Bugfix for Directional Pyramid Denoising. Adding a Directional Pyramid Equalizer tool. This one serves the same function as the existing Wavelet Equalizer, but has much less artifacting; though it is a little slower to execute and has not yet been adapted for OpenMP implementation. There are also fewer levels on which the tool operates, though of course if there was a demand that could be altered. The controls are similar, though have been given separate luma and chroma controls. Each slider adjusts the factor by which a given detail band is amplified; factors larger than one increase contrast, while values smaller than one decrease contrast. The luma control alters contrast on various scales, each successive one twice as large as the previous one. The chroma control is similar, but does less since there is typically less chroma contrast on fine scales. One might use this to restore some of the color contrast lost in NR, or to remove color fringing by making the fine scale enhancement factor much less than one.

This commit is contained in:
Emil Martinec
2010-09-22 15:39:00 -05:00
parent b649b7cd8f
commit 539c39a92b
26 changed files with 1137 additions and 137 deletions

View File

@@ -341,7 +341,7 @@ namespace rtengine {
//float eps = 0.0;
double wtdsum[3], norm;
float hipass[3], hpffluct[3], tonefactor, nrfactor;
int i1, j1;
int i, j, ix, jx;
// c[0] noise_L
// c[1] noise_ab (relative to noise_L)
@@ -366,9 +366,7 @@ namespace rtengine {
}*/
//float domker[5][5] = {{1,1,1,1,1},{1,2,2,2,1},{1,2,4,2,1},{1,2,2,2,1},{1,1,1,1,1}};
LabImage* smooth;
smooth = new LabImage(width, height);
// for coarsest level, take non-subsampled lopass image and subtract from lopass_fine to generate hipass image
@@ -386,28 +384,64 @@ namespace rtengine {
// step (1)
for(int i = 0, i1=0; i < height; i+=pitch, i1++)
for(int j = 0, j1=0; j < width; j+=pitch, j1++) {
//copy common pixels
smooth->L[i][j] = data_coarse->L[i1][j1];
smooth->a[i][j] = data_coarse->a[i1][j1];
smooth->b[i][j] = data_coarse->b[i1][j1];
}
if (pitch>1) {//pitch=2; expand coarse image, fill in missing data
if (pitch==1) {
for(int i = 0; i < height-1; i+=2)
for(int j = 0; j < width-1; j+=2) {
// step (1-2-3-4)
for( i = 0; i < height; i++)
for( j = 0; j < width; j++) {
tonefactor = ((NRWT_L(data_coarse->L[i][j])));
//Wiener filter
//luma
if (level<2) {
hipass[0] = data_fine->L[i][j]-data_coarse->L[i][j];
hpffluct[0]=SQR(hipass[0])+0.001;
hipass[0] *= hpffluct[0]/(hpffluct[0]+noisevar_L);
data_fine->L[i][j] = CLIP(hipass[0]+data_coarse->L[i][j]);
}
//chroma
hipass[1] = data_fine->a[i][j]-data_coarse->a[i][j];
hipass[2] = data_fine->b[i][j]-data_coarse->b[i][j];
hpffluct[1]=SQR(hipass[1]*tonefactor)+0.001;
hpffluct[2]=SQR(hipass[2]*tonefactor)+0.001;
nrfactor = (hpffluct[1]+hpffluct[2]) /((hpffluct[1]+hpffluct[2]) + noisevar_ab * NRWT_AB);
hipass[1] *= nrfactor;
hipass[2] *= nrfactor;
data_fine->a[i][j] = hipass[1]+data_coarse->a[i][j];
data_fine->b[i][j] = hipass[2]+data_coarse->b[i][j];
}
} else {
LabImage* smooth;
smooth = new LabImage(width, height);
for( i = 0, ix=0; i < height; i+=pitch, ix++)
for( j = 0, jx=0; j < width; j+=pitch, jx++) {
//copy common pixels
smooth->L[i][j] = data_coarse->L[ix][jx];
smooth->a[i][j] = data_coarse->a[ix][jx];
smooth->b[i][j] = data_coarse->b[ix][jx];
}
//if (pitch>1) {//pitch=2; step (1) expand coarse image, fill in missing data
for( i = 0; i < height-1; i+=2)
for( j = 0; j < width-1; j+=2) {
//do midpoint first
norm=0;
wtdsum[0]=wtdsum[1]=wtdsum[2]=0.0;
for(i1=i; i1<MIN(height,i+3); i1+=2)
for (j1=j; j1<MIN(width,j+3); j1+=2) {
wtdsum[0] += smooth->L[i1][j1];
wtdsum[1] += smooth->a[i1][j1];
wtdsum[2] += smooth->b[i1][j1];
for( ix=i; ix<MIN(height,i+3); ix+=2)
for ( jx=j; jx<MIN(width,j+3); jx+=2) {
wtdsum[0] += smooth->L[ix][jx];
wtdsum[1] += smooth->a[ix][jx];
wtdsum[2] += smooth->b[ix][jx];
norm++;
}
norm = 1/norm;
@@ -416,22 +450,22 @@ namespace rtengine {
smooth->b[i+1][j+1]=wtdsum[2]*norm;
}
for(int i = 0; i < height-1; i+=2)
for(int j = 0; j < width-1; j+=2) {
for( i = 0; i < height-1; i+=2)
for( j = 0; j < width-1; j+=2) {
//now right neighbor
if (j+1==width) continue;
norm=0;
wtdsum[0]=wtdsum[1]=wtdsum[2]=0.0;
for (j1=j; j1<MIN(width,j+3); j1+=2) {
wtdsum[0] += smooth->L[i][j1];
wtdsum[1] += smooth->a[i][j1];
wtdsum[2] += smooth->b[i][j1];
for (jx=j; jx<MIN(width,j+3); jx+=2) {
wtdsum[0] += smooth->L[i][jx];
wtdsum[1] += smooth->a[i][jx];
wtdsum[2] += smooth->b[i][jx];
norm++;
}
for (i1=MAX(0,i-1); i1<MIN(height,i+2); i1+=2) {
wtdsum[0] += smooth->L[i1][j+1];
wtdsum[1] += smooth->a[i1][j+1];
wtdsum[2] += smooth->b[i1][j+1];
for (ix=MAX(0,i-1); ix<MIN(height,i+2); ix+=2) {
wtdsum[0] += smooth->L[ix][j+1];
wtdsum[1] += smooth->a[ix][j+1];
wtdsum[2] += smooth->b[ix][j+1];
norm++;
}
norm = 1/norm;
@@ -443,16 +477,16 @@ namespace rtengine {
if (i+1==height) continue;
norm=0;
wtdsum[0]=wtdsum[1]=wtdsum[2]=0.0;
for (i1=i; i1<MIN(height,i+3); i1+=2) {
wtdsum[0] += smooth->L[i1][j];
wtdsum[1] += smooth->a[i1][j];
wtdsum[2] += smooth->b[i1][j];
for (ix=i; ix<MIN(height,i+3); ix+=2) {
wtdsum[0] += smooth->L[ix][j];
wtdsum[1] += smooth->a[ix][j];
wtdsum[2] += smooth->b[ix][j];
norm++;
}
for (j1=j-1; j1<MIN(width,j+2); j1+=2) {
wtdsum[0] += smooth->L[i+1][j1];
wtdsum[1] += smooth->a[i+1][j1];
wtdsum[2] += smooth->b[i+1][j1];
for (jx=MAX(0,j-1); jx<MIN(width,j+2); jx+=2) {
wtdsum[0] += smooth->L[i+1][jx];
wtdsum[1] += smooth->a[i+1][jx];
wtdsum[2] += smooth->b[i+1][jx];
norm++;
}
norm=1/norm;
@@ -461,42 +495,40 @@ namespace rtengine {
smooth->b[i+1][j]=wtdsum[2]*norm;
}
}
// step (2-3-4)
for(int i = 0; i < height; i++)
for(int j = 0; j < width; j++) {
tonefactor = ((NRWT_L(smooth->L[i][j])));
//Wiener filter
//luma
if (level<2) {
hipass[0] = data_fine->L[i][j]-smooth->L[i][j];
hpffluct[0]=SQR(hipass[0])+0.001;
hipass[0] *= hpffluct[0]/(hpffluct[0]+noisevar_L);
data_fine->L[i][j] = CLIP(hipass[0]+smooth->L[i][j]);
// step (2-3-4)
for( i = 0; i < height; i++)
for( j = 0; j < width; j++) {
tonefactor = ((NRWT_L(smooth->L[i][j])));
//Wiener filter
//luma
if (level<2) {
hipass[0] = data_fine->L[i][j]-smooth->L[i][j];
hpffluct[0]=SQR(hipass[0])+0.001;
hipass[0] *= hpffluct[0]/(hpffluct[0]+noisevar_L);
data_fine->L[i][j] = CLIP(hipass[0]+smooth->L[i][j]);
}
//chroma
hipass[1] = data_fine->a[i][j]-smooth->a[i][j];
hipass[2] = data_fine->b[i][j]-smooth->b[i][j];
hpffluct[1]=SQR(hipass[1]*tonefactor)+0.001;
hpffluct[2]=SQR(hipass[2]*tonefactor)+0.001;
nrfactor = (hpffluct[1]+hpffluct[2]) /((hpffluct[1]+hpffluct[2]) + noisevar_ab * NRWT_AB);
hipass[1] *= nrfactor;
hipass[2] *= nrfactor;
data_fine->a[i][j] = hipass[1]+smooth->a[i][j];
data_fine->b[i][j] = hipass[2]+smooth->b[i][j];
}
//chroma
hipass[1] = data_fine->a[i][j]-smooth->a[i][j];
hipass[2] = data_fine->b[i][j]-smooth->b[i][j];
hpffluct[1]=SQR(hipass[1]*tonefactor)+0.001;
hpffluct[2]=SQR(hipass[2]*tonefactor)+0.001;
nrfactor = (hpffluct[1]+hpffluct[2]) /((hpffluct[1]+hpffluct[2]) + noisevar_ab * NRWT_AB);
//nrfactor *= resaturate;
/*if (level) {
hipass[0] *= recontrast;
nrfactor *= resaturate;
}*/
hipass[1] *= nrfactor;
hipass[2] *= nrfactor;
data_fine->a[i][j] = hipass[1]+smooth->a[i][j];
data_fine->b[i][j] = hipass[2]+smooth->b[i][j];
}
delete smooth;
}//end of pitch>1
delete smooth;
};