Merge remote-tracking branch 'origin/dev' into filmnegative
This commit is contained in:
commit
7040378dec
@ -30,15 +30,19 @@ link_directories("${PROJECT_SOURCE_DIR}/rtexif"
|
||||
set(CAMCONSTSFILE "camconst.json")
|
||||
|
||||
set(RTENGINESOURCEFILES
|
||||
badpixels.cc
|
||||
CA_correct_RT.cc
|
||||
EdgePreservingDecomposition.cc
|
||||
FTblockDN.cc
|
||||
PF_correct_RT.cc
|
||||
ahd_demosaic_RT.cc
|
||||
amaze_demosaic_RT.cc
|
||||
CA_correct_RT.cc
|
||||
cJSON.c
|
||||
calc_distort.cc
|
||||
camconst.cc
|
||||
cfa_linedn_RT.cc
|
||||
ciecam02.cc
|
||||
cieimage.cc
|
||||
cJSON.c
|
||||
clutstore.cc
|
||||
color.cc
|
||||
colortemp.cc
|
||||
@ -55,18 +59,13 @@ set(RTENGINESOURCEFILES
|
||||
dual_demosaic_RT.cc
|
||||
dynamicprofile.cc
|
||||
eahd_demosaic.cc
|
||||
EdgePreservingDecomposition.cc
|
||||
fast_demo.cc
|
||||
ffmanager.cc
|
||||
filmnegativeproc.cc
|
||||
flatcurves.cc
|
||||
FTblockDN.cc
|
||||
gamutwarning.cc
|
||||
gauss.cc
|
||||
green_equil_RT.cc
|
||||
guidedfilter.cc
|
||||
hilite_recon.cc
|
||||
histmatching.cc
|
||||
hphd_demosaic_RT.cc
|
||||
iccjpeg.cc
|
||||
iccstore.cc
|
||||
@ -81,15 +80,10 @@ set(RTENGINESOURCEFILES
|
||||
improcfun.cc
|
||||
impulse_denoise.cc
|
||||
init.cc
|
||||
ipdehaze.cc
|
||||
iplab2rgb.cc
|
||||
iplabregions.cc
|
||||
iplocalcontrast.cc
|
||||
ipresize.cc
|
||||
ipretinex.cc
|
||||
ipshadowshighlights.cc
|
||||
ipsharpen.cc
|
||||
ipsoftlight.cc
|
||||
iptransform.cc
|
||||
ipvibrance.cc
|
||||
ipwavelet.cc
|
||||
@ -97,8 +91,8 @@ set(RTENGINESOURCEFILES
|
||||
jpeg_ijg/jpeg_memsrc.cc
|
||||
klt/convolve.cc
|
||||
klt/error.cc
|
||||
klt/klt_util.cc
|
||||
klt/klt.cc
|
||||
klt/klt_util.cc
|
||||
klt/pnmio.cc
|
||||
klt/pyramid.cc
|
||||
klt/selectGoodFeatures.cc
|
||||
@ -107,11 +101,8 @@ set(RTENGINESOURCEFILES
|
||||
klt/writeFeatures.cc
|
||||
labimage.cc
|
||||
lcp.cc
|
||||
lj92.c
|
||||
loadinitial.cc
|
||||
myfile.cc
|
||||
pdaflinesfilter.cc
|
||||
PF_correct_RT.cc
|
||||
pipettebuffer.cc
|
||||
pixelshift.cc
|
||||
previewimage.cc
|
||||
@ -123,17 +114,27 @@ set(RTENGINESOURCEFILES
|
||||
rcd_demosaic.cc
|
||||
refreshmap.cc
|
||||
rt_algo.cc
|
||||
rtlensfun.cc
|
||||
rtthumbnail.cc
|
||||
shmap.cc
|
||||
simpleprocess.cc
|
||||
slicer.cc
|
||||
stdimagesource.cc
|
||||
tmo_fattal02.cc
|
||||
utils.cc
|
||||
vng4_demosaic_RT.cc
|
||||
rtlensfun.cc
|
||||
tmo_fattal02.cc
|
||||
iplocalcontrast.cc
|
||||
histmatching.cc
|
||||
pdaflinesfilter.cc
|
||||
gamutwarning.cc
|
||||
ipshadowshighlights.cc
|
||||
xtrans_demosaic.cc
|
||||
)
|
||||
vng4_demosaic_RT.cc
|
||||
ipsoftlight.cc
|
||||
guidedfilter.cc
|
||||
ipdehaze.cc
|
||||
iplabregions.cc
|
||||
lj92.c
|
||||
)
|
||||
|
||||
if(LENSFUN_HAS_LOAD_DIRECTORY)
|
||||
set_source_files_properties(rtlensfun.cc PROPERTIES COMPILE_DEFINITIONS RT_LENSFUN_HAS_LOAD_DIRECTORY)
|
||||
|
576
rtengine/badpixels.cc
Normal file
576
rtengine/badpixels.cc
Normal file
@ -0,0 +1,576 @@
|
||||
/*
|
||||
* This file is part of RawTherapee.
|
||||
*
|
||||
* Copyright (c) 2004-2019 Gabor Horvath <hgabor@rawtherapee.com>
|
||||
*
|
||||
* RawTherapee is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* RawTherapee is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "array2D.h"
|
||||
#include "median.h"
|
||||
#include "pixelsmap.h"
|
||||
#include "rawimagesource.h"
|
||||
|
||||
namespace rtengine
|
||||
{
|
||||
|
||||
/* interpolateBadPixelsBayer: correct raw pixels looking at the bitmap
|
||||
* takes into consideration if there are multiple bad pixels in the neighborhood
|
||||
*/
|
||||
int RawImageSource::interpolateBadPixelsBayer(const PixelsMap &bitmapBads, array2D<float> &rawData)
|
||||
{
|
||||
constexpr float eps = 1.f;
|
||||
int counter = 0;
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for reduction(+:counter) schedule(dynamic,16)
|
||||
#endif
|
||||
|
||||
for (int row = 2; row < H - 2; ++row) {
|
||||
for (int col = 2; col < W - 2; ++col) {
|
||||
const int sk = bitmapBads.skipIfZero(col, row); //optimization for a stripe all zero
|
||||
|
||||
if (sk) {
|
||||
col += sk - 1; //-1 is because of col++ in cycle
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!bitmapBads.get(col, row)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float wtdsum = 0.f, norm = 0.f;
|
||||
|
||||
// diagonal interpolation
|
||||
if (FC(row, col) == 1) {
|
||||
// green channel. We can use closer pixels than for red or blue channel. Distance to center pixel is sqrt(2) => weighting is 0.70710678
|
||||
// For green channel following pixels will be used for interpolation. Pixel to be interpolated is in center.
|
||||
// 1 means that pixel is used in this step, if itself and his counterpart are not marked bad
|
||||
// 0 0 0 0 0
|
||||
// 0 1 0 1 0
|
||||
// 0 0 0 0 0
|
||||
// 0 1 0 1 0
|
||||
// 0 0 0 0 0
|
||||
for (int dx = -1; dx <= 1; dx += 2) {
|
||||
if (bitmapBads.get(col + dx, row - 1) || bitmapBads.get(col - dx, row + 1)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const float dirwt = 0.70710678f / (fabsf(rawData[row - 1][col + dx] - rawData[row + 1][col - dx]) + eps);
|
||||
wtdsum += dirwt * (rawData[row - 1][col + dx] + rawData[row + 1][col - dx]);
|
||||
norm += dirwt;
|
||||
}
|
||||
} else {
|
||||
// red and blue channel. Distance to center pixel is sqrt(8) => weighting is 0.35355339
|
||||
// For red and blue channel following pixels will be used for interpolation. Pixel to be interpolated is in center.
|
||||
// 1 means that pixel is used in this step, if itself and his counterpart are not marked bad
|
||||
// 1 0 0 0 1
|
||||
// 0 0 0 0 0
|
||||
// 0 0 0 0 0
|
||||
// 0 0 0 0 0
|
||||
// 1 0 0 0 1
|
||||
for (int dx = -2; dx <= 2; dx += 4) {
|
||||
if (bitmapBads.get(col + dx, row - 2) || bitmapBads.get(col - dx, row + 2)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const float dirwt = 0.35355339f / (fabsf(rawData[row - 2][col + dx] - rawData[row + 2][col - dx]) + eps);
|
||||
wtdsum += dirwt * (rawData[row - 2][col + dx] + rawData[row + 2][col - dx]);
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
|
||||
// channel independent. Distance to center pixel is 2 => weighting is 0.5
|
||||
// Additionally for all channel following pixels will be used for interpolation. Pixel to be interpolated is in center.
|
||||
// 1 means that pixel is used in this step, if itself and his counterpart are not marked bad
|
||||
// 0 0 1 0 0
|
||||
// 0 0 0 0 0
|
||||
// 1 0 0 0 1
|
||||
// 0 0 0 0 0
|
||||
// 0 0 1 0 0
|
||||
|
||||
// horizontal interpolation
|
||||
if (!(bitmapBads.get(col - 2, row) || bitmapBads.get(col + 2, row))) {
|
||||
const float dirwt = 0.5f / (fabsf(rawData[row][col - 2] - rawData[row][col + 2]) + eps);
|
||||
wtdsum += dirwt * (rawData[row][col - 2] + rawData[row][col + 2]);
|
||||
norm += dirwt;
|
||||
}
|
||||
|
||||
// vertical interpolation
|
||||
if (!(bitmapBads.get(col, row - 2) || bitmapBads.get(col, row + 2))) {
|
||||
const float dirwt = 0.5f / (fabsf(rawData[row - 2][col] - rawData[row + 2][col]) + eps);
|
||||
wtdsum += dirwt * (rawData[row - 2][col] + rawData[row + 2][col]);
|
||||
norm += dirwt;
|
||||
}
|
||||
|
||||
if (LIKELY(norm > 0.f)) { // This means, we found at least one pair of valid pixels in the steps above, likelihood of this case is about 99.999%
|
||||
rawData[row][col] = wtdsum / (2.f * norm); //gradient weighted average, Factor of 2.f is an optimization to avoid multiplications in former steps
|
||||
counter++;
|
||||
} else { //backup plan -- simple average. Same method for all channels. We could improve this, but it's really unlikely that this case happens
|
||||
int tot = 0;
|
||||
float sum = 0.f;
|
||||
|
||||
for (int dy = -2; dy <= 2; dy += 2) {
|
||||
for (int dx = -2; dx <= 2; dx += 2) {
|
||||
if (bitmapBads.get(col + dx, row + dy)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
sum += rawData[row + dy][col + dx];
|
||||
tot++;
|
||||
}
|
||||
}
|
||||
|
||||
if (tot > 0) {
|
||||
rawData[row][col] = sum / tot;
|
||||
counter ++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return counter; // Number of interpolated pixels.
|
||||
}
|
||||
|
||||
/* interpolateBadPixelsNcolors: correct raw pixels looking at the bitmap
|
||||
* takes into consideration if there are multiple bad pixels in the neighborhood
|
||||
*/
|
||||
int RawImageSource::interpolateBadPixelsNColours(const PixelsMap &bitmapBads, const int colors)
|
||||
{
|
||||
constexpr float eps = 1.f;
|
||||
int counter = 0;
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for reduction(+:counter) schedule(dynamic,16)
|
||||
#endif
|
||||
|
||||
for (int row = 2; row < H - 2; ++row) {
|
||||
for (int col = 2; col < W - 2; ++col) {
|
||||
const int sk = bitmapBads.skipIfZero(col, row); //optimization for a stripe all zero
|
||||
|
||||
if (sk) {
|
||||
col += sk - 1; //-1 is because of col++ in cycle
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!bitmapBads.get(col, row)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float wtdsum[colors] = {};
|
||||
float norm[colors] = {};
|
||||
|
||||
// diagonal interpolation
|
||||
for (int dx = -1; dx <= 1; dx += 2) {
|
||||
if (bitmapBads.get(col + dx, row - 1) || bitmapBads.get(col - dx, row + 1)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
for (int c = 0; c < colors; ++c) {
|
||||
const float dirwt = 0.70710678f / (fabsf(rawData[row - 1][(col + dx) * colors + c] - rawData[row + 1][(col - dx) * colors + c]) + eps);
|
||||
wtdsum[c] += dirwt * (rawData[row - 1][(col + dx) * colors + c] + rawData[row + 1][(col - dx) * colors + c]);
|
||||
norm[c] += dirwt;
|
||||
}
|
||||
}
|
||||
|
||||
// horizontal interpolation
|
||||
if (!(bitmapBads.get(col - 1, row) || bitmapBads.get(col + 1, row))) {
|
||||
for (int c = 0; c < colors; ++c) {
|
||||
const float dirwt = 1.f / (fabsf(rawData[row][(col - 1) * colors + c] - rawData[row][(col + 1) * colors + c]) + eps);
|
||||
wtdsum[c] += dirwt * (rawData[row][(col - 1) * colors + c] + rawData[row][(col + 1) * colors + c]);
|
||||
norm[c] += dirwt;
|
||||
}
|
||||
}
|
||||
|
||||
// vertical interpolation
|
||||
if (!(bitmapBads.get(col, row - 1) || bitmapBads.get(col, row + 1))) {
|
||||
for (int c = 0; c < colors; ++c) {
|
||||
const float dirwt = 1.f / (fabsf(rawData[row - 1][col * colors + c] - rawData[row + 1][col * colors + c]) + eps);
|
||||
wtdsum[c] += dirwt * (rawData[row - 1][col * colors + c] + rawData[row + 1][col * colors + c]);
|
||||
norm[c] += dirwt;
|
||||
}
|
||||
}
|
||||
|
||||
if (LIKELY(norm[0] > 0.f)) { // This means, we found at least one pair of valid pixels in the steps above, likelihood of this case is about 99.999%
|
||||
for (int c = 0; c < colors; ++c) {
|
||||
rawData[row][col * colors + c] = wtdsum[c] / (2.f * norm[c]); //gradient weighted average, Factor of 2.f is an optimization to avoid multiplications in former steps
|
||||
}
|
||||
|
||||
counter++;
|
||||
} else { //backup plan -- simple average. Same method for all channels. We could improve this, but it's really unlikely that this case happens
|
||||
int tot = 0;
|
||||
float sum[colors] = {};
|
||||
|
||||
for (int dy = -2; dy <= 2; dy += 2) {
|
||||
for (int dx = -2; dx <= 2; dx += 2) {
|
||||
if (bitmapBads.get(col + dx, row + dy)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
for (int c = 0; c < colors; ++c) {
|
||||
sum[c] += rawData[row + dy][(col + dx) * colors + c];
|
||||
}
|
||||
|
||||
tot++;
|
||||
}
|
||||
}
|
||||
|
||||
if (tot > 0) {
|
||||
for (int c = 0; c < colors; ++c) {
|
||||
rawData[row][col * colors + c] = sum[c] / tot;
|
||||
}
|
||||
|
||||
counter ++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return counter; // Number of interpolated pixels.
|
||||
}
|
||||
|
||||
/* interpolateBadPixelsXtrans: correct raw pixels looking at the bitmap
|
||||
* takes into consideration if there are multiple bad pixels in the neighborhood
|
||||
*/
|
||||
int RawImageSource::interpolateBadPixelsXtrans(const PixelsMap &bitmapBads)
|
||||
{
|
||||
constexpr float eps = 1.f;
|
||||
int counter = 0;
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for reduction(+:counter) schedule(dynamic,16)
|
||||
#endif
|
||||
|
||||
for (int row = 2; row < H - 2; ++row) {
|
||||
for (int col = 2; col < W - 2; ++col) {
|
||||
const int skip = bitmapBads.skipIfZero(col, row); //optimization for a stripe all zero
|
||||
|
||||
if (skip) {
|
||||
col += skip - 1; //-1 is because of col++ in cycle
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!bitmapBads.get(col, row)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float wtdsum = 0.f, norm = 0.f;
|
||||
const unsigned int pixelColor = ri->XTRANSFC(row, col);
|
||||
|
||||
if (pixelColor == 1) {
|
||||
// green channel. A green pixel can either be a solitary green pixel or a member of a 2x2 square of green pixels
|
||||
if (ri->XTRANSFC(row, col - 1) == ri->XTRANSFC(row, col + 1)) {
|
||||
// If left and right neighbor have same color, then this is a solitary green pixel
|
||||
// For these the following pixels will be used for interpolation. Pixel to be interpolated is in center and marked with a P.
|
||||
// Pairs of pixels used in this step are numbered. A pair will be used if none of the pixels of the pair is marked bad
|
||||
// 0 means, the pixel has a different color and will not be used
|
||||
// 0 1 0 2 0
|
||||
// 3 5 0 6 4
|
||||
// 0 0 P 0 0
|
||||
// 4 6 0 5 3
|
||||
// 0 2 0 1 0
|
||||
for (int dx = -1; dx <= 1; dx += 2) { // pixels marked 5 or 6 in above example. Distance to P is sqrt(2) => weighting is 0.70710678f
|
||||
if (bitmapBads.get(col + dx, row - 1) || bitmapBads.get(col - dx, row + 1)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const float dirwt = 0.70710678f / (fabsf(rawData[row - 1][col + dx] - rawData[row + 1][col - dx]) + eps);
|
||||
wtdsum += dirwt * (rawData[row - 1][col + dx] + rawData[row + 1][col - dx]);
|
||||
norm += dirwt;
|
||||
}
|
||||
|
||||
for (int dx = -1; dx <= 1; dx += 2) { // pixels marked 1 or 2 on above example. Distance to P is sqrt(5) => weighting is 0.44721359f
|
||||
if (bitmapBads.get(col + dx, row - 2) || bitmapBads.get(col - dx, row + 2)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const float dirwt = 0.44721359f / (fabsf(rawData[row - 2][col + dx] - rawData[row + 2][col - dx]) + eps);
|
||||
wtdsum += dirwt * (rawData[row - 2][col + dx] + rawData[row + 2][col - dx]);
|
||||
norm += dirwt;
|
||||
}
|
||||
|
||||
for (int dx = -2; dx <= 2; dx += 4) { // pixels marked 3 or 4 on above example. Distance to P is sqrt(5) => weighting is 0.44721359f
|
||||
if (bitmapBads.get(col + dx, row - 1) || bitmapBads.get(col - dx, row + 1)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const float dirwt = 0.44721359f / (fabsf(rawData[row - 1][col + dx] - rawData[row + 1][col - dx]) + eps);
|
||||
wtdsum += dirwt * (rawData[row - 1][col + dx] + rawData[row + 1][col - dx]);
|
||||
norm += dirwt;
|
||||
}
|
||||
} else {
|
||||
// this is a member of a 2x2 square of green pixels
|
||||
// For these the following pixels will be used for interpolation. Pixel to be interpolated is at position P in the example.
|
||||
// Pairs of pixels used in this step are numbered. A pair will be used if none of the pixels of the pair is marked bad
|
||||
// 0 means, the pixel has a different color and will not be used
|
||||
// 1 0 0 3
|
||||
// 0 P 2 0
|
||||
// 0 2 1 0
|
||||
// 3 0 0 0
|
||||
|
||||
// pixels marked 1 in above example. Distance to P is sqrt(2) => weighting is 0.70710678f
|
||||
const int offset1 = ri->XTRANSFC(row - 1, col - 1) == ri->XTRANSFC(row + 1, col + 1) ? 1 : -1;
|
||||
|
||||
if (!(bitmapBads.get(col - offset1, row - 1) || bitmapBads.get(col + offset1, row + 1))) {
|
||||
const float dirwt = 0.70710678f / (fabsf(rawData[row - 1][col - offset1] - rawData[row + 1][col + offset1]) + eps);
|
||||
wtdsum += dirwt * (rawData[row - 1][col - offset1] + rawData[row + 1][col + offset1]);
|
||||
norm += dirwt;
|
||||
}
|
||||
|
||||
// pixels marked 2 in above example. Distance to P is 1 => weighting is 1.f
|
||||
int offsety = ri->XTRANSFC(row - 1, col) != 1 ? 1 : -1;
|
||||
int offsetx = offset1 * offsety;
|
||||
|
||||
if (!(bitmapBads.get(col + offsetx, row) || bitmapBads.get(col, row + offsety))) {
|
||||
const float dirwt = 1.f / (fabsf(rawData[row][col + offsetx] - rawData[row + offsety][col]) + eps);
|
||||
wtdsum += dirwt * (rawData[row][col + offsetx] + rawData[row + offsety][col]);
|
||||
norm += dirwt;
|
||||
}
|
||||
|
||||
const int offsety2 = -offsety;
|
||||
const int offsetx2 = -offsetx;
|
||||
offsetx *= 2;
|
||||
offsety *= 2;
|
||||
|
||||
// pixels marked 3 in above example. Distance to P is sqrt(5) => weighting is 0.44721359f
|
||||
if (!(bitmapBads.get(col + offsetx, row + offsety2) || bitmapBads.get(col + offsetx2, row + offsety))) {
|
||||
const float dirwt = 0.44721359f / (fabsf(rawData[row + offsety2][col + offsetx] - rawData[row + offsety][col + offsetx2]) + eps);
|
||||
wtdsum += dirwt * (rawData[row + offsety2][col + offsetx] + rawData[row + offsety][col + offsetx2]);
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// red and blue channel.
|
||||
// Each red or blue pixel has exactly one neighbor of same color in distance 2 and four neighbors of same color which can be reached by a move of a knight in chess.
|
||||
// For the distance 2 pixel (marked with an X) we generate a virtual counterpart (marked with a V)
|
||||
// For red and blue channel following pixels will be used for interpolation. Pixel to be interpolated is in center and marked with a P.
|
||||
// Pairs of pixels used in this step are numbered except for distance 2 pixels which are marked X and V. A pair will be used if none of the pixels of the pair is marked bad
|
||||
// 0 1 0 0 0 0 0 X 0 0 remaining cases are symmetric
|
||||
// 0 0 0 0 2 1 0 0 0 2
|
||||
// X 0 P 0 V 0 0 P 0 0
|
||||
// 0 0 0 0 1 0 0 0 0 0
|
||||
// 0 2 0 0 0 0 2 V 1 0
|
||||
|
||||
// Find two knight moves landing on a pixel of same color as the pixel to be interpolated.
|
||||
// If we look at first and last row of 5x5 square, we will find exactly two knight pixels.
|
||||
// Additionally we know that the column of this pixel has 1 or -1 horizontal distance to the center pixel
|
||||
// When we find a knight pixel, we get its counterpart, which has distance (+-3,+-3), where the signs of distance depend on the corner of the found knight pixel.
|
||||
// These pixels are marked 1 or 2 in above examples. Distance to P is sqrt(5) => weighting is 0.44721359f
|
||||
// The following loop simply scans the four possible places. To keep things simple, it does not stop after finding two knight pixels, because it will not find more than two
|
||||
for (int d1 = -2, offsety = 3; d1 <= 2; d1 += 4, offsety -= 6) {
|
||||
for (int d2 = -1, offsetx = 3; d2 < 1; d2 += 2, offsetx -= 6) {
|
||||
if (ri->XTRANSFC(row + d1, col + d2) == pixelColor) {
|
||||
if (!(bitmapBads.get(col + d2, row + d1) || bitmapBads.get(col + d2 + offsetx, row + d1 + offsety))) {
|
||||
const float dirwt = 0.44721359f / (fabsf(rawData[row + d1][col + d2] - rawData[row + d1 + offsety][col + d2 + offsetx]) + eps);
|
||||
wtdsum += dirwt * (rawData[row + d1][col + d2] + rawData[row + d1 + offsety][col + d2 + offsetx]);
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// now scan for the pixel of same color in distance 2 in each direction (marked with an X in above examples).
|
||||
bool distance2PixelFound = false;
|
||||
int dx, dy;
|
||||
|
||||
// check horizontal
|
||||
for (dx = -2, dy = 0; dx <= 2; dx += 4) {
|
||||
if (ri->XTRANSFC(row, col + dx) == pixelColor) {
|
||||
distance2PixelFound = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!distance2PixelFound) {
|
||||
// no distance 2 pixel on horizontal, check vertical
|
||||
for (dx = 0, dy = -2; dy <= 2; dy += 4) {
|
||||
if (ri->XTRANSFC(row + dy, col) == pixelColor) {
|
||||
distance2PixelFound = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// calculate the value of its virtual counterpart (marked with a V in above examples)
|
||||
float virtualPixel;
|
||||
|
||||
if (dy == 0) {
|
||||
virtualPixel = 0.5f * (rawData[row - 1][col - dx] + rawData[row + 1][col - dx]);
|
||||
} else {
|
||||
virtualPixel = 0.5f * (rawData[row - dy][col - 1] + rawData[row - dy][col + 1]);
|
||||
}
|
||||
|
||||
// and weight as usual. Distance to P is 2 => weighting is 0.5f
|
||||
const float dirwt = 0.5f / (fabsf(virtualPixel - rawData[row + dy][col + dx]) + eps);
|
||||
wtdsum += dirwt * (virtualPixel + rawData[row + dy][col + dx]);
|
||||
norm += dirwt;
|
||||
}
|
||||
|
||||
if (LIKELY(norm > 0.f)) { // This means, we found at least one pair of valid pixels in the steps above, likelihood of this case is about 99.999%
|
||||
rawData[row][col] = wtdsum / (2.f * norm); //gradient weighted average, Factor of 2.f is an optimization to avoid multiplications in former steps
|
||||
counter++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return counter; // Number of interpolated pixels.
|
||||
}
|
||||
|
||||
/* Search for hot or dead pixels in the image and update the map
|
||||
* For each pixel compare its value to the average of similar color surrounding
|
||||
* (Taken from Emil Martinec idea)
|
||||
* (Optimized by Ingo Weyrich 2013 and 2015)
|
||||
*/
|
||||
int RawImageSource::findHotDeadPixels(PixelsMap &bpMap, const float thresh, const bool findHotPixels, const bool findDeadPixels) const
|
||||
{
|
||||
const float varthresh = (20.0 * (thresh / 100.0) + 1.0) / 24.f;
|
||||
|
||||
// allocate temporary buffer
|
||||
float* cfablur = new float[H * W];
|
||||
|
||||
// counter for dead or hot pixels
|
||||
int counter = 0;
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel
|
||||
#endif
|
||||
{
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for schedule(dynamic,16) nowait
|
||||
#endif
|
||||
|
||||
for (int i = 2; i < H - 2; i++) {
|
||||
for (int j = 2; j < W - 2; j++) {
|
||||
const float temp = median(rawData[i - 2][j - 2], rawData[i - 2][j], rawData[i - 2][j + 2],
|
||||
rawData[i][j - 2], rawData[i][j], rawData[i][j + 2],
|
||||
rawData[i + 2][j - 2], rawData[i + 2][j], rawData[i + 2][j + 2]);
|
||||
cfablur[i * W + j] = rawData[i][j] - temp;
|
||||
}
|
||||
}
|
||||
|
||||
// process borders. Former version calculated the median using mirrored border which does not make sense because the original pixel loses weight
|
||||
// Setting the difference between pixel and median for border pixels to zero should do the job not worse then former version
|
||||
#ifdef _OPENMP
|
||||
#pragma omp single
|
||||
#endif
|
||||
{
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < W; ++j) {
|
||||
cfablur[i * W + j] = 0.f;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 2; i < H - 2; ++i) {
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
cfablur[i * W + j] = 0.f;
|
||||
}
|
||||
|
||||
for (int j = W - 2; j < W; ++j) {
|
||||
cfablur[i * W + j] = 0.f;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = H - 2; i < H; ++i) {
|
||||
for (int j = 0; j < W; ++j) {
|
||||
cfablur[i * W + j] = 0.f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp barrier // barrier because of nowait clause above
|
||||
|
||||
#pragma omp for reduction(+:counter) schedule(dynamic,16)
|
||||
#endif
|
||||
|
||||
//cfa pixel heat/death evaluation
|
||||
for (int rr = 2; rr < H - 2; ++rr) {
|
||||
for (int cc = 2, rrmWpcc = rr * W + 2; cc < W - 2; ++cc, ++rrmWpcc) {
|
||||
//evaluate pixel for heat/death
|
||||
float pixdev = cfablur[rrmWpcc];
|
||||
|
||||
if (pixdev == 0.f) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if ((!findDeadPixels) && pixdev < 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if ((!findHotPixels) && pixdev > 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
pixdev = fabsf(pixdev);
|
||||
float hfnbrave = -pixdev;
|
||||
|
||||
#ifdef __SSE2__
|
||||
// sum up 5*4 = 20 values using SSE
|
||||
// 10 fabs function calls and 10 float additions with SSE
|
||||
vfloat sum = vabsf(LVFU(cfablur[(rr - 2) * W + cc - 2])) + vabsf(LVFU(cfablur[(rr - 1) * W + cc - 2]));
|
||||
sum += vabsf(LVFU(cfablur[(rr) * W + cc - 2]));
|
||||
sum += vabsf(LVFU(cfablur[(rr + 1) * W + cc - 2]));
|
||||
sum += vabsf(LVFU(cfablur[(rr + 2) * W + cc - 2]));
|
||||
// horizontally add the values and add the result to hfnbrave
|
||||
hfnbrave += vhadd(sum);
|
||||
|
||||
// add remaining 5 values of last column
|
||||
for (int mm = rr - 2; mm <= rr + 2; ++mm) {
|
||||
hfnbrave += fabsf(cfablur[mm * W + cc + 2]);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
// 25 fabs function calls and 25 float additions without SSE
|
||||
for (int mm = rr - 2; mm <= rr + 2; ++mm) {
|
||||
for (int nn = cc - 2; nn <= cc + 2; ++nn) {
|
||||
hfnbrave += fabsf(cfablur[mm * W + nn]);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
if (pixdev > varthresh * hfnbrave) {
|
||||
// mark the pixel as "bad"
|
||||
bpMap.set(cc, rr);
|
||||
counter++;
|
||||
}
|
||||
}//end of pixel evaluation
|
||||
}
|
||||
}//end of parallel processing
|
||||
delete [] cfablur;
|
||||
return counter;
|
||||
}
|
||||
|
||||
int RawImageSource::findZeroPixels(PixelsMap &bpMap) const
|
||||
{
|
||||
int counter = 0;
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for reduction(+:counter) schedule(dynamic,16)
|
||||
#endif
|
||||
|
||||
for (int i = 0; i < H; ++i) {
|
||||
for (int j = 0; j < W; ++j) {
|
||||
if (ri->data[i][j] == 0.f) {
|
||||
bpMap.set(j, i);
|
||||
counter++;
|
||||
}
|
||||
}
|
||||
}
|
||||
return counter;
|
||||
}
|
||||
|
||||
|
||||
}
|
@ -20,6 +20,7 @@
|
||||
#include <glibmm/ustring.h>
|
||||
#include <map>
|
||||
#include <cmath>
|
||||
#include "pixelsmap.h"
|
||||
#include "rawimage.h"
|
||||
|
||||
namespace rtengine
|
||||
|
@ -86,7 +86,6 @@ public:
|
||||
|
||||
protected:
|
||||
typedef std::multimap<std::string, ffInfo> ffList_t;
|
||||
typedef std::map<std::string, std::list<badPix> > bpList_t;
|
||||
ffList_t ffList;
|
||||
bool initialized;
|
||||
Glib::ustring currentPath;
|
||||
|
98
rtengine/pixelsmap.h
Normal file
98
rtengine/pixelsmap.h
Normal file
@ -0,0 +1,98 @@
|
||||
#pragma once
|
||||
|
||||
/*
|
||||
* This file is part of RawTherapee.
|
||||
*
|
||||
* Copyright (c) 2004-2019 Gabor Horvath <hgabor@rawtherapee.com>
|
||||
*
|
||||
* RawTherapee is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* RawTherapee is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
|
||||
#include "noncopyable.h"
|
||||
|
||||
namespace rtengine
|
||||
{
|
||||
|
||||
struct badPix {
|
||||
uint16_t x;
|
||||
uint16_t y;
|
||||
badPix(uint16_t xc, uint16_t yc): x(xc), y(yc) {}
|
||||
};
|
||||
|
||||
class PixelsMap :
|
||||
public NonCopyable
|
||||
{
|
||||
int w; // line width in base_t units
|
||||
int h; // height
|
||||
typedef unsigned long base_t;
|
||||
static constexpr size_t base_t_size = sizeof(base_t);
|
||||
base_t *pm;
|
||||
|
||||
public:
|
||||
PixelsMap(int width, int height)
|
||||
: w((width / (base_t_size * 8)) + 1), h(height), pm(new base_t[h * w])
|
||||
{
|
||||
clear();
|
||||
}
|
||||
|
||||
~PixelsMap()
|
||||
{
|
||||
delete [] pm;
|
||||
}
|
||||
int width() const
|
||||
{
|
||||
return w;
|
||||
}
|
||||
int height() const
|
||||
{
|
||||
return h;
|
||||
}
|
||||
|
||||
// if a pixel is set returns true
|
||||
bool get(int x, int y) const
|
||||
{
|
||||
return (pm[y * w + x / (base_t_size * 8)] & (base_t)1 << (x % (base_t_size * 8))) != 0;
|
||||
}
|
||||
|
||||
// set a pixel
|
||||
void set(int x, int y)
|
||||
{
|
||||
pm[y * w + x / (base_t_size * 8)] |= (base_t)1 << (x % (base_t_size * 8)) ;
|
||||
}
|
||||
|
||||
// set pixels from a list
|
||||
int set(const std::vector<badPix> &bp)
|
||||
{
|
||||
for (std::vector<badPix>::const_iterator iter = bp.begin(); iter != bp.end(); ++iter) {
|
||||
set(iter->x, iter->y);
|
||||
}
|
||||
|
||||
return bp.size();
|
||||
}
|
||||
|
||||
void clear()
|
||||
{
|
||||
memset(pm, 0, h * w * base_t_size);
|
||||
}
|
||||
// return 0 if at least one pixel in the word(base_t) is set, otherwise return the number of pixels to skip to the next word base_t
|
||||
int skipIfZero(int x, int y) const
|
||||
{
|
||||
return pm[y * w + x / (base_t_size * 8)] == 0 ? base_t_size * 8 - x % (base_t_size * 8) : 0;
|
||||
}
|
||||
};
|
||||
|
||||
}
|
@ -2763,23 +2763,23 @@ ProcParams::ProcParams()
|
||||
|
||||
void ProcParams::setDefaults()
|
||||
{
|
||||
toneCurve = ToneCurveParams();
|
||||
toneCurve = {};
|
||||
|
||||
labCurve = LCurveParams();
|
||||
labCurve = {};
|
||||
|
||||
rgbCurves = RGBCurvesParams();
|
||||
rgbCurves = {};
|
||||
|
||||
localContrast = LocalContrastParams();
|
||||
localContrast = {};
|
||||
|
||||
colorToning = ColorToningParams();
|
||||
colorToning = {};
|
||||
|
||||
sharpenEdge = SharpenEdgeParams();
|
||||
sharpenEdge = {};
|
||||
|
||||
sharpenMicro = SharpenMicroParams();
|
||||
sharpenMicro = {};
|
||||
|
||||
sharpening = SharpeningParams();
|
||||
sharpening = {};
|
||||
|
||||
prsharpening = SharpeningParams();
|
||||
prsharpening = {};
|
||||
prsharpening.contrast = 15.0;
|
||||
prsharpening.method = "rld";
|
||||
prsharpening.deconvamount = 100;
|
||||
@ -2787,69 +2787,69 @@ void ProcParams::setDefaults()
|
||||
prsharpening.deconviter = 100;
|
||||
prsharpening.deconvdamping = 0;
|
||||
|
||||
vibrance = VibranceParams();
|
||||
vibrance = {};
|
||||
|
||||
wb = WBParams();
|
||||
wb = {};
|
||||
|
||||
colorappearance = ColorAppearanceParams();
|
||||
colorappearance = {};
|
||||
|
||||
defringe = DefringeParams();
|
||||
defringe = {};
|
||||
|
||||
impulseDenoise = ImpulseDenoiseParams();
|
||||
impulseDenoise = {};
|
||||
|
||||
dirpyrDenoise = DirPyrDenoiseParams();
|
||||
dirpyrDenoise = {};
|
||||
|
||||
epd = EPDParams();
|
||||
epd = {};
|
||||
|
||||
fattal = FattalToneMappingParams();
|
||||
fattal = {};
|
||||
|
||||
sh = SHParams();
|
||||
sh = {};
|
||||
|
||||
crop = CropParams();
|
||||
crop = {};
|
||||
|
||||
coarse = CoarseTransformParams();
|
||||
coarse = {};
|
||||
|
||||
commonTrans = CommonTransformParams();
|
||||
commonTrans = {};
|
||||
|
||||
rotate = RotateParams();
|
||||
rotate = {};
|
||||
|
||||
distortion = DistortionParams();
|
||||
distortion = {};
|
||||
|
||||
lensProf = LensProfParams();
|
||||
lensProf = {};
|
||||
|
||||
perspective = PerspectiveParams();
|
||||
perspective = {};
|
||||
|
||||
gradient = GradientParams();
|
||||
gradient = {};
|
||||
|
||||
pcvignette = PCVignetteParams();
|
||||
pcvignette = {};
|
||||
|
||||
vignetting = VignettingParams();
|
||||
vignetting = {};
|
||||
|
||||
chmixer = ChannelMixerParams();
|
||||
chmixer = {};
|
||||
|
||||
blackwhite = BlackWhiteParams();
|
||||
blackwhite = {};
|
||||
|
||||
cacorrection = CACorrParams();
|
||||
cacorrection = {};
|
||||
|
||||
resize = ResizeParams();
|
||||
resize = {};
|
||||
|
||||
icm = ColorManagementParams();
|
||||
icm = {};
|
||||
|
||||
wavelet = WaveletParams();
|
||||
wavelet = {};
|
||||
|
||||
dirpyrequalizer = DirPyrEqualizerParams();
|
||||
dirpyrequalizer = {};
|
||||
|
||||
hsvequalizer = HSVEqualizerParams();
|
||||
hsvequalizer = {};
|
||||
|
||||
filmSimulation = FilmSimulationParams();
|
||||
filmSimulation = {};
|
||||
|
||||
softlight = SoftLightParams();
|
||||
softlight = {};
|
||||
|
||||
dehaze = DehazeParams();
|
||||
dehaze = {};
|
||||
|
||||
raw = RAWParams();
|
||||
raw = {};
|
||||
|
||||
metadata = MetaDataParams();
|
||||
metadata = {};
|
||||
exif.clear();
|
||||
iptc.clear();
|
||||
|
||||
|
@ -25,82 +25,10 @@
|
||||
|
||||
#include "dcraw.h"
|
||||
#include "imageformat.h"
|
||||
#include "noncopyable.h"
|
||||
|
||||
namespace rtengine
|
||||
{
|
||||
|
||||
struct badPix {
|
||||
uint16_t x;
|
||||
uint16_t y;
|
||||
badPix( uint16_t xc, uint16_t yc ): x(xc), y(yc) {}
|
||||
};
|
||||
|
||||
class PixelsMap :
|
||||
public NonCopyable
|
||||
{
|
||||
int w; // line width in base_t units
|
||||
int h; // height
|
||||
typedef unsigned long base_t;
|
||||
static const size_t base_t_size = sizeof(base_t);
|
||||
base_t *pm;
|
||||
|
||||
public:
|
||||
PixelsMap(int width, int height )
|
||||
: h(height)
|
||||
{
|
||||
w = (width / (base_t_size * 8)) + 1;
|
||||
pm = new base_t [h * w ];
|
||||
memset(pm, 0, h * w * base_t_size );
|
||||
}
|
||||
|
||||
~PixelsMap()
|
||||
{
|
||||
delete [] pm;
|
||||
}
|
||||
int width() const
|
||||
{
|
||||
return w;
|
||||
}
|
||||
int height() const
|
||||
{
|
||||
return h;
|
||||
}
|
||||
|
||||
// if a pixel is set returns true
|
||||
bool get(int x, int y)
|
||||
{
|
||||
return (pm[y * w + x / (base_t_size * 8) ] & (base_t)1 << (x % (base_t_size * 8)) ) != 0;
|
||||
}
|
||||
|
||||
// set a pixel
|
||||
void set(int x, int y)
|
||||
{
|
||||
pm[y * w + x / (base_t_size * 8) ] |= (base_t)1 << (x % (base_t_size * 8)) ;
|
||||
}
|
||||
|
||||
// set pixels from a list
|
||||
int set( std::vector<badPix> &bp)
|
||||
{
|
||||
for(std::vector<badPix>::iterator iter = bp.begin(); iter != bp.end(); ++iter) {
|
||||
set( iter->x, iter->y);
|
||||
}
|
||||
|
||||
return bp.size();
|
||||
}
|
||||
|
||||
void clear()
|
||||
{
|
||||
memset(pm, 0, h * w * base_t_size );
|
||||
}
|
||||
// return 0 if at least one pixel in the word(base_t) is set, otherwise return the number of pixels to skip to the next word base_t
|
||||
int skipIfZero(int x, int y)
|
||||
{
|
||||
return pm[y * w + x / (base_t_size * 8) ] == 0 ? base_t_size * 8 - x % (base_t_size * 8) : 0;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
class RawImage: public DCraw
|
||||
{
|
||||
public:
|
||||
|
@ -930,542 +930,6 @@ void RawImageSource::convertColorSpace(Imagefloat* image, const ColorManagementP
|
||||
colorSpaceConversion (image, cmp, wb, pre_mul, embProfile, camProfile, imatrices.xyz_cam, (static_cast<const FramesData*>(getMetaData()))->getCamera());
|
||||
}
|
||||
|
||||
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
/* interpolateBadPixelsBayer: correct raw pixels looking at the bitmap
|
||||
* takes into consideration if there are multiple bad pixels in the neighbourhood
|
||||
*/
|
||||
int RawImageSource::interpolateBadPixelsBayer( PixelsMap &bitmapBads, array2D<float> &rawData )
|
||||
{
|
||||
static const float eps = 1.f;
|
||||
int counter = 0;
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for reduction(+:counter) schedule(dynamic,16)
|
||||
#endif
|
||||
|
||||
for( int row = 2; row < H - 2; row++ ) {
|
||||
for(int col = 2; col < W - 2; col++ ) {
|
||||
int sk = bitmapBads.skipIfZero(col, row); //optimization for a stripe all zero
|
||||
|
||||
if( sk ) {
|
||||
col += sk - 1; //-1 is because of col++ in cycle
|
||||
continue;
|
||||
}
|
||||
|
||||
if(!bitmapBads.get(col, row)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float wtdsum = 0.f, norm = 0.f;
|
||||
|
||||
// diagonal interpolation
|
||||
if(FC(row, col) == 1) {
|
||||
// green channel. We can use closer pixels than for red or blue channel. Distance to centre pixel is sqrt(2) => weighting is 0.70710678
|
||||
// For green channel following pixels will be used for interpolation. Pixel to be interpolated is in centre.
|
||||
// 1 means that pixel is used in this step, if itself and his counterpart are not marked bad
|
||||
// 0 0 0 0 0
|
||||
// 0 1 0 1 0
|
||||
// 0 0 0 0 0
|
||||
// 0 1 0 1 0
|
||||
// 0 0 0 0 0
|
||||
for( int dx = -1; dx <= 1; dx += 2) {
|
||||
if( bitmapBads.get(col + dx, row - 1) || bitmapBads.get(col - dx, row + 1)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float dirwt = 0.70710678f / ( fabsf( rawData[row - 1][col + dx] - rawData[row + 1][col - dx]) + eps);
|
||||
wtdsum += dirwt * (rawData[row - 1][col + dx] + rawData[row + 1][col - dx]);
|
||||
norm += dirwt;
|
||||
}
|
||||
} else {
|
||||
// red and blue channel. Distance to centre pixel is sqrt(8) => weighting is 0.35355339
|
||||
// For red and blue channel following pixels will be used for interpolation. Pixel to be interpolated is in centre.
|
||||
// 1 means that pixel is used in this step, if itself and his counterpart are not marked bad
|
||||
// 1 0 0 0 1
|
||||
// 0 0 0 0 0
|
||||
// 0 0 0 0 0
|
||||
// 0 0 0 0 0
|
||||
// 1 0 0 0 1
|
||||
for( int dx = -2; dx <= 2; dx += 4) {
|
||||
if( bitmapBads.get(col + dx, row - 2) || bitmapBads.get(col - dx, row + 2)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float dirwt = 0.35355339f / ( fabsf( rawData[row - 2][col + dx] - rawData[row + 2][col - dx]) + eps);
|
||||
wtdsum += dirwt * (rawData[row - 2][col + dx] + rawData[row + 2][col - dx]);
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
|
||||
// channel independent. Distance to centre pixel is 2 => weighting is 0.5
|
||||
// Additionally for all channel following pixels will be used for interpolation. Pixel to be interpolated is in centre.
|
||||
// 1 means that pixel is used in this step, if itself and his counterpart are not marked bad
|
||||
// 0 0 1 0 0
|
||||
// 0 0 0 0 0
|
||||
// 1 0 0 0 1
|
||||
// 0 0 0 0 0
|
||||
// 0 0 1 0 0
|
||||
|
||||
// horizontal interpolation
|
||||
if(!(bitmapBads.get(col - 2, row) || bitmapBads.get(col + 2, row))) {
|
||||
float dirwt = 0.5f / ( fabsf( rawData[row][col - 2] - rawData[row][col + 2]) + eps);
|
||||
wtdsum += dirwt * (rawData[row][col - 2] + rawData[row][col + 2]);
|
||||
norm += dirwt;
|
||||
}
|
||||
|
||||
// vertical interpolation
|
||||
if(!(bitmapBads.get(col, row - 2) || bitmapBads.get(col, row + 2))) {
|
||||
float dirwt = 0.5f / ( fabsf( rawData[row - 2][col] - rawData[row + 2][col]) + eps);
|
||||
wtdsum += dirwt * (rawData[row - 2][col] + rawData[row + 2][col]);
|
||||
norm += dirwt;
|
||||
}
|
||||
|
||||
if (LIKELY(norm > 0.f)) { // This means, we found at least one pair of valid pixels in the steps above, likelihood of this case is about 99.999%
|
||||
rawData[row][col] = wtdsum / (2.f * norm); //gradient weighted average, Factor of 2.f is an optimization to avoid multiplications in former steps
|
||||
counter++;
|
||||
} else { //backup plan -- simple average. Same method for all channels. We could improve this, but it's really unlikely that this case happens
|
||||
int tot = 0;
|
||||
float sum = 0;
|
||||
|
||||
for( int dy = -2; dy <= 2; dy += 2) {
|
||||
for( int dx = -2; dx <= 2; dx += 2) {
|
||||
if(bitmapBads.get(col + dx, row + dy)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
sum += rawData[row + dy][col + dx];
|
||||
tot++;
|
||||
}
|
||||
}
|
||||
|
||||
if (tot > 0) {
|
||||
rawData[row][col] = sum / tot;
|
||||
counter ++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return counter; // Number of interpolated pixels.
|
||||
}
|
||||
|
||||
/* interpolateBadPixels3Colours: correct raw pixels looking at the bitmap
|
||||
* takes into consideration if there are multiple bad pixels in the neighbourhood
|
||||
*/
|
||||
int RawImageSource::interpolateBadPixelsNColours( PixelsMap &bitmapBads, const int colours )
|
||||
{
|
||||
static const float eps = 1.f;
|
||||
int counter = 0;
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for reduction(+:counter) schedule(dynamic,16)
|
||||
#endif
|
||||
|
||||
for( int row = 2; row < H - 2; row++ ) {
|
||||
for(int col = 2; col < W - 2; col++ ) {
|
||||
int sk = bitmapBads.skipIfZero(col, row); //optimization for a stripe all zero
|
||||
|
||||
if( sk ) {
|
||||
col += sk - 1; //-1 is because of col++ in cycle
|
||||
continue;
|
||||
}
|
||||
|
||||
if(!bitmapBads.get(col, row)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float wtdsum[colours], norm[colours];
|
||||
|
||||
for (int i = 0; i < colours; ++i) {
|
||||
wtdsum[i] = norm[i] = 0.f;
|
||||
}
|
||||
|
||||
// diagonal interpolation
|
||||
for( int dx = -1; dx <= 1; dx += 2) {
|
||||
if( bitmapBads.get(col + dx, row - 1) || bitmapBads.get(col - dx, row + 1)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
for(int c = 0; c < colours; c++) {
|
||||
float dirwt = 0.70710678f / ( fabsf( rawData[row - 1][(col + dx) * colours + c] - rawData[row + 1][(col - dx) * colours + c]) + eps);
|
||||
wtdsum[c] += dirwt * (rawData[row - 1][(col + dx) * colours + c] + rawData[row + 1][(col - dx) * colours + c]);
|
||||
norm[c] += dirwt;
|
||||
}
|
||||
}
|
||||
|
||||
// horizontal interpolation
|
||||
if(!(bitmapBads.get(col - 1, row) || bitmapBads.get(col + 1, row))) {
|
||||
for(int c = 0; c < colours; c++) {
|
||||
float dirwt = 1.f / ( fabsf( rawData[row][(col - 1) * colours + c] - rawData[row][(col + 1) * colours + c]) + eps);
|
||||
wtdsum[c] += dirwt * (rawData[row][(col - 1) * colours + c] + rawData[row][(col + 1) * colours + c]);
|
||||
norm[c] += dirwt;
|
||||
}
|
||||
}
|
||||
|
||||
// vertical interpolation
|
||||
if(!(bitmapBads.get(col, row - 1) || bitmapBads.get(col, row + 1))) {
|
||||
for(int c = 0; c < colours; c++) {
|
||||
float dirwt = 1.f / ( fabsf( rawData[row - 1][col * colours + c] - rawData[row + 1][col * colours + c]) + eps);
|
||||
wtdsum[c] += dirwt * (rawData[row - 1][col * colours + c] + rawData[row + 1][col * colours + c]);
|
||||
norm[c] += dirwt;
|
||||
}
|
||||
}
|
||||
|
||||
if (LIKELY(norm[0] > 0.f)) { // This means, we found at least one pair of valid pixels in the steps above, likelihood of this case is about 99.999%
|
||||
for(int c = 0; c < colours; c++) {
|
||||
rawData[row][col * colours + c] = wtdsum[c] / (2.f * norm[c]); //gradient weighted average, Factor of 2.f is an optimization to avoid multiplications in former steps
|
||||
}
|
||||
|
||||
counter++;
|
||||
} else { //backup plan -- simple average. Same method for all channels. We could improve this, but it's really unlikely that this case happens
|
||||
int tot = 0;
|
||||
float sum[colours];
|
||||
|
||||
for (int i = 0; i < colours; ++i) {
|
||||
sum[i] = 0.f;
|
||||
}
|
||||
|
||||
for( int dy = -2; dy <= 2; dy += 2) {
|
||||
for( int dx = -2; dx <= 2; dx += 2) {
|
||||
if(bitmapBads.get(col + dx, row + dy)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
for(int c = 0; c < colours; c++) {
|
||||
sum[c] += rawData[row + dy][(col + dx) * colours + c];
|
||||
}
|
||||
|
||||
tot++;
|
||||
}
|
||||
}
|
||||
|
||||
if (tot > 0) {
|
||||
for(int c = 0; c < colours; c++) {
|
||||
rawData[row][col * colours + c] = sum[c] / tot;
|
||||
}
|
||||
|
||||
counter ++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return counter; // Number of interpolated pixels.
|
||||
}
|
||||
/* interpolateBadPixelsXtrans: correct raw pixels looking at the bitmap
|
||||
* takes into consideration if there are multiple bad pixels in the neighbourhood
|
||||
*/
|
||||
int RawImageSource::interpolateBadPixelsXtrans( PixelsMap &bitmapBads )
|
||||
{
|
||||
static const float eps = 1.f;
|
||||
int counter = 0;
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for reduction(+:counter) schedule(dynamic,16)
|
||||
#endif
|
||||
|
||||
for( int row = 2; row < H - 2; row++ ) {
|
||||
for(int col = 2; col < W - 2; col++ ) {
|
||||
int skip = bitmapBads.skipIfZero(col, row); //optimization for a stripe all zero
|
||||
|
||||
if( skip ) {
|
||||
col += skip - 1; //-1 is because of col++ in cycle
|
||||
continue;
|
||||
}
|
||||
|
||||
if(!bitmapBads.get(col, row)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float wtdsum = 0.f, norm = 0.f;
|
||||
unsigned int pixelColor = ri->XTRANSFC(row, col);
|
||||
|
||||
if(pixelColor == 1) {
|
||||
// green channel. A green pixel can either be a solitary green pixel or a member of a 2x2 square of green pixels
|
||||
if(ri->XTRANSFC(row, col - 1) == ri->XTRANSFC(row, col + 1)) {
|
||||
// If left and right neighbour have same colour, then this is a solitary green pixel
|
||||
// For these the following pixels will be used for interpolation. Pixel to be interpolated is in centre and marked with a P.
|
||||
// Pairs of pixels used in this step are numbered. A pair will be used if none of the pixels of the pair is marked bad
|
||||
// 0 means, the pixel has a different colour and will not be used
|
||||
// 0 1 0 2 0
|
||||
// 3 5 0 6 4
|
||||
// 0 0 P 0 0
|
||||
// 4 6 0 5 3
|
||||
// 0 2 0 1 0
|
||||
for( int dx = -1; dx <= 1; dx += 2) { // pixels marked 5 or 6 in above example. Distance to P is sqrt(2) => weighting is 0.70710678f
|
||||
if( bitmapBads.get(col + dx, row - 1) || bitmapBads.get(col - dx, row + 1)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float dirwt = 0.70710678f / ( fabsf( rawData[row - 1][col + dx] - rawData[row + 1][col - dx]) + eps);
|
||||
wtdsum += dirwt * (rawData[row - 1][col + dx] + rawData[row + 1][col - dx]);
|
||||
norm += dirwt;
|
||||
}
|
||||
|
||||
for( int dx = -1; dx <= 1; dx += 2) { // pixels marked 1 or 2 on above example. Distance to P is sqrt(5) => weighting is 0.44721359f
|
||||
if( bitmapBads.get(col + dx, row - 2) || bitmapBads.get(col - dx, row + 2)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float dirwt = 0.44721359f / ( fabsf( rawData[row - 2][col + dx] - rawData[row + 2][col - dx]) + eps);
|
||||
wtdsum += dirwt * (rawData[row - 2][col + dx] + rawData[row + 2][col - dx]);
|
||||
norm += dirwt;
|
||||
}
|
||||
|
||||
for( int dx = -2; dx <= 2; dx += 4) { // pixels marked 3 or 4 on above example. Distance to P is sqrt(5) => weighting is 0.44721359f
|
||||
if( bitmapBads.get(col + dx, row - 1) || bitmapBads.get(col - dx, row + 1)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float dirwt = 0.44721359f / ( fabsf( rawData[row - 1][col + dx] - rawData[row + 1][col - dx]) + eps);
|
||||
wtdsum += dirwt * (rawData[row - 1][col + dx] + rawData[row + 1][col - dx]);
|
||||
norm += dirwt;
|
||||
}
|
||||
} else {
|
||||
// this is a member of a 2x2 square of green pixels
|
||||
// For these the following pixels will be used for interpolation. Pixel to be interpolated is at position P in the example.
|
||||
// Pairs of pixels used in this step are numbered. A pair will be used if none of the pixels of the pair is marked bad
|
||||
// 0 means, the pixel has a different colour and will not be used
|
||||
// 1 0 0 3
|
||||
// 0 P 2 0
|
||||
// 0 2 1 0
|
||||
// 3 0 0 0
|
||||
|
||||
// pixels marked 1 in above example. Distance to P is sqrt(2) => weighting is 0.70710678f
|
||||
int offset1 = ri->XTRANSFC(row - 1, col - 1) == ri->XTRANSFC(row + 1, col + 1) ? 1 : -1;
|
||||
|
||||
if( !(bitmapBads.get(col - offset1, row - 1) || bitmapBads.get(col + offset1, row + 1))) {
|
||||
float dirwt = 0.70710678f / ( fabsf( rawData[row - 1][col - offset1] - rawData[row + 1][col + offset1]) + eps);
|
||||
wtdsum += dirwt * (rawData[row - 1][col - offset1] + rawData[row + 1][col + offset1]);
|
||||
norm += dirwt;
|
||||
}
|
||||
|
||||
// pixels marked 2 in above example. Distance to P is 1 => weighting is 1.f
|
||||
int offsety = (ri->XTRANSFC(row - 1, col) != 1 ? 1 : -1);
|
||||
int offsetx = offset1 * offsety;
|
||||
|
||||
if( !(bitmapBads.get(col + offsetx, row) || bitmapBads.get(col, row + offsety))) {
|
||||
float dirwt = 1.f / ( fabsf( rawData[row][col + offsetx] - rawData[row + offsety][col]) + eps);
|
||||
wtdsum += dirwt * (rawData[row][col + offsetx] + rawData[row + offsety][col]);
|
||||
norm += dirwt;
|
||||
}
|
||||
|
||||
int offsety2 = -offsety;
|
||||
int offsetx2 = -offsetx;
|
||||
offsetx *= 2;
|
||||
offsety *= 2;
|
||||
|
||||
// pixels marked 3 in above example. Distance to P is sqrt(5) => weighting is 0.44721359f
|
||||
if( !(bitmapBads.get(col + offsetx, row + offsety2) || bitmapBads.get(col + offsetx2, row + offsety))) {
|
||||
float dirwt = 0.44721359f / ( fabsf( rawData[row + offsety2][col + offsetx] - rawData[row + offsety][col + offsetx2]) + eps);
|
||||
wtdsum += dirwt * (rawData[row + offsety2][col + offsetx] + rawData[row + offsety][col + offsetx2]);
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// red and blue channel.
|
||||
// Each red or blue pixel has exactly one neighbour of same colour in distance 2 and four neighbours of same colour which can be reached by a move of a knight in chess.
|
||||
// For the distance 2 pixel (marked with an X) we generate a virtual counterpart (marked with a V)
|
||||
// For red and blue channel following pixels will be used for interpolation. Pixel to be interpolated is in centre and marked with a P.
|
||||
// Pairs of pixels used in this step are numbered except for distance 2 pixels which are marked X and V. A pair will be used if none of the pixels of the pair is marked bad
|
||||
// 0 1 0 0 0 0 0 X 0 0 remaining cases are symmetric
|
||||
// 0 0 0 0 2 1 0 0 0 2
|
||||
// X 0 P 0 V 0 0 P 0 0
|
||||
// 0 0 0 0 1 0 0 0 0 0
|
||||
// 0 2 0 0 0 0 2 V 1 0
|
||||
|
||||
// Find two knight moves landing on a pixel of same colour as the pixel to be interpolated.
|
||||
// If we look at first and last row of 5x5 square, we will find exactly two knight pixels.
|
||||
// Additionally we know that the column of this pixel has 1 or -1 horizontal distance to the centre pixel
|
||||
// When we find a knight pixel, we get its counterpart, which has distance (+-3,+-3), where the signs of distance depend on the corner of the found knight pixel.
|
||||
// These pixels are marked 1 or 2 in above examples. Distance to P is sqrt(5) => weighting is 0.44721359f
|
||||
// The following loop simply scans the four possible places. To keep things simple, it does not stop after finding two knight pixels, because it will not find more than two
|
||||
for(int d1 = -2, offsety = 3; d1 <= 2; d1 += 4, offsety -= 6) {
|
||||
for(int d2 = -1, offsetx = 3; d2 < 1; d2 += 2, offsetx -= 6) {
|
||||
if(ri->XTRANSFC(row + d1, col + d2) == pixelColor) {
|
||||
if( !(bitmapBads.get(col + d2, row + d1) || bitmapBads.get(col + d2 + offsetx, row + d1 + offsety))) {
|
||||
float dirwt = 0.44721359f / ( fabsf( rawData[row + d1][col + d2] - rawData[row + d1 + offsety][col + d2 + offsetx]) + eps);
|
||||
wtdsum += dirwt * (rawData[row + d1][col + d2] + rawData[row + d1 + offsety][col + d2 + offsetx]);
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// now scan for the pixel of same colour in distance 2 in each direction (marked with an X in above examples).
|
||||
bool distance2PixelFound = false;
|
||||
int dx, dy;
|
||||
|
||||
// check horizontal
|
||||
for(dx = -2, dy = 0; dx <= 2 && !distance2PixelFound; dx += 4)
|
||||
if(ri->XTRANSFC(row, col + dx) == pixelColor) {
|
||||
distance2PixelFound = true;
|
||||
break;
|
||||
}
|
||||
|
||||
if(!distance2PixelFound)
|
||||
|
||||
// no distance 2 pixel on horizontal, check vertical
|
||||
for(dx = 0, dy = -2; dy <= 2 && !distance2PixelFound; dy += 4)
|
||||
if(ri->XTRANSFC(row + dy, col) == pixelColor) {
|
||||
distance2PixelFound = true;
|
||||
break;
|
||||
}
|
||||
|
||||
// calculate the value of its virtual counterpart (marked with a V in above examples)
|
||||
float virtualPixel;
|
||||
|
||||
if(dy == 0) {
|
||||
virtualPixel = 0.5f * (rawData[row - 1][col - dx] + rawData[row + 1][col - dx]);
|
||||
} else {
|
||||
virtualPixel = 0.5f * (rawData[row - dy][col - 1] + rawData[row - dy][col + 1]);
|
||||
}
|
||||
|
||||
// and weight as usual. Distance to P is 2 => weighting is 0.5f
|
||||
float dirwt = 0.5f / ( fabsf( virtualPixel - rawData[row + dy][col + dx]) + eps);
|
||||
wtdsum += dirwt * (virtualPixel + rawData[row + dy][col + dx]);
|
||||
norm += dirwt;
|
||||
}
|
||||
|
||||
if (LIKELY(norm > 0.f)) { // This means, we found at least one pair of valid pixels in the steps above, likelihood of this case is about 99.999%
|
||||
rawData[row][col] = wtdsum / (2.f * norm); //gradient weighted average, Factor of 2.f is an optimization to avoid multiplications in former steps
|
||||
counter++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return counter; // Number of interpolated pixels.
|
||||
}
|
||||
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
/* Search for hot or dead pixels in the image and update the map
|
||||
* For each pixel compare its value to the average of similar colour surrounding
|
||||
* (Taken from Emil Martinec idea)
|
||||
* (Optimized by Ingo Weyrich 2013 and 2015)
|
||||
*/
|
||||
int RawImageSource::findHotDeadPixels( PixelsMap &bpMap, float thresh, bool findHotPixels, bool findDeadPixels )
|
||||
{
|
||||
float varthresh = (20.0 * (thresh / 100.0) + 1.0 ) / 24.f;
|
||||
|
||||
// allocate temporary buffer
|
||||
float* cfablur;
|
||||
cfablur = (float (*)) malloc (H * W * sizeof * cfablur);
|
||||
|
||||
// counter for dead or hot pixels
|
||||
int counter = 0;
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel
|
||||
#endif
|
||||
{
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for schedule(dynamic,16) nowait
|
||||
#endif
|
||||
|
||||
for (int i = 2; i < H - 2; i++) {
|
||||
for (int j = 2; j < W - 2; j++) {
|
||||
const float& temp = median(rawData[i - 2][j - 2], rawData[i - 2][j], rawData[i - 2][j + 2],
|
||||
rawData[i][j - 2], rawData[i][j], rawData[i][j + 2],
|
||||
rawData[i + 2][j - 2], rawData[i + 2][j], rawData[i + 2][j + 2]);
|
||||
cfablur[i * W + j] = rawData[i][j] - temp;
|
||||
}
|
||||
}
|
||||
|
||||
// process borders. Former version calculated the median using mirrored border which does not make sense because the original pixel loses weight
|
||||
// Setting the difference between pixel and median for border pixels to zero should do the job not worse then former version
|
||||
#ifdef _OPENMP
|
||||
#pragma omp single
|
||||
#endif
|
||||
{
|
||||
for(int i = 0; i < 2; i++) {
|
||||
for(int j = 0; j < W; j++) {
|
||||
cfablur[i * W + j] = 0.f;
|
||||
}
|
||||
}
|
||||
|
||||
for(int i = 2; i < H - 2; i++) {
|
||||
for(int j = 0; j < 2; j++) {
|
||||
cfablur[i * W + j] = 0.f;
|
||||
}
|
||||
|
||||
for(int j = W - 2; j < W; j++) {
|
||||
cfablur[i * W + j] = 0.f;
|
||||
}
|
||||
}
|
||||
|
||||
for(int i = H - 2; i < H; i++) {
|
||||
for(int j = 0; j < W; j++) {
|
||||
cfablur[i * W + j] = 0.f;
|
||||
}
|
||||
}
|
||||
}
|
||||
#ifdef _OPENMP
|
||||
#pragma omp barrier // barrier because of nowait clause above
|
||||
|
||||
#pragma omp for reduction(+:counter) schedule(dynamic,16)
|
||||
#endif
|
||||
|
||||
//cfa pixel heat/death evaluation
|
||||
for (int rr = 2; rr < H - 2; rr++) {
|
||||
int rrmWpcc = rr * W + 2;
|
||||
|
||||
for (int cc = 2; cc < W - 2; cc++, rrmWpcc++) {
|
||||
//evaluate pixel for heat/death
|
||||
float pixdev = cfablur[rrmWpcc];
|
||||
|
||||
if(pixdev == 0.f) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if((!findDeadPixels) && pixdev < 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if((!findHotPixels) && pixdev > 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
pixdev = fabsf(pixdev);
|
||||
float hfnbrave = -pixdev;
|
||||
|
||||
#ifdef __SSE2__
|
||||
// sum up 5*4 = 20 values using SSE
|
||||
// 10 fabs function calls and float 10 additions with SSE
|
||||
vfloat sum = vabsf(LVFU(cfablur[(rr - 2) * W + cc - 2])) + vabsf(LVFU(cfablur[(rr - 1) * W + cc - 2]));
|
||||
sum += vabsf(LVFU(cfablur[(rr) * W + cc - 2]));
|
||||
sum += vabsf(LVFU(cfablur[(rr + 1) * W + cc - 2]));
|
||||
sum += vabsf(LVFU(cfablur[(rr + 2) * W + cc - 2]));
|
||||
// horizontally add the values and add the result to hfnbrave
|
||||
hfnbrave += vhadd(sum);
|
||||
|
||||
// add remaining 5 values of last column
|
||||
for (int mm = rr - 2; mm <= rr + 2; mm++) {
|
||||
hfnbrave += fabsf(cfablur[mm * W + cc + 2]);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
// 25 fabs function calls and 25 float additions without SSE
|
||||
for (int mm = rr - 2; mm <= rr + 2; mm++) {
|
||||
for (int nn = cc - 2; nn <= cc + 2; nn++) {
|
||||
hfnbrave += fabsf(cfablur[mm * W + nn]);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
if (pixdev > varthresh * hfnbrave) {
|
||||
// mark the pixel as "bad"
|
||||
bpMap.set(cc, rr);
|
||||
counter++;
|
||||
}
|
||||
}//end of pixel evaluation
|
||||
}
|
||||
}//end of parallel processing
|
||||
free (cfablur);
|
||||
return counter;
|
||||
}
|
||||
|
||||
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
void RawImageSource::getFullSize (int& w, int& h, int tr)
|
||||
{
|
||||
|
||||
@ -1741,23 +1205,13 @@ void RawImageSource::preprocess (const RAWParams &raw, const LensProfParams &le
|
||||
printf( "Subtracting Darkframe:%s\n", rid->get_filename().c_str());
|
||||
}
|
||||
|
||||
PixelsMap *bitmapBads = nullptr;
|
||||
std::unique_ptr<PixelsMap> bitmapBads;
|
||||
|
||||
int totBP = 0; // Hold count of bad pixels to correct
|
||||
|
||||
if(ri->zeroIsBad()) { // mark all pixels with value zero as bad, has to be called before FF and DF. dcraw sets this flag only for some cameras (mainly Panasonic and Leica)
|
||||
bitmapBads = new PixelsMap(W, H);
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for reduction(+:totBP) schedule(dynamic,16)
|
||||
#endif
|
||||
|
||||
for(int i = 0; i < H; i++)
|
||||
for(int j = 0; j < W; j++) {
|
||||
if(ri->data[i][j] == 0.f) {
|
||||
bitmapBads->set(j, i);
|
||||
totBP++;
|
||||
}
|
||||
}
|
||||
bitmapBads.reset(new PixelsMap(W, H));
|
||||
totBP = findZeroPixels(*(bitmapBads.get()));
|
||||
|
||||
if( settings->verbose) {
|
||||
printf( "%d pixels with value zero marked as bad pixels\n", totBP);
|
||||
@ -1821,10 +1275,10 @@ void RawImageSource::preprocess (const RAWParams &raw, const LensProfParams &le
|
||||
|
||||
if( bp ) {
|
||||
if(!bitmapBads) {
|
||||
bitmapBads = new PixelsMap(W, H);
|
||||
bitmapBads.reset(new PixelsMap(W, H));
|
||||
}
|
||||
|
||||
totBP += bitmapBads->set( *bp );
|
||||
totBP += bitmapBads->set(*bp);
|
||||
|
||||
if( settings->verbose ) {
|
||||
std::cout << "Correcting " << bp->size() << " pixels from .badpixels" << std::endl;
|
||||
@ -1842,10 +1296,10 @@ void RawImageSource::preprocess (const RAWParams &raw, const LensProfParams &le
|
||||
|
||||
if(bp) {
|
||||
if(!bitmapBads) {
|
||||
bitmapBads = new PixelsMap(W, H);
|
||||
bitmapBads.reset(new PixelsMap(W, H));
|
||||
}
|
||||
|
||||
totBP += bitmapBads->set( *bp );
|
||||
totBP += bitmapBads->set(*bp);
|
||||
|
||||
if( settings->verbose && !bp->empty()) {
|
||||
std::cout << "Correcting " << bp->size() << " hotpixels from darkframe" << std::endl;
|
||||
@ -1917,10 +1371,10 @@ void RawImageSource::preprocess (const RAWParams &raw, const LensProfParams &le
|
||||
}
|
||||
|
||||
if(!bitmapBads) {
|
||||
bitmapBads = new PixelsMap(W, H);
|
||||
bitmapBads.reset(new PixelsMap(W, H));
|
||||
}
|
||||
|
||||
int nFound = findHotDeadPixels( *bitmapBads, raw.hotdeadpix_thresh, raw.hotPixelFilter, raw.deadPixelFilter );
|
||||
int nFound = findHotDeadPixels(*(bitmapBads.get()), raw.hotdeadpix_thresh, raw.hotPixelFilter, raw.deadPixelFilter );
|
||||
totBP += nFound;
|
||||
|
||||
if( settings->verbose && nFound > 0) {
|
||||
@ -1932,10 +1386,10 @@ void RawImageSource::preprocess (const RAWParams &raw, const LensProfParams &le
|
||||
PDAFLinesFilter f(ri);
|
||||
|
||||
if (!bitmapBads) {
|
||||
bitmapBads = new PixelsMap(W, H);
|
||||
bitmapBads.reset(new PixelsMap(W, H));
|
||||
}
|
||||
|
||||
int n = f.mark(rawData, *bitmapBads);
|
||||
int n = f.mark(rawData, *(bitmapBads.get()));
|
||||
totBP += n;
|
||||
|
||||
if (n > 0) {
|
||||
@ -1999,15 +1453,15 @@ void RawImageSource::preprocess (const RAWParams &raw, const LensProfParams &le
|
||||
if ( ri->getSensorType() == ST_BAYER ) {
|
||||
if(numFrames == 4) {
|
||||
for(int i = 0; i < 4; ++i) {
|
||||
interpolateBadPixelsBayer( *bitmapBads, *rawDataFrames[i] );
|
||||
interpolateBadPixelsBayer(*(bitmapBads.get()), *rawDataFrames[i]);
|
||||
}
|
||||
} else {
|
||||
interpolateBadPixelsBayer( *bitmapBads, rawData );
|
||||
interpolateBadPixelsBayer(*(bitmapBads.get()), rawData);
|
||||
}
|
||||
} else if ( ri->getSensorType() == ST_FUJI_XTRANS ) {
|
||||
interpolateBadPixelsXtrans( *bitmapBads );
|
||||
interpolateBadPixelsXtrans(*(bitmapBads.get()));
|
||||
} else {
|
||||
interpolateBadPixelsNColours( *bitmapBads, ri->get_colors() );
|
||||
interpolateBadPixelsNColours(*(bitmapBads.get()), ri->get_colors());
|
||||
}
|
||||
}
|
||||
|
||||
@ -2060,10 +1514,6 @@ void RawImageSource::preprocess (const RAWParams &raw, const LensProfParams &le
|
||||
printf("Preprocessing: %d usec\n", t2.etime(t1));
|
||||
}
|
||||
|
||||
if(bitmapBads) {
|
||||
delete bitmapBads;
|
||||
}
|
||||
|
||||
rawDirty = true;
|
||||
return;
|
||||
}
|
||||
|
@ -28,6 +28,7 @@
|
||||
#include "dcp.h"
|
||||
#include "iimage.h"
|
||||
#include "imagesource.h"
|
||||
#include "pixelsmap.h"
|
||||
|
||||
#define HR_SCALE 2
|
||||
|
||||
@ -100,7 +101,7 @@ protected:
|
||||
void transformRect (const PreviewProps &pp, int tran, int &sx1, int &sy1, int &width, int &height, int &fw);
|
||||
void transformPosition (int x, int y, int tran, int& tx, int& ty);
|
||||
|
||||
unsigned FC(int row, int col)
|
||||
unsigned FC(int row, int col) const
|
||||
{
|
||||
return ri->FC(row, col);
|
||||
}
|
||||
@ -258,11 +259,11 @@ protected:
|
||||
);
|
||||
void ddct8x8s(int isgn, float a[8][8]);
|
||||
|
||||
int interpolateBadPixelsBayer( PixelsMap &bitmapBads, array2D<float> &rawData );
|
||||
int interpolateBadPixelsNColours( PixelsMap &bitmapBads, const int colours );
|
||||
int interpolateBadPixelsXtrans( PixelsMap &bitmapBads );
|
||||
int findHotDeadPixels( PixelsMap &bpMap, float thresh, bool findHotPixels, bool findDeadPixels );
|
||||
|
||||
int interpolateBadPixelsBayer(const PixelsMap &bitmapBads, array2D<float> &rawData);
|
||||
int interpolateBadPixelsNColours(const PixelsMap &bitmapBads, int colours);
|
||||
int interpolateBadPixelsXtrans(const PixelsMap &bitmapBads);
|
||||
int findHotDeadPixels(PixelsMap &bpMap, float thresh, bool findHotPixels, bool findDeadPixels) const;
|
||||
int findZeroPixels(PixelsMap &bpMap) const;
|
||||
void cfa_linedn (float linenoiselevel, bool horizontal, bool vertical, const CFALineDenoiseRowBlender &rowblender);//Emil's line denoise
|
||||
|
||||
void green_equilibrate_global (array2D<float> &rawData);
|
||||
|
Loading…
x
Reference in New Issue
Block a user