Added an implementation of the Fast Guided Filter
derived directly from the pseudo-code of the paper: Fast Guided Filter by Kaiming He, Jian Sun available at https://arxiv.org/abs/1505.00996
This commit is contained in:
@@ -127,6 +127,7 @@ set(RTENGINESOURCEFILES
|
||||
xtrans_demosaic.cc
|
||||
vng4_demosaic_RT.cc
|
||||
ipsoftlight.cc
|
||||
guidedfilter.cc
|
||||
)
|
||||
|
||||
if(LENSFUN_HAS_LOAD_DIRECTORY)
|
||||
|
@@ -35,6 +35,8 @@ namespace rtengine
|
||||
template<class T, class A> void boxblur (T** src, A** dst, int radx, int rady, int W, int H)
|
||||
{
|
||||
//box blur image; box range = (radx,rady)
|
||||
radx = min(radx, W-1);
|
||||
rady = min(rady, H-1);
|
||||
|
||||
AlignedBuffer<float>* buffer = new AlignedBuffer<float> (W * H);
|
||||
float* temp = buffer->data;
|
||||
|
194
rtengine/guidedfilter.cc
Normal file
194
rtengine/guidedfilter.cc
Normal file
@@ -0,0 +1,194 @@
|
||||
/* -*- C++ -*-
|
||||
*
|
||||
* This file is part of RawTherapee.
|
||||
*
|
||||
* Copyright (c) 2018 Alberto Griggio <alberto.griggio@gmail.com>
|
||||
*
|
||||
* RawTherapee is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* RawTherapee is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* This is a Fast Guided Filter implementation, derived directly from the
|
||||
* pseudo-code of the paper:
|
||||
*
|
||||
* Fast Guided Filter
|
||||
* by Kaiming He, Jian Sun
|
||||
*
|
||||
* available at https://arxiv.org/abs/1505.00996
|
||||
*/
|
||||
|
||||
#include "guidedfilter.h"
|
||||
#include "boxblur.h"
|
||||
#include "rescale.h"
|
||||
#include "imagefloat.h"
|
||||
|
||||
namespace rtengine {
|
||||
|
||||
#if 0
|
||||
# define DEBUG_DUMP(arr) \
|
||||
do { \
|
||||
Imagefloat im(arr.width(), arr.height()); \
|
||||
const char *out = "/tmp/" #arr ".tif"; \
|
||||
for (int y = 0; y < im.getHeight(); ++y) { \
|
||||
for (int x = 0; x < im.getWidth(); ++x) { \
|
||||
im.r(y, x) = im.g(y, x) = im.b(y, x) = arr[y][x] * 65535.f; \
|
||||
} \
|
||||
} \
|
||||
im.saveTIFF(out, 16); \
|
||||
} while (false)
|
||||
#else
|
||||
# define DEBUG_DUMP(arr)
|
||||
#endif
|
||||
|
||||
|
||||
void guidedFilter(const array2D<float> &guide, const array2D<float> &src, array2D<float> &dst, int r, float epsilon, bool multithread, int subsampling)
|
||||
{
|
||||
const int W = src.width();
|
||||
const int H = src.height();
|
||||
|
||||
enum Op { MUL, DIVEPSILON, ADD, SUB, ADDMUL, SUBMUL };
|
||||
|
||||
const auto apply =
|
||||
[=](Op op, array2D<float> &res, const array2D<float> &a, const array2D<float> &b, const array2D<float> &c=array2D<float>()) -> void
|
||||
{
|
||||
const int w = res.width();
|
||||
const int h = res.height();
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for if (multithread)
|
||||
#endif
|
||||
for (int y = 0; y < h; ++y) {
|
||||
for (int x = 0; x < w; ++x) {
|
||||
float r;
|
||||
float aa = a[y][x];
|
||||
float bb = b[y][x];
|
||||
switch (op) {
|
||||
case MUL:
|
||||
r = aa * bb;
|
||||
break;
|
||||
case DIVEPSILON:
|
||||
r = aa / (bb + epsilon);
|
||||
break;
|
||||
case ADD:
|
||||
r = aa + bb;
|
||||
break;
|
||||
case SUB:
|
||||
r = aa - bb;
|
||||
break;
|
||||
case ADDMUL:
|
||||
r = aa * bb + c[y][x];
|
||||
break;
|
||||
case SUBMUL:
|
||||
r = c[y][x] - (aa * bb);
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
r = 0;
|
||||
break;
|
||||
}
|
||||
res[y][x] = r;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// use the terminology of the paper (Algorithm 2)
|
||||
const array2D<float> &I = guide;
|
||||
const array2D<float> &p = src;
|
||||
array2D<float> &q = dst;
|
||||
|
||||
const auto f_mean =
|
||||
[](array2D<float> &d, array2D<float> &s, int rad) -> void
|
||||
{
|
||||
boxblur<float, float>(s, d, rad, rad, s.width(), s.height());
|
||||
};
|
||||
|
||||
const auto f_subsample =
|
||||
[=](array2D<float> &d, const array2D<float> &s) -> void
|
||||
{
|
||||
rescaleBilinear(s, d, multithread);
|
||||
};
|
||||
|
||||
const auto f_upsample = f_subsample;
|
||||
|
||||
const int w = W / subsampling;
|
||||
const int h = H / subsampling;
|
||||
|
||||
array2D<float> I1(w, h);
|
||||
array2D<float> p1(w, h);
|
||||
|
||||
f_subsample(I1, I);
|
||||
f_subsample(p1, p);
|
||||
|
||||
DEBUG_DUMP(I);
|
||||
DEBUG_DUMP(p);
|
||||
DEBUG_DUMP(I1);
|
||||
DEBUG_DUMP(p1);
|
||||
|
||||
float r1 = float(r) / subsampling;
|
||||
|
||||
array2D<float> meanI(w, h);
|
||||
f_mean(meanI, I1, r1);
|
||||
DEBUG_DUMP(meanI);
|
||||
|
||||
array2D<float> meanp(w, h);
|
||||
f_mean(meanp, p1, r1);
|
||||
DEBUG_DUMP(meanp);
|
||||
|
||||
array2D<float> &corrIp = p1;
|
||||
apply(MUL, corrIp, I1, p1);
|
||||
f_mean(corrIp, corrIp, r1);
|
||||
DEBUG_DUMP(corrIp);
|
||||
|
||||
array2D<float> &corrI = I1;
|
||||
apply(MUL, corrI, I1, I1);
|
||||
f_mean(corrI, corrI, r1);
|
||||
DEBUG_DUMP(corrI);
|
||||
|
||||
array2D<float> &varI = corrI;
|
||||
apply(SUBMUL, varI, meanI, meanI, corrI);
|
||||
DEBUG_DUMP(varI);
|
||||
|
||||
array2D<float> &covIp = corrIp;
|
||||
apply(SUBMUL, covIp, meanI, meanp, corrIp);
|
||||
DEBUG_DUMP(covIp);
|
||||
|
||||
array2D<float> &a = varI;
|
||||
apply(DIVEPSILON, a, covIp, varI);
|
||||
DEBUG_DUMP(a);
|
||||
|
||||
array2D<float> &b = covIp;
|
||||
apply(SUBMUL, b, a, meanI, meanp);
|
||||
DEBUG_DUMP(b);
|
||||
|
||||
array2D<float> &meana = a;
|
||||
f_mean(meana, a, r1);
|
||||
DEBUG_DUMP(meana);
|
||||
|
||||
array2D<float> &meanb = b;
|
||||
f_mean(meanb, b, r1);
|
||||
DEBUG_DUMP(meanb);
|
||||
|
||||
array2D<float> meanA(W, H);
|
||||
f_upsample(meanA, meana);
|
||||
DEBUG_DUMP(meanA);
|
||||
|
||||
array2D<float> &meanB = q;
|
||||
f_upsample(meanB, meanb);
|
||||
DEBUG_DUMP(meanB);
|
||||
|
||||
apply(ADDMUL, q, meanA, I, meanB);
|
||||
DEBUG_DUMP(q);
|
||||
}
|
||||
|
||||
} // namespace rtengine
|
29
rtengine/guidedfilter.h
Normal file
29
rtengine/guidedfilter.h
Normal file
@@ -0,0 +1,29 @@
|
||||
/* -*- C++ -*-
|
||||
*
|
||||
* This file is part of RawTherapee.
|
||||
*
|
||||
* Copyright (c) 2018 Alberto Griggio <alberto.griggio@gmail.com>
|
||||
*
|
||||
* RawTherapee is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* RawTherapee is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "array2D.h"
|
||||
|
||||
namespace rtengine {
|
||||
|
||||
void guidedFilter(const array2D<float> &guide, const array2D<float> &src, array2D<float> &dst, int r, float epsilon, bool multithread, int subsampling=4);
|
||||
|
||||
} // namespace rtengine
|
Reference in New Issue
Block a user