Merge branch 'dev' into spot-removal-tool

This commit is contained in:
Hombre
2019-03-18 22:35:11 +01:00
2691 changed files with 93967 additions and 238984 deletions

View File

@@ -27,6 +27,7 @@
#include "alignedbuffer.h"
#include "rt_math.h"
#include "color.h"
#include "procparams.h"
using namespace rtengine;
@@ -44,48 +45,38 @@ Imagefloat::~Imagefloat ()
}
// Call this method to handle floating points input values of different size
void Imagefloat::setScanline (int row, unsigned char* buffer, int bps, float *minValue, float *maxValue)
void Imagefloat::setScanline (int row, unsigned char* buffer, int bps, unsigned int numSamples)
{
if (data == nullptr) {
return;
}
// The DNG decoder convert to 32 bits float data even if the file contains 16 or 24 bits data.
// DNG_HalfToFloat and DNG_FP24ToFloat from dcraw.cc can be used to manually convert
// from 16 and 24 bits to 32 bits float respectively
switch (sampleFormat) {
case (IIOSF_FLOAT): {
case (IIOSF_FLOAT16): {
int ix = 0;
uint16_t* sbuffer = (uint16_t*) buffer;
for (int i = 0; i < width; i++) {
r(row, i) = 65535.f * DNG_HalfToFloat(sbuffer[ix++]);
g(row, i) = 65535.f * DNG_HalfToFloat(sbuffer[ix++]);
b(row, i) = 65535.f * DNG_HalfToFloat(sbuffer[ix++]);
}
break;
}
//case (IIOSF_FLOAT24):
case (IIOSF_FLOAT32): {
int ix = 0;
float* sbuffer = (float*) buffer;
for (int i = 0; i < width; i++) {
r(row, i) = sbuffer[ix];
if (minValue) {
if (sbuffer[ix] < minValue[0]) {
minValue[0] = sbuffer[ix];
} else if (sbuffer[ix] > maxValue[0]) {
maxValue[0] = sbuffer[ix];
} ++ix;
}
g(row, i) = sbuffer[ix];
if (minValue) {
if (sbuffer[ix] < minValue[1]) {
minValue[1] = sbuffer[ix];
} else if (sbuffer[ix] > maxValue[1]) {
maxValue[1] = sbuffer[ix];
} ++ix;
}
b(row, i) = sbuffer[ix];
if (minValue) {
if (sbuffer[ix] < minValue[2]) {
minValue[2] = sbuffer[ix];
} else if (sbuffer[ix] > maxValue[2]) {
maxValue[2] = sbuffer[ix];
} ++ix;
}
r(row, i) = 65535.f * sbuffer[ix++];
g(row, i) = 65535.f * sbuffer[ix++];
b(row, i) = 65535.f * sbuffer[ix++];
}
break;
@@ -104,34 +95,8 @@ void Imagefloat::setScanline (int row, unsigned char* buffer, int bps, float *mi
// TODO: we may have to handle other color space than sRGB!
Color::xyz2srgb(xyzvalues[0], xyzvalues[1], xyzvalues[2], rgbvalues[0], rgbvalues[1], rgbvalues[2]);
r(row, i) = rgbvalues[0];
if (minValue) {
if (rgbvalues[0] < minValue[0]) {
minValue[0] = rgbvalues[0];
} else if (rgbvalues[0] > maxValue[0]) {
maxValue[0] = rgbvalues[0];
}
}
g(row, i) = rgbvalues[1];
if (minValue) {
if (rgbvalues[1] < minValue[1]) {
minValue[1] = rgbvalues[1];
} else if (rgbvalues[1] > maxValue[1]) {
maxValue[1] = rgbvalues[1];
}
}
b(row, i) = rgbvalues[2];
if (minValue) {
if (rgbvalues[2] < minValue[2]) {
minValue[2] = rgbvalues[2];
} else if (rgbvalues[2] > maxValue[2]) {
maxValue[2] = rgbvalues[2];
}
}
}
break;
@@ -143,40 +108,54 @@ void Imagefloat::setScanline (int row, unsigned char* buffer, int bps, float *mi
}
}
void Imagefloat::getScanline (int row, unsigned char* buffer, int bps)
void Imagefloat::getScanline (int row, unsigned char* buffer, int bps, bool isFloat) const
{
if (data == nullptr) {
return;
}
if (bps == 32) {
int ix = 0;
float* sbuffer = (float*) buffer;
// agriggio -- assume the image is normalized to [0, 65535]
for (int i = 0; i < width; i++) {
sbuffer[ix++] = r(row, i) / 65535.f;
sbuffer[ix++] = g(row, i) / 65535.f;
sbuffer[ix++] = b(row, i) / 65535.f;
if (isFloat) {
if (bps == 32) {
int ix = 0;
float* sbuffer = (float*) buffer;
// agriggio -- assume the image is normalized to [0, 65535]
for (int i = 0; i < width; i++) {
sbuffer[ix++] = r(row, i) / 65535.f;
sbuffer[ix++] = g(row, i) / 65535.f;
sbuffer[ix++] = b(row, i) / 65535.f;
}
} else if (bps == 16) {
int ix = 0;
uint16_t* sbuffer = (uint16_t*) buffer;
// agriggio -- assume the image is normalized to [0, 65535]
for (int i = 0; i < width; i++) {
sbuffer[ix++] = DNG_FloatToHalf(r(row, i) / 65535.f);
sbuffer[ix++] = DNG_FloatToHalf(g(row, i) / 65535.f);
sbuffer[ix++] = DNG_FloatToHalf(b(row, i) / 65535.f);
}
}
} else if (bps == 16) {
} else {
unsigned short *sbuffer = (unsigned short *)buffer;
for (int i = 0, ix = 0; i < width; i++) {
sbuffer[ix++] = CLIP(r(row, i));
sbuffer[ix++] = CLIP(g(row, i));
sbuffer[ix++] = CLIP(b(row, i));
}
} else if (bps == 8) {
for (int i = 0, ix = 0; i < width; i++) {
buffer[ix++] = rtengine::uint16ToUint8Rounded(CLIP(r(row, i)));
buffer[ix++] = rtengine::uint16ToUint8Rounded(CLIP(g(row, i)));
buffer[ix++] = rtengine::uint16ToUint8Rounded(CLIP(b(row, i)));
float ri = r(row, i);
float gi = g(row, i);
float bi = b(row, i);
if (bps == 16) {
sbuffer[ix++] = CLIP(ri);
sbuffer[ix++] = CLIP(gi);
sbuffer[ix++] = CLIP(bi);
} else if (bps == 8) {
buffer[ix++] = rtengine::uint16ToUint8Rounded(CLIP(ri));
buffer[ix++] = rtengine::uint16ToUint8Rounded(CLIP(gi));
buffer[ix++] = rtengine::uint16ToUint8Rounded(CLIP(bi));
}
}
}
}
Imagefloat* Imagefloat::copy ()
Imagefloat* Imagefloat::copy () const
{
Imagefloat* cp = new Imagefloat (width, height);
@@ -199,7 +178,7 @@ Imagefloat* Imagefloat::copySubRegion (int x, int y, int width, int height)
}
// This is called by the StdImageSource class. We assume that fp images from StdImageSource don't have to deal with gamma
void Imagefloat::getStdImage (ColorTemp ctemp, int tran, Imagefloat* image, const PreviewProps & pp, bool first, procparams::ToneCurveParams hrp)
void Imagefloat::getStdImage (const ColorTemp &ctemp, int tran, Imagefloat* image, const PreviewProps &pp) const
{
// compute channel multipliers
@@ -249,6 +228,8 @@ void Imagefloat::getStdImage (ColorTemp ctemp, int tran, Imagefloat* image, cons
gm /= area;
bm /= area;
const auto CLIP0 = [](float v) -> float { return std::max(v, 0.f); };
#ifdef _OPENMP
#pragma omp parallel
{
@@ -281,9 +262,9 @@ void Imagefloat::getStdImage (ColorTemp ctemp, int tran, Imagefloat* image, cons
continue;
}
lineR[dst_x] = CLIP(rm2 * r(src_y, src_x));
lineG[dst_x] = CLIP(gm2 * g(src_y, src_x));
lineB[dst_x] = CLIP(bm2 * b(src_y, src_x));
lineR[dst_x] = CLIP0(rm2 * r(src_y, src_x));
lineG[dst_x] = CLIP0(gm2 * g(src_y, src_x));
lineB[dst_x] = CLIP0(bm2 * b(src_y, src_x));
}
} else {
// source image, first line of the current destination row
@@ -314,15 +295,15 @@ void Imagefloat::getStdImage (ColorTemp ctemp, int tran, Imagefloat* image, cons
// convert back to gamma and clip
if (src_sub_width == skip && src_sub_height == skip) {
// Common case where the sub-region is complete
lineR[dst_x] = CLIP(rm * rtot);
lineG[dst_x] = CLIP(gm * gtot);
lineB[dst_x] = CLIP(bm * btot);
lineR[dst_x] = CLIP0(rm * rtot);
lineG[dst_x] = CLIP0(gm * gtot);
lineB[dst_x] = CLIP0(bm * btot);
} else {
// computing a special factor for this incomplete sub-region
float area = src_sub_width * src_sub_height;
lineR[dst_x] = CLIP(rm2 * rtot / area);
lineG[dst_x] = CLIP(gm2 * gtot / area);
lineB[dst_x] = CLIP(bm2 * btot / area);
lineR[dst_x] = CLIP0(rm2 * rtot / area);
lineG[dst_x] = CLIP0(gm2 * gtot / area);
lineB[dst_x] = CLIP0(bm2 * btot / area);
}
}
}
@@ -359,7 +340,7 @@ void Imagefloat::getStdImage (ColorTemp ctemp, int tran, Imagefloat* image, cons
}
Image8*
Imagefloat::to8()
Imagefloat::to8() const
{
Image8* img8 = new Image8(width, height);
#ifdef _OPENMP
@@ -368,9 +349,9 @@ Imagefloat::to8()
for (int h = 0; h < height; ++h) {
for (int w = 0; w < width; ++w) {
img8->r(h, w) = uint16ToUint8Rounded(r(h, w));
img8->g(h, w) = uint16ToUint8Rounded(g(h, w));
img8->b(h, w) = uint16ToUint8Rounded(b(h, w));
img8->r(h, w) = uint16ToUint8Rounded(CLIP(r(h, w)));
img8->g(h, w) = uint16ToUint8Rounded(CLIP(g(h, w)));
img8->b(h, w) = uint16ToUint8Rounded(CLIP(b(h, w)));
}
}
@@ -378,7 +359,7 @@ Imagefloat::to8()
}
Image16*
Imagefloat::to16()
Imagefloat::to16() const
{
Image16* img16 = new Image16(width, height);
#ifdef _OPENMP
@@ -387,9 +368,9 @@ Imagefloat::to16()
for (int h = 0; h < height; ++h) {
for (int w = 0; w < width; ++w) {
img16->r(h, w) = r(h, w);
img16->g(h, w) = g(h, w);
img16->b(h, w) = b(h, w);
img16->r(h, w) = CLIP(r(h, w));
img16->g(h, w) = CLIP(g(h, w));
img16->b(h, w) = CLIP(b(h, w));
}
}
@@ -462,7 +443,7 @@ void Imagefloat::calcCroppedHistogram(const ProcParams &params, float scale, LUT
hist.clear();
// Set up factors to calc the lightness
TMatrix wprof = ICCStore::getInstance()->workingSpaceMatrix (params.icm.working);
TMatrix wprof = ICCStore::getInstance()->workingSpaceMatrix (params.icm.workingProfile);
float facRed = wprof[1][0];
float facGreen = wprof[1][1];
@@ -473,11 +454,15 @@ void Imagefloat::calcCroppedHistogram(const ProcParams &params, float scale, LUT
int x1, x2, y1, y2;
params.crop.mapToResized(width, height, scale, x1, x2, y1, y2);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
LUTu histThr(65536);
histThr.clear();
#ifdef _OPENMP
#pragma omp for nowait
#endif
for (int y = y1; y < y2; y++) {
for (int x = x1; x < x2; x++) {
@@ -493,7 +478,9 @@ void Imagefloat::calcCroppedHistogram(const ProcParams &params, float scale, LUT
}
}
#ifdef _OPENMP
#pragma omp critical
#endif
{
for(int i = 0; i <= 0xffff; i++) {
hist[i] += histThr[i];
@@ -516,7 +503,7 @@ void Imagefloat::ExecCMSTransform(cmsHTRANSFORM hTransform)
AlignedBuffer<float> pBuf(width * 3);
#ifdef _OPENMP
#pragma omp for schedule(static)
#pragma omp for schedule(dynamic, 16)
#endif
for (int y = 0; y < height; y++)
@@ -545,7 +532,7 @@ void Imagefloat::ExecCMSTransform(cmsHTRANSFORM hTransform)
}
}
// Parallized transformation; create transform with cmsFLAGS_NOCACHE!
// Parallelized transformation; create transform with cmsFLAGS_NOCACHE!
void Imagefloat::ExecCMSTransform(cmsHTRANSFORM hTransform, const LabImage &labImage, int cx, int cy)
{
// LittleCMS cannot parallelize planar Lab float images