diff --git a/rtengine/CMakeLists.txt b/rtengine/CMakeLists.txt index ff3024beb..74497d7d0 100644 --- a/rtengine/CMakeLists.txt +++ b/rtengine/CMakeLists.txt @@ -32,6 +32,7 @@ set(RTENGINESOURCEFILES EdgePreservingDecomposition.cc FTblockDN.cc PF_correct_RT.cc + ahd_demosaic_RT.cc amaze_demosaic_RT.cc cJSON.c calc_distort.cc diff --git a/rtengine/ahd_demosaic_RT.cc b/rtengine/ahd_demosaic_RT.cc new file mode 100644 index 000000000..7931bf17d --- /dev/null +++ b/rtengine/ahd_demosaic_RT.cc @@ -0,0 +1,226 @@ +/* + * This file is part of RawTherapee. + * + * Copyright (c) 2018 Ingo Weyrich (heckflosse67@gmx.de) + * + * RawTherapee is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * RawTherapee is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with RawTherapee. If not, see . + */ + +// +// Adaptive Homogeneity-Directed interpolation is based on +// the work of Keigo Hirakawa, Thomas Parks, and Paul Lee. +// Optimized for speed and reduced memory usage 2018 Ingo Weyrich +// + +#include +#include "rtengine.h" +#include "rawimagesource.h" +#include "rt_math.h" +#include "../rtgui/multilangmgr.h" +#include "median.h" +//#define BENCHMARK +#include "StopWatch.h" + +namespace rtengine +{ +#define TS 144 +void RawImageSource::ahd_demosaic() +{ + BENCHFUN + + constexpr int dir[4] = { -1, 1, -TS, TS }; + float xyz_cam[3][3]; + LUTf cbrt(65536); + + int width = W, height = H; + + constexpr double xyz_rgb[3][3] = { /* XYZ from RGB */ + { 0.412453, 0.357580, 0.180423 }, + { 0.212671, 0.715160, 0.072169 }, + { 0.019334, 0.119193, 0.950227 } + }; + + constexpr float d65_white[3] = { 0.950456, 1, 1.088754 }; + + double progress = 0.0; + if (plistener) { + plistener->setProgressStr (Glib::ustring::compose(M("TP_RAW_DMETHOD_PROGRESSBAR"), RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::AHD))); + plistener->setProgress (0.0); + } + + for (int i = 0; i < 65536; i++) { + const double r = i / 65535.0; + cbrt[i] = r > 0.008856 ? std::cbrt(r) : 7.787 * r + 16 / 116.0; + } + + for (int i = 0; i < 3; i++) + for (unsigned int j = 0; j < 3; j++) { + xyz_cam[i][j] = 0; + for (int k = 0; k < 3; k++) { + xyz_cam[i][j] += xyz_rgb[i][k] * imatrices.rgb_cam[k][j] / d65_white[i]; + } + } + + border_interpolate2(W, H, 5, rawData, red, green, blue); + +#ifdef _OPENMP +#pragma omp parallel +#endif +{ + int progresscounter = 0; + float *buffer = new float[13 * TS * TS]; /* 1053 kB per core */ + auto rgb = (float(*)[TS][TS][3]) buffer; + auto lab = (float(*)[TS][TS][3])(buffer + 6 * TS * TS); + auto homo = (uint16_t(*)[TS][TS])(buffer + 12 * TS * TS); + +#ifdef _OPENMP + #pragma omp for collapse(2) schedule(dynamic) nowait +#endif + for (int top = 2; top < height - 5; top += TS - 6) { + for (int left = 2; left < width - 5; left += TS - 6) { + // Interpolate green horizontally and vertically: + for (int row = top; row < top + TS && row < height - 2; row++) { + for (int col = left + (FC(row, left) & 1); col < std::min(left + TS, width - 2); col += 2) { + auto pix = &rawData[row][col]; + float val0 = 0.25f * ((pix[-1] + pix[0] + pix[1]) * 2 + - pix[-2] - pix[2]) ; + rgb[0][row - top][col - left][1] = median(val0, pix[-1], pix[1]); + float val1 = 0.25f * ((pix[-width] + pix[0] + pix[width]) * 2 + - pix[-2 * width] - pix[2 * width]) ; + rgb[1][row - top][col - left][1] = median(val1, pix[-width], pix[width]); + } + } + + // Interpolate red and blue, and convert to CIELab: + for (int d = 0; d < 2; d++) + for (int row = top + 1; row < top + TS - 1 && row < height - 3; row++) { + int cng = FC(row + 1, FC(row + 1, 0) & 1); + for (int col = left + 1; col < std::min(left + TS - 1, width - 3); col++) { + auto pix = &rawData[row][col]; + auto rix = &rgb[d][row - top][col - left]; + auto lix = lab[d][row - top][col - left]; + if (FC(row, col) == 1) { + rix[0][2 - cng] = CLIP(pix[0] + (0.5f * (pix[-1] + pix[1] + - rix[-1][1] - rix[1][1] ) )); + rix[0][cng] = CLIP(pix[0] + (0.5f * (pix[-width] + pix[width] + - rix[-TS][1] - rix[TS][1]))); + rix[0][1] = pix[0]; + } else { + rix[0][cng] = CLIP(rix[0][1] + (0.25f * (pix[-width - 1] + pix[-width + 1] + + pix[+width - 1] + pix[+width + 1] + - rix[-TS - 1][1] - rix[-TS + 1][1] + - rix[+TS - 1][1] - rix[+TS + 1][1]))); + rix[0][2 - cng] = pix[0]; + } + float xyz[3] = {}; + + for(unsigned int c = 0; c < 3; ++c) { + xyz[0] += xyz_cam[0][c] * rix[0][c]; + xyz[1] += xyz_cam[1][c] * rix[0][c]; + xyz[2] += xyz_cam[2][c] * rix[0][c]; + } + + xyz[0] = cbrt[xyz[0]]; + xyz[1] = cbrt[xyz[1]]; + xyz[2] = cbrt[xyz[2]]; + + lix[0] = 116.f * xyz[1] - 16.f; + lix[1] = 500.f * (xyz[0] - xyz[1]); + lix[2] = 200.f * (xyz[1] - xyz[2]); + } + } + + // Build homogeneity maps from the CIELab images: + + for (int row = top + 2; row < top + TS - 2 && row < height - 4; row++) { + int tr = row - top; + float ldiff[2][4], abdiff[2][4]; + + for (int col = left + 2, tc = 2; col < left + TS - 2 && col < width - 4; col++, tc++) { + for (int d = 0; d < 2; d++) { + auto lix = &lab[d][tr][tc]; + + for (int i = 0; i < 4; i++) { + ldiff[d][i] = std::fabs(lix[0][0] - lix[dir[i]][0]); + abdiff[d][i] = SQR(lix[0][1] - lix[dir[i]][1]) + + SQR(lix[0][2] - lix[dir[i]][2]); + } + } + + float leps = std::min(std::max(ldiff[0][0], ldiff[0][1]), + std::max(ldiff[1][2], ldiff[1][3])); + float abeps = std::min(std::max(abdiff[0][0], abdiff[0][1]), + std::max(abdiff[1][2], abdiff[1][3])); + + for (int d = 0; d < 2; d++) { + homo[d][tr][tc] = 0; + for (int i = 0; i < 4; i++) { + homo[d][tr][tc] += (ldiff[d][i] <= leps) * (abdiff[d][i] <= abeps); + } + } + } + } + + // Combine the most homogenous pixels for the final result: + for (int row = top + 3; row < top + TS - 3 && row < height - 5; row++) { + int tr = row - top; + + for (int col = left + 3, tc = 3; col < std::min(left + TS - 3, width - 5); col++, tc++) { + uint16_t hm0 = 0, hm1 = 0; + for (int i = tr - 1; i <= tr + 1; i++) + for (int j = tc - 1; j <= tc + 1; j++) { + hm0 += homo[0][i][j]; + hm1 += homo[1][i][j]; + } + + if (hm0 != hm1) { + int dir = hm1 > hm0; + red[row][col] = rgb[dir][tr][tc][0]; + green[row][col] = rgb[dir][tr][tc][1]; + blue[row][col] = rgb[dir][tr][tc][2]; + } else { + red[row][col] = 0.5f * (rgb[0][tr][tc][0] + rgb[1][tr][tc][0]); + green[row][col] = 0.5f * (rgb[0][tr][tc][1] + rgb[1][tr][tc][1]); + blue[row][col] = 0.5f * (rgb[0][tr][tc][2] + rgb[1][tr][tc][2]); + } + } + } + + if(plistener) { + progresscounter++; + + if(progresscounter % 32 == 0) { +#ifdef _OPENMP + #pragma omp critical (ahdprogress) +#endif + { + progress += 32.0 * SQR(TS - 6) / (height * width); + progress = std::min(progress, 1.0); + plistener->setProgress(progress); + } + } + } + + } + } + delete [] buffer; +} + if(plistener) { + plistener->setProgress (1.0); + } + +} +#undef TS + +} \ No newline at end of file diff --git a/rtengine/demosaic_algos.cc b/rtengine/demosaic_algos.cc index 4ba855185..78b5490b5 100644 --- a/rtengine/demosaic_algos.cc +++ b/rtengine/demosaic_algos.cc @@ -1185,7 +1185,7 @@ void RawImageSource::lmmse_interpolate_omp(int winw, int winh, array2D &r // apply low pass filter on differential colors #ifdef _OPENMP - #pragma omp for + #pragma omp for #endif for (int rr = 4; rr < rr1 - 4; rr++) @@ -1411,7 +1411,7 @@ void RawImageSource::lmmse_interpolate_omp(int winw, int winh, array2D &r // interpolate R/B at B/R location #ifdef _OPENMP - #pragma omp for + #pragma omp for #endif for (int rr = 1; rr < rr1 - 1; rr++) @@ -2292,217 +2292,6 @@ void RawImageSource::igv_interpolate(int winw, int winh) } #endif - -/* - Adaptive Homogeneity-Directed interpolation is based on - the work of Keigo Hirakawa, Thomas Parks, and Paul Lee. - */ -#define TS 256 /* Tile Size */ -#define FORC(cnt) for (c=0; c < cnt; c++) -#define FORC3 FORC(3) - -void RawImageSource::ahd_demosaic() -{ - int i, j, k, top, left, row, col, tr, tc, c, d, val, hm[2]; - float (*pix)[4], (*rix)[3]; - static const int dir[4] = { -1, 1, -TS, TS }; - float ldiff[2][4], abdiff[2][4], leps, abeps; - float xyz[3], xyz_cam[3][4]; - float* cbrt; - float (*rgb)[TS][TS][3]; - float (*lab)[TS][TS][3]; - float (*lix)[3]; - char (*homo)[TS][TS], *buffer; - double r; - - int width = W, height = H; - float (*image)[4]; - unsigned int colors = 3; - - const double xyz_rgb[3][3] = { /* XYZ from RGB */ - { 0.412453, 0.357580, 0.180423 }, - { 0.212671, 0.715160, 0.072169 }, - { 0.019334, 0.119193, 0.950227 } - }; - - const float d65_white[3] = { 0.950456, 1, 1.088754 }; - - if (plistener) { - plistener->setProgressStr (Glib::ustring::compose(M("TP_RAW_DMETHOD_PROGRESSBAR"), RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::AHD))); - plistener->setProgress (0.0); - } - - image = (float (*)[4]) calloc (H * W, sizeof * image); - - for (int ii = 0; ii < H; ii++) - for (int jj = 0; jj < W; jj++) { - image[ii * W + jj][fc(ii, jj)] = rawData[ii][jj]; - } - - cbrt = (float (*)) calloc (0x10000, sizeof * cbrt); - - for (i = 0; i < 0x10000; i++) { - r = (double)i / 65535.0; - cbrt[i] = r > 0.008856 ? std::cbrt(r) : 7.787 * r + 16 / 116.0; - } - - for (i = 0; i < 3; i++) - for (unsigned int j = 0; j < colors; j++) - for (xyz_cam[i][j] = k = 0; k < 3; k++) { - xyz_cam[i][j] += xyz_rgb[i][k] * imatrices.rgb_cam[k][j] / d65_white[i]; - } - - border_interpolate(5, image); - buffer = (char *) malloc (13 * TS * TS * sizeof(float)); /* 1664 kB */ - //merror (buffer, "ahd_interpolate()"); - rgb = (float(*)[TS][TS][3]) buffer; - lab = (float(*)[TS][TS][3])(buffer + 6 * TS * TS * sizeof(float)); - homo = (char (*)[TS][TS]) (buffer + 12 * TS * TS * sizeof(float)); - - // helper variables for progress indication - int n_tiles = ((height - 7 + (TS - 7)) / (TS - 6)) * ((width - 7 + (TS - 7)) / (TS - 6)); - int tile = 0; - - for (top = 2; top < height - 5; top += TS - 6) - for (left = 2; left < width - 5; left += TS - 6) { - /* Interpolate green horizontally and vertically: */ - for (row = top; row < top + TS && row < height - 2; row++) { - col = left + (FC(row, left) & 1); - - for (c = FC(row, col); col < left + TS && col < width - 2; col += 2) { - pix = image + (row * width + col); - val = 0.25 * ((pix[-1][1] + pix[0][c] + pix[1][1]) * 2 - - pix[-2][c] - pix[2][c]) ; - rgb[0][row - top][col - left][1] = median(static_cast(val), pix[-1][1], pix[1][1]); - val = 0.25 * ((pix[-width][1] + pix[0][c] + pix[width][1]) * 2 - - pix[-2 * width][c] - pix[2 * width][c]) ; - rgb[1][row - top][col - left][1] = median(static_cast(val), pix[-width][1], pix[width][1]); - } - } - - /* Interpolate red and blue, and convert to CIELab: */ - for (d = 0; d < 2; d++) - for (row = top + 1; row < top + TS - 1 && row < height - 3; row++) - for (col = left + 1; col < left + TS - 1 && col < width - 3; col++) { - pix = image + (row * width + col); - rix = &rgb[d][row - top][col - left]; - lix = &lab[d][row - top][col - left]; - - if ((c = 2 - FC(row, col)) == 1) { - c = FC(row + 1, col); - val = pix[0][1] + (0.5 * ( pix[-1][2 - c] + pix[1][2 - c] - - rix[-1][1] - rix[1][1] ) ); - rix[0][2 - c] = CLIP(val); - val = pix[0][1] + (0.5 * ( pix[-width][c] + pix[width][c] - - rix[-TS][1] - rix[TS][1] ) ); - } else - val = rix[0][1] + (0.25 * ( pix[-width - 1][c] + pix[-width + 1][c] - + pix[+width - 1][c] + pix[+width + 1][c] - - rix[-TS - 1][1] - rix[-TS + 1][1] - - rix[+TS - 1][1] - rix[+TS + 1][1]) ); - - rix[0][c] = CLIP(val); - c = FC(row, col); - rix[0][c] = pix[0][c]; - xyz[0] = xyz[1] = xyz[2] = 0.0; - FORCC { - xyz[0] += xyz_cam[0][c] * rix[0][c]; - xyz[1] += xyz_cam[1][c] * rix[0][c]; - xyz[2] += xyz_cam[2][c] * rix[0][c]; - } - - xyz[0] = CurveFactory::flinterp(cbrt, xyz[0]); - xyz[1] = CurveFactory::flinterp(cbrt, xyz[1]); - xyz[2] = CurveFactory::flinterp(cbrt, xyz[2]); - - //xyz[0] = xyz[0] > 0.008856 ? pow(xyz[0]/65535,1/3.0) : 7.787*xyz[0] + 16/116.0; - //xyz[1] = xyz[1] > 0.008856 ? pow(xyz[1]/65535,1/3.0) : 7.787*xyz[1] + 16/116.0; - //xyz[2] = xyz[2] > 0.008856 ? pow(xyz[2]/65535,1/3.0) : 7.787*xyz[2] + 16/116.0; - - lix[0][0] = (116 * xyz[1] - 16); - lix[0][1] = 500 * (xyz[0] - xyz[1]); - lix[0][2] = 200 * (xyz[1] - xyz[2]); - } - - /* Build homogeneity maps from the CIELab images: */ - memset (homo, 0, 2 * TS * TS); - - for (row = top + 2; row < top + TS - 2 && row < height - 4; row++) { - tr = row - top; - - for (col = left + 2; col < left + TS - 2 && col < width - 4; col++) { - tc = col - left; - - for (d = 0; d < 2; d++) { - lix = &lab[d][tr][tc]; - - for (i = 0; i < 4; i++) { - ldiff[d][i] = ABS(lix[0][0] - lix[dir[i]][0]); - abdiff[d][i] = SQR(lix[0][1] - lix[dir[i]][1]) - + SQR(lix[0][2] - lix[dir[i]][2]); - } - } - - leps = min(max(ldiff[0][0], ldiff[0][1]), - max(ldiff[1][2], ldiff[1][3])); - abeps = min(max(abdiff[0][0], abdiff[0][1]), - max(abdiff[1][2], abdiff[1][3])); - - for (d = 0; d < 2; d++) - for (i = 0; i < 4; i++) - if (ldiff[d][i] <= leps && abdiff[d][i] <= abeps) { - homo[d][tr][tc]++; - } - } - } - - /* Combine the most homogenous pixels for the final result: */ - for (row = top + 3; row < top + TS - 3 && row < height - 5; row++) { - tr = row - top; - - for (col = left + 3; col < left + TS - 3 && col < width - 5; col++) { - tc = col - left; - - for (d = 0; d < 2; d++) - for (hm[d] = 0, i = tr - 1; i <= tr + 1; i++) - for (j = tc - 1; j <= tc + 1; j++) { - hm[d] += homo[d][i][j]; - } - - if (hm[0] != hm[1]) { - FORC3 image[row * width + col][c] = rgb[hm[1] > hm[0]][tr][tc][c]; - } else - FORC3 image[row * width + col][c] = - 0.5 * (rgb[0][tr][tc][c] + rgb[1][tr][tc][c]) ; - } - } - - tile++; - - if(plistener) { - plistener->setProgress((double)tile / n_tiles); - } - } - - if(plistener) { - plistener->setProgress (1.0); - } - - free (buffer); - - for (int i = 0; i < H; i++) { - for (int j = 0; j < W; j++) { - red[i][j] = image[i * W + j][0]; - green[i][j] = image[i * W + j][1]; - blue[i][j] = image[i * W + j][2]; - } - } - - free (image); - free (cbrt); -} -#undef TS - void RawImageSource::nodemosaic(bool bw) { red(W, H);