] - 2.0f * cfa[indx] * cfa[indx + 4] + 38.0f * cfa[indx] * cfa[indx] - 70.0f * cfa[indx - 1] * cfa[indx + 1] - 12.0f * cfa[indx - 1] * cfa[indx - 2] + 24.0f * cfa[indx - 1] * cfa[indx + 2] - 38.0f * cfa[indx - 1] * cfa[indx - 3] + 16.0f * cfa[indx - 1] * cfa[indx + 3] + 12.0f * cfa[indx - 1] * cfa[indx - 4] - 6.0f * cfa[indx - 1] * cfa[indx + 4] + 46.0f * cfa[indx - 1] * cfa[indx - 1] + 24.0f * cfa[indx + 1] * cfa[indx - 2] - 12.0f * cfa[indx + 1] * cfa[indx + 2] + 16.0f * cfa[indx + 1] * cfa[indx - 3] - 38.0f * cfa[indx + 1] * cfa[indx + 3] - 6.0f * cfa[indx + 1] * cfa[indx - 4] + 12.0f * cfa[indx + 1] * cfa[indx + 4] + 46.0f * cfa[indx + 1] * cfa[indx + 1] + 14.0f * cfa[indx - 2] * cfa[indx + 2] - 12.0f * cfa[indx - 2] * cfa[indx + 3] - 2.0f * cfa[indx - 2] * cfa[indx - 4] + 2.0f * cfa[indx - 2] * cfa[indx + 4] + 11.0f * cfa[indx - 2] * cfa[indx - 2] - 12.0f * cfa[indx + 2] * cfa[indx - 3] + 2.0f * cfa[indx + 2] * cfa[indx - 4] - 2.0f * cfa[indx + 2] * cfa[indx + 4] + 11.0f * cfa[indx + 2] * cfa[indx + 2] + 2.0f * cfa[indx - 3] * cfa[indx + 3] - 6.0f * cfa[indx - 3] * cfa[indx - 4] + 10.0f * cfa[indx - 3] * cfa[indx - 3] - 6.0f * cfa[indx + 3] * cfa[indx + 4] + 10.0f * cfa[indx + 3] * cfa[indx + 3] + 1.0f * cfa[indx - 4] * cfa[indx - 4] + 1.0f * cfa[indx + 4] * cfa[indx + 4]); + + VH_Dir[indx] = V_Stat / (V_Stat + H_Stat); + } + } + + // RT --------------------------------------------------------------------- + if (plistener) { + plistener->setProgress(0.2); + } + // ------------------------------------------------------------------------- + + /** + * STEP 2: Calculate the low pass filter + */ + + // Step 2.1: Low pass filter incorporating green, red and blue local samples from the raw data + lpf = ( float ( * ) ) calloc( width * height, sizeof *lpf ); //merror ( lpf, "rcd_demosaicing_171125()" ); + +#ifdef _OPENMP + #pragma omp parallel for +#endif + for ( int row = 2; row < height - 2; row++ ) { + for ( int col = 2 + (FC( row, 0 ) & 1), indx = row * width + col; col < width - 2; col += 2, indx += 2 ) { + + lpf[indx] = 0.25f * cfa[indx] + 0.125f * ( cfa[indx - w1] + cfa[indx + w1] + cfa[indx - 1] + cfa[indx + 1] ) + 0.0625f * ( cfa[indx - w1 - 1] + cfa[indx - w1 + 1] + cfa[indx + w1 - 1] + cfa[indx + w1 + 1] ); + + } + } + + // RT --------------------------------------------------------------------- + if (plistener) { + plistener->setProgress(0.4); + } + // ------------------------------------------------------------------------ + + /** + * STEP 3: Populate the green channel + */ + + // Step 3.1: Populate the green channel at blue and red CFA positions +#ifdef _OPENMP + #pragma omp parallel for +#endif + for ( int row = 4; row < height - 4; row++ ) { + for ( int col = 4 + (FC( row, 0 ) & 1), indx = row * width + col; col < width - 4; col += 2, indx += 2 ) { + + // Refined vertical and horizontal local discrimination + float VH_Central_Value = VH_Dir[indx]; + float VH_Neighbourhood_Value = 0.25f * ( VH_Dir[indx - w1 - 1] + VH_Dir[indx - w1 + 1] + VH_Dir[indx + w1 - 1] + VH_Dir[indx + w1 + 1] ); + + float VH_Disc = ( fabs( 0.5f - VH_Central_Value ) < fabs( 0.5f - VH_Neighbourhood_Value ) ) ? VH_Neighbourhood_Value : VH_Central_Value; + + // Cardinal gradients + float N_Grad = eps + fabs( cfa[indx - w1] - cfa[indx + w1] ) + fabs( cfa[indx] - cfa[indx - w2] ) + fabs( cfa[indx - w1] - cfa[indx - w3] ) + fabs( cfa[indx - w2] - cfa[indx - w4] ); + float S_Grad = eps + fabs( cfa[indx + w1] - cfa[indx - w1] ) + fabs( cfa[indx] - cfa[indx + w2] ) + fabs( cfa[indx + w1] - cfa[indx + w3] ) + fabs( cfa[indx + w2] - cfa[indx + w4] ); + float W_Grad = eps + fabs( cfa[indx - 1] - cfa[indx + 1] ) + fabs( cfa[indx] - cfa[indx - 2] ) + fabs( cfa[indx - 1] - cfa[indx - 3] ) + fabs( cfa[indx - 2] - cfa[indx - 4] ); + float E_Grad = eps + fabs( cfa[indx + 1] - cfa[indx - 1] ) + fabs( cfa[indx] - cfa[indx + 2] ) + fabs( cfa[indx + 1] - cfa[indx + 3] ) + fabs( cfa[indx + 2] - cfa[indx + 4] ); + + // Cardinal pixel estimations + float N_Est = cfa[indx - w1] * ( 1.f + ( lpf[indx] - lpf[indx - w2] ) / ( eps + lpf[indx] + lpf[indx - w2] ) ); + float S_Est = cfa[indx + w1] * ( 1.f + ( lpf[indx] - lpf[indx + w2] ) / ( eps + lpf[indx] + lpf[indx + w2] ) ); + float W_Est = cfa[indx - 1] * ( 1.f + ( lpf[indx] - lpf[indx - 2] ) / ( eps + lpf[indx] + lpf[indx - 2] ) ); + float E_Est = cfa[indx + 1] * ( 1.f + ( lpf[indx] - lpf[indx + 2] ) / ( eps + lpf[indx] + lpf[indx + 2] ) ); + + // Vertical and horizontal estimations + float V_Est = ( S_Grad * N_Est + N_Grad * S_Est ) / max(eps, N_Grad + S_Grad ); + float H_Est = ( W_Grad * E_Est + E_Grad * W_Est ) / max(eps, E_Grad + W_Grad ); + + // G@B and G@R interpolation + rgb[indx][1] = LIM( VH_Disc * H_Est + ( 1.f - VH_Disc ) * V_Est, 0.f, 1.f ); + + } + } + + free( lpf ); + + // RT --------------------------------------------------------------------- + if (plistener) { + plistener->setProgress(0.5); + } + // ------------------------------------------------------------------------ + + /** + * STEP 4: Populate the red and blue channels + */ + + // Step 4.1: Calculate P/Q diagonal local discrimination + PQ_Dir = ( float ( * ) ) calloc( width * height, sizeof *PQ_Dir ); //merror ( PQ_Dir, "rcd_demosaicing_171125()" ); + +#ifdef _OPENMP + #pragma omp parallel for +#endif + for ( int row = 4; row < height - 4; row++ ) { + for ( int col = 4 + (FC( row, 0 ) & 1), indx = row * width + col; col < width - 4; col += 2, indx += 2 ) { + + float P_Stat = max( - 18.f * cfa[indx] * cfa[indx - w1 - 1] - 18.f * cfa[indx] * cfa[indx + w1 + 1] - 36.f * cfa[indx] * cfa[indx - w2 - 2] - 36.f * cfa[indx] * cfa[indx + w2 + 2] + 18.f * cfa[indx] * cfa[indx - w3 - 3] + 18.f * cfa[indx] * cfa[indx + w3 + 3] - 2.f * cfa[indx] * cfa[indx - w4 - 4] - 2.f * cfa[indx] * cfa[indx + w4 + 4] + 38.f * cfa[indx] * cfa[indx] - 70.f * cfa[indx - w1 - 1] * cfa[indx + w1 + 1] - 12.f * cfa[indx - w1 - 1] * cfa[indx - w2 - 2] + 24.f * cfa[indx - w1 - 1] * cfa[indx + w2 + 2] - 38.f * cfa[indx - w1 - 1] * cfa[indx - w3 - 3] + 16.f * cfa[indx - w1 - 1] * cfa[indx + w3 + 3] + 12.f * cfa[indx - w1 - 1] * cfa[indx - w4 - 4] - 6.f * cfa[indx - w1 - 1] * cfa[indx + w4 + 4] + 46.f * cfa[indx - w1 - 1] * cfa[indx - w1 - 1] + 24.f * cfa[indx + w1 + 1] * cfa[indx - w2 - 2] - 12.f * cfa[indx + w1 + 1] * cfa[indx + w2 + 2] + 16.f * cfa[indx + w1 + 1] * cfa[indx - w3 - 3] - 38.f * cfa[indx + w1 + 1] * cfa[indx + w3 + 3] - 6.f * cfa[indx + w1 + 1] * cfa[indx - w4 - 4] + 12.f * cfa[indx + w1 + 1] * cfa[indx + w4 + 4] + 46.f * cfa[indx + w1 + 1] * cfa[indx + w1 + 1] + 14.f * cfa[indx - w2 - 2] * cfa[indx + w2 + 2] - 12.f * cfa[indx - w2 - 2] * cfa[indx + w3 + 3] - 2.f * cfa[indx - w2 - 2] * cfa[indx - w4 - 4] + 2.f * cfa[indx - w2 - 2] * cfa[indx + w4 + 4] + 11.f * cfa[indx - w2 - 2] * cfa[indx - w2 - 2] - 12.f * cfa[indx + w2 + 2] * cfa[indx - w3 - 3] + 2 * cfa[indx + w2 + 2] * cfa[indx - w4 - 4] - 2.f * cfa[indx + w2 + 2] * cfa[indx + w4 + 4] + 11.f * cfa[indx + w2 + 2] * cfa[indx + w2 + 2] + 2.f * cfa[indx - w3 - 3] * cfa[indx + w3 + 3] - 6.f * cfa[indx - w3 - 3] * cfa[indx - w4 - 4] + 10.f * cfa[indx - w3 - 3] * cfa[indx - w3 - 3] - 6.f * cfa[indx + w3 + 3] * cfa[indx + w4 + 4] + 10.f * cfa[indx + w3 + 3] * cfa[indx + w3 + 3] + 1.f * cfa[indx - w4 - 4] * cfa[indx - w4 - 4] + 1.f * cfa[indx + w4 + 4] * cfa[indx + w4 + 4], epssq ); + float Q_Stat = max( - 18.f * cfa[indx] * cfa[indx + w1 - 1] - 18.f * cfa[indx] * cfa[indx - w1 + 1] - 36.f * cfa[indx] * cfa[indx + w2 - 2] - 36.f * cfa[indx] * cfa[indx - w2 + 2] + 18.f * cfa[indx] * cfa[indx + w3 - 3] + 18.f * cfa[indx] * cfa[indx - w3 + 3] - 2.f * cfa[indx] * cfa[indx + w4 - 4] - 2.f * cfa[indx] * cfa[indx - w4 + 4] + 38.f * cfa[indx] * cfa[indx] - 70.f * cfa[indx + w1 - 1] * cfa[indx - w1 + 1] - 12.f * cfa[indx + w1 - 1] * cfa[indx + w2 - 2] + 24.f * cfa[indx + w1 - 1] * cfa[indx - w2 + 2] - 38.f * cfa[indx + w1 - 1] * cfa[indx + w3 - 3] + 16.f * cfa[indx + w1 - 1] * cfa[indx - w3 + 3] + 12.f * cfa[indx + w1 - 1] * cfa[indx + w4 - 4] - 6.f * cfa[indx + w1 - 1] * cfa[indx - w4 + 4] + 46.f * cfa[indx + w1 - 1] * cfa[indx + w1 - 1] + 24.f * cfa[indx - w1 + 1] * cfa[indx + w2 - 2] - 12.f * cfa[indx - w1 + 1] * cfa[indx - w2 + 2] + 16.f * cfa[indx - w1 + 1] * cfa[indx + w3 - 3] - 38.f * cfa[indx - w1 + 1] * cfa[indx - w3 + 3] - 6.f * cfa[indx - w1 + 1] * cfa[indx + w4 - 4] + 12.f * cfa[indx - w1 + 1] * cfa[indx - w4 + 4] + 46.f * cfa[indx - w1 + 1] * cfa[indx - w1 + 1] + 14.f * cfa[indx + w2 - 2] * cfa[indx - w2 + 2] - 12.f * cfa[indx + w2 - 2] * cfa[indx - w3 + 3] - 2.f * cfa[indx + w2 - 2] * cfa[indx + w4 - 4] + 2.f * cfa[indx + w2 - 2] * cfa[indx - w4 + 4] + 11.f * cfa[indx + w2 - 2] * cfa[indx + w2 - 2] - 12.f * cfa[indx - w2 + 2] * cfa[indx + w3 - 3] + 2 * cfa[indx - w2 + 2] * cfa[indx + w4 - 4] - 2.f * cfa[indx - w2 + 2] * cfa[indx - w4 + 4] + 11.f * cfa[indx - w2 + 2] * cfa[indx - w2 + 2] + 2.f * cfa[indx + w3 - 3] * cfa[indx - w3 + 3] - 6.f * cfa[indx + w3 - 3] * cfa[indx + w4 - 4] + 10.f * cfa[indx + w3 - 3] * cfa[indx + w3 - 3] - 6.f * cfa[indx - w3 + 3] * cfa[indx - w4 + 4] + 10.f * cfa[indx - w3 + 3] * cfa[indx - w3 + 3] + 1.f * cfa[indx + w4 - 4] * cfa[indx + w4 - 4] + 1.f * cfa[indx - w4 + 4] * cfa[indx - w4 + 4], epssq ); + + PQ_Dir[indx] = P_Stat / ( P_Stat + Q_Stat ); + + } + } + + // RT --------------------------------------------------------------------- + if (plistener) { + plistener->setProgress(0.7); + } + // ------------------------------------------------------------------------- + + // Step 4.2: Populate the red and blue channels at blue and red CFA positions +#ifdef _OPENMP + #pragma omp parallel for +#endif + for ( int row = 4; row < height - 4; row++ ) { + for ( int col = 4 + (FC( row, 0 ) & 1), indx = row * width + col, c = 2 - FC( row, col ); col < width - 4; col += 2, indx += 2 ) { + + // Refined P/Q diagonal local discrimination + float PQ_Central_Value = PQ_Dir[indx]; + float PQ_Neighbourhood_Value = 0.25f * ( PQ_Dir[indx - w1 - 1] + PQ_Dir[indx - w1 + 1] + PQ_Dir[indx + w1 - 1] + PQ_Dir[indx + w1 + 1] ); + + float PQ_Disc = ( fabs( 0.5f - PQ_Central_Value ) < fabs( 0.5f - PQ_Neighbourhood_Value ) ) ? PQ_Neighbourhood_Value : PQ_Central_Value; + + // Diagonal gradients + float NW_Grad = eps + fabs( rgb[indx - w1 - 1][c] - rgb[indx + w1 + 1][c] ) + fabs( rgb[indx - w1 - 1][c] - rgb[indx - w3 - 3][c] ) + fabs( rgb[indx][1] - rgb[indx - w2 - 2][1] ); + float NE_Grad = eps + fabs( rgb[indx - w1 + 1][c] - rgb[indx + w1 - 1][c] ) + fabs( rgb[indx - w1 + 1][c] - rgb[indx - w3 + 3][c] ) + fabs( rgb[indx][1] - rgb[indx - w2 + 2][1] ); + float SW_Grad = eps + fabs( rgb[indx + w1 - 1][c] - rgb[indx - w1 + 1][c] ) + fabs( rgb[indx + w1 - 1][c] - rgb[indx + w3 - 3][c] ) + fabs( rgb[indx][1] - rgb[indx + w2 - 2][1] ); + float SE_Grad = eps + fabs( rgb[indx + w1 + 1][c] - rgb[indx - w1 - 1][c] ) + fabs( rgb[indx + w1 + 1][c] - rgb[indx + w3 + 3][c] ) + fabs( rgb[indx][1] - rgb[indx + w2 + 2][1] ); + + // Diagonal colour differences + float NW_Est = rgb[indx - w1 - 1][c] - rgb[indx - w1 - 1][1]; + float NE_Est = rgb[indx - w1 + 1][c] - rgb[indx - w1 + 1][1]; + float SW_Est = rgb[indx + w1 - 1][c] - rgb[indx + w1 - 1][1]; + float SE_Est = rgb[indx + w1 + 1][c] - rgb[indx + w1 + 1][1]; + + // P/Q estimations + float P_Est = ( NW_Grad * SE_Est + SE_Grad * NW_Est ) / max(eps, NW_Grad + SE_Grad ); + float Q_Est = ( NE_Grad * SW_Est + SW_Grad * NE_Est ) / max(eps, NE_Grad + SW_Grad ); + + // R@B and B@R interpolation + rgb[indx][c] = LIM( rgb[indx][1] + ( 1.f - PQ_Disc ) * P_Est + PQ_Disc * Q_Est, 0.f, 1.f ); + + } + } + + free( PQ_Dir ); + + // RT --------------------------------------------------------------------- + if (plistener) { + plistener->setProgress(0.825); + } + // ------------------------------------------------------------------------- + + // Step 4.3: Populate the red and blue channels at green CFA positions +#ifdef _OPENMP + #pragma omp parallel for +#endif + for ( int row = 4; row < height - 4; row++ ) { + for ( int col = 4 + (FC( row, 1 ) & 1), indx = row * width + col; col < width - 4; col += 2, indx += 2 ) { + + // Refined vertical and horizontal local discrimination + float VH_Central_Value = VH_Dir[indx]; + float VH_Neighbourhood_Value = 0.25f * ( VH_Dir[indx - w1 - 1] + VH_Dir[indx - w1 + 1] + VH_Dir[indx + w1 - 1] + VH_Dir[indx + w1 + 1] ); + + float VH_Disc = ( fabs( 0.5f - VH_Central_Value ) < fabs( 0.5f - VH_Neighbourhood_Value ) ) ? VH_Neighbourhood_Value : VH_Central_Value; + + for ( int c = 0; c <= 2; c += 2 ) { + + // Cardinal gradients + float N_Grad = eps + fabs( rgb[indx][1] - rgb[indx - w2][1] ) + fabs( rgb[indx - w1][c] - rgb[indx + w1][c] ) + fabs( rgb[indx - w1][c] - rgb[indx - w3][c] ); + float S_Grad = eps + fabs( rgb[indx][1] - rgb[indx + w2][1] ) + fabs( rgb[indx + w1][c] - rgb[indx - w1][c] ) + fabs( rgb[indx + w1][c] - rgb[indx + w3][c] ); + float W_Grad = eps + fabs( rgb[indx][1] - rgb[indx - 2][1] ) + fabs( rgb[indx - 1][c] - rgb[indx + 1][c] ) + fabs( rgb[indx - 1][c] - rgb[indx - 3][c] ); + float E_Grad = eps + fabs( rgb[indx][1] - rgb[indx + 2][1] ) + fabs( rgb[indx + 1][c] - rgb[indx - 1][c] ) + fabs( rgb[indx + 1][c] - rgb[indx + 3][c] ); + + // Cardinal colour differences + float N_Est = rgb[indx - w1][c] - rgb[indx - w1][1]; + float S_Est = rgb[indx + w1][c] - rgb[indx + w1][1]; + float W_Est = rgb[indx - 1][c] - rgb[indx - 1][1]; + float E_Est = rgb[indx + 1][c] - rgb[indx + 1][1]; + + // Vertical and horizontal estimations + float V_Est = ( N_Grad * S_Est + S_Grad * N_Est ) / max(eps, N_Grad + S_Grad ); + float H_Est = ( E_Grad * W_Est + W_Grad * E_Est ) / max(eps, E_Grad + W_Grad ); + + // R@G and B@G interpolation + rgb[indx][c] = LIM( rgb[indx][1] + ( 1.f - VH_Disc ) * V_Est + VH_Disc * H_Est, 0.f, 1.f ); + + } + } + } + + free(VH_Dir); + + // RT --------------------------------------------------------------------- + if (plistener) { + plistener->setProgress(0.95); + } + +#ifdef _OPENMP + #pragma omp parallel for +#endif + for (int row = 0; row < height; ++row) { + for (int col = 0, idx = row * width + col ; col < width; ++col, ++idx) { + red[row][col] = CLIP(rgb[idx][0] * 65535.f); + green[row][col] = CLIP(rgb[idx][1] * 65535.f); + blue[row][col] = CLIP(rgb[idx][2] * 65535.f); + } + } + + border_interpolate2(width, height, 4); + + if (plistener) { + plistener->setProgress(1); + } + // ------------------------------------------------------------------------- +} + #define fcol(row,col) xtrans[(row)%6][(col)%6] #define isgreen(row,col) (xtrans[(row)%3][(col)%3]&1) diff --git a/rtengine/procparams.cc b/rtengine/procparams.cc index f7618e84d..9f0c13f6d 100644 --- a/rtengine/procparams.cc +++ b/rtengine/procparams.cc @@ -2446,6 +2446,7 @@ const std::vector& RAWParams::BayerSensor::getMethodStrings() "vng4", "dcb", "ahd", + "rcd", "fast", "mono", "none", diff --git a/rtengine/procparams.h b/rtengine/procparams.h index 21a048347..00e6f9389 100644 --- a/rtengine/procparams.h +++ b/rtengine/procparams.h @@ -1180,6 +1180,7 @@ struct RAWParams { VNG4, DCB, AHD, + RCD, FAST, MONO, NONE, diff --git a/rtengine/rawimagesource.cc b/rtengine/rawimagesource.cc index f6f73e4a2..bcc16d5cb 100644 --- a/rtengine/rawimagesource.cc +++ b/rtengine/rawimagesource.cc @@ -2049,6 +2049,8 @@ void RawImageSource::demosaic(const RAWParams &raw) fast_demosaic(); } else if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::MONO) ) { nodemosaic(true); + } else if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::RCD) ) { + rcd_demosaic (); } else { nodemosaic(false); } diff --git a/rtengine/rawimagesource.h b/rtengine/rawimagesource.h index d2ce77fed..4924b955a 100644 --- a/rtengine/rawimagesource.h +++ b/rtengine/rawimagesource.h @@ -248,6 +248,7 @@ protected: void fast_demosaic();//Emil's code for fast demosaicing void dcb_demosaic(int iterations, bool dcb_enhance); void ahd_demosaic(); + void rcd_demosaic(); void border_interpolate(unsigned int border, float (*image)[4], unsigned int start = 0, unsigned int end = 0); void border_interpolate2(int winw, int winh, int lborders); void dcb_initTileLimits(int &colMin, int &rowMin, int &colMax, int &rowMax, int x0, int y0, int border);