Speedup for Contrast by Detail, Issue 1968

This commit is contained in:
Ingo
2013-09-09 17:58:45 +02:00
parent d8c681eb50
commit 7d04b6638d
2 changed files with 207 additions and 102 deletions

View File

@@ -26,14 +26,17 @@
#include "rawimagesource.h"
#include "array2D.h"
#include "rt_math.h"
#ifdef __SSE2__
#include "sleefsseavx.c"
#endif
#ifdef _OPENMP
#include <omp.h>
#endif
#define CLIPI(a) ((a)>0 ?((a)<32768 ?(a):32768):0)
#define RANGEFN(i) ((1000.0f / (i + 1000.0f)))
#define CLIPC(a) ((a)>-32000?((a)<32000?(a):32000):-32000)
#define DIRWT(i1,j1,i,j) ( domker[(i1-i)/scale+halfwin][(j1-j)/scale+halfwin] * rangefn[abs((int)data_fine[i1][j1]-data_fine[i][j])] )
#define DIRWT(i1,j1,i,j) ( domker[(i1-i)/scale+halfwin][(j1-j)/scale+halfwin] * RANGEFN(fabsf((data_fine[i1][j1]-data_fine[i][j]))) )
namespace rtengine {
@@ -59,41 +62,17 @@ namespace rtengine {
}
if (lastlevel==0) return;
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
LUTf rangefn(0x10000);
int intfactor = 1024;//16384;
//set up range functions
for (int i=0; i<0x10000; i++) {
rangefn[i] = (int)((thresh/((double)(i) + thresh))*intfactor);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
int level;
array2D<float> buffer (srcwidth, srcheight);
array2D<float> buffer (srcwidth, srcheight, ARRAY2D_CLEAR_DATA);
multi_array2D<float,maxlevel> dirpyrlo (srcwidth, srcheight);
for (int i=0; i<srcheight; i++)
for (int j=0; j<srcwidth; j++) {
buffer[i][j]=0;
}
level = 0;
int scale = scales[level];
//int thresh = 100 * mult[5];
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, rangefn, 0, scale, mult );
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale, mult );
level = 1;
@@ -101,7 +80,7 @@ namespace rtengine {
{
scale = scales[level];
dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, rangefn, level, scale, mult );
dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, level, scale, mult );
level ++;
}
@@ -110,10 +89,8 @@ namespace rtengine {
//initiate buffer for final image
for(int i = 0; i < srcheight; i++)
for(int j = 0; j < srcwidth; j++) {
//copy pixels
buffer[i][j] = dirpyrlo[lastlevel-1][i][j];
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -133,13 +110,11 @@ namespace rtengine {
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for (int i=0; i<srcheight; i++)
for (int j=0; j<srcwidth; j++) {
dst[i][j] = CLIP((int)( buffer[i][j] )); // TODO: Really a clip necessary?
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -160,41 +135,17 @@ namespace rtengine {
}
if (lastlevel==0) return;
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
LUTf rangefn(0x10000);
int intfactor = 1024;//16384;
//set up range functions
for (int i=0; i<0x10000; i++) {
rangefn[i] = (int)((thresh/((double)(i) + thresh))*intfactor);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
int level;
array2D<float> buffer (srcwidth, srcheight);
array2D<float> buffer (srcwidth, srcheight, ARRAY2D_CLEAR_DATA);
multi_array2D<float,maxlevel> dirpyrlo (srcwidth, srcheight);
for (int i=0; i<srcheight; i++)
for (int j=0; j<srcwidth; j++) {
buffer[i][j]=0;
}
level = 0;
int scale = scales[level];
//int thresh = 100 * mult[5];
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, rangefn, 0, scale, mult );
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale, mult );
level = 1;
@@ -202,7 +153,7 @@ namespace rtengine {
{
scale = scales[level];
dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, rangefn, level, scale, mult );
dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, level, scale, mult );
level ++;
}
@@ -211,10 +162,8 @@ namespace rtengine {
//initiate buffer for final image
for(int i = 0; i < srcheight; i++)
for(int j = 0; j < srcwidth; j++) {
//copy pixels
buffer[i][j] = dirpyrlo[lastlevel-1][i][j];
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -233,59 +182,125 @@ namespace rtengine {
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if(execdir)
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i=0; i<srcheight; i++)
for (int j=0; j<srcwidth; j++) {
if(execdir) {if(ncie->J_p[i][j] > 8.f && ncie->J_p[i][j] < 92.f) dst[i][j] = CLIP((int)( buffer[i][j] )); // TODO: Really a clip necessary?
else dst[i][j]=src[i][j];}
else dst[i][j] = CLIP((int)( buffer[i][j] )); // TODO: Really a clip necessary?
if(ncie->J_p[i][j] > 8.f && ncie->J_p[i][j] < 92.f) dst[i][j] = CLIP((int)( buffer[i][j] )); // TODO: Really a clip necessary?
else dst[i][j]=src[i][j];
}
else
for (int i=0; i<srcheight; i++)
for (int j=0; j<srcwidth; j++) {
dst[i][j] = CLIP((int)( buffer[i][j] )); // TODO: Really a clip necessary?
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}
void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, int width, int height, LUTf & rangefn, int level, int scale, const double * mult )
#if defined( __SSE2__ ) && defined( WIN32 )
__attribute__((force_align_arg_pointer)) void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, int width, int height, int level, int scale, const double * mult )
#else
void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, int width, int height, int level, int scale, const double * mult )
#endif
{
//scale is spacing of directional averaging weights
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// calculate weights, compute directionally weighted average
int halfwin=2;
int domker[5][5] = {{1,1,1,1,1},{1,2,2,2,1},{1,2,2,2,1},{1,2,2,2,1},{1,1,1,1,1}};
int halfwin;
int scalewin;
if(level > 1) {
//generate domain kernel
if (level<2) {
halfwin = 1;
domker[1][1]=domker[1][2]=domker[2][1]=domker[2][2]=1;
}
int scalewin = halfwin*scale;
int domker[5][5] = {{1,1,1,1,1},{1,2,2,2,1},{1,2,2,2,1},{1,2,2,2,1},{1,1,1,1,1}};
halfwin=2;
scalewin = halfwin*scale;
#ifdef _OPENMP
#pragma omp parallel for
#pragma omp parallel
#endif
{
#ifdef __SSE2__
__m128 thousandv = _mm_set1_ps( 1000.0f );
__m128 dirwtv, valv, normv;
float domkerv[5][5][4] = {{{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1}}};
#endif // __SSE2__
int j;
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++)
float dirwt;
for(j = 0; j < scalewin; j++)
{
float val=0;
float norm=0;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=max(0,j-scalewin); jnbr<=min(width-1,j+scalewin); jnbr+=scale) {
float dirwt = DIRWT(inbr, jnbr, i, j);
for (int jnbr=max(0,j-scalewin); jnbr<=j+scalewin; jnbr+=scale) {
dirwt = DIRWT(inbr, jnbr, i, j);
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j]=val/norm;//low pass filter
}
#ifdef __SSE2__
for(; j < width-scalewin-3; j+=4)
{
valv = _mm_setzero_ps();
normv = _mm_setzero_ps();
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwtv = _mm_loadu_ps((float*)&domkerv[(inbr-i)/scale+halfwin][(jnbr-j)/scale+halfwin]) * (thousandv / (vabsf(LVFU(data_fine[inbr][jnbr])-(LVFU(data_fine[i][j]))) + thousandv));
valv += dirwtv*LVFU(data_fine[inbr][jnbr]);
normv += dirwtv;
}
}
_mm_storeu_ps( &data_coarse[i][j],valv/normv);//low pass filter
}
for(; j < width-scalewin; j++)
{
float val=0;
float norm=0;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwt = DIRWT(inbr, jnbr, i, j);
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j]=val/norm;//low pass filter
}
#else
for(; j < width-scalewin; j++)
{
float val=0;
float norm=0;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwt = DIRWT(inbr, jnbr, i, j);
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j]=val/norm;//low pass filter
}
#endif
for(; j < width; j++)
{
float val=0;
float norm=0;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=min(width-1,j+scalewin); jnbr+=scale) {
dirwt = DIRWT(inbr, jnbr, i, j);
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
@@ -293,10 +308,101 @@ namespace rtengine {
data_coarse[i][j]=val/norm;//low pass filter
}
}
}
} else { // level <=1 means that all values of domker would be 1.0f, so no need for multiplication
halfwin = 1;
scalewin = halfwin*scale;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef __SSE2__
__m128 thousandv = _mm_set1_ps( 1000.0f );
__m128 dirwtv, valv, normv;
#endif // __SSE2__
int j;
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++) {
float dirwt;
for(j = 0; j < scalewin; j++)
{
float val=0;
float norm=0;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=max(0,j-scalewin); jnbr<=j+scalewin; jnbr+=scale) {
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j]));
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j]=val/norm;//low pass filter
}
#ifdef __SSE2__
for(; j < width-scalewin-3; j+=4)
{
valv = _mm_setzero_ps();
normv = _mm_setzero_ps();
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwtv = thousandv / (vabsf(LVFU(data_fine[inbr][jnbr])-(LVFU(data_fine[i][j]))) + thousandv);
valv += dirwtv*LVFU(data_fine[inbr][jnbr]);
normv += dirwtv;
}
}
_mm_storeu_ps( &data_coarse[i][j], valv/normv);//low pass filter
}
for(; j < width-scalewin; j++)
{
float val=0;
float norm=0;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j]));
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j]=val/norm;//low pass filter
}
#else
for(; j < width-scalewin; j++)
{
float val=0;
float norm=0;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j]));
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j]=val/norm;//low pass filter
}
#endif
for(; j < width; j++)
{
float val=0;
float norm=0;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=min(width-1,j+scalewin); jnbr+=scale) {
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j]));
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j]=val/norm;//low pass filter
}
}
}
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -318,7 +424,6 @@ namespace rtengine {
}
}
#ifdef _OPENMP
#pragma omp parallel for
#endif

View File

@@ -166,7 +166,7 @@ class ImProcFunctions {
// pyramid equalizer
void dirpyr_equalizer (float ** src, float ** dst, int srcwidth, int srcheight, const double * mult);//Emil's directional pyramid equalizer
void dirpyr_equalizercam (CieImage* ncie, float ** src, float ** dst, int srcwidth, int srcheight, const double * mult, bool execdir );//Emil's directional pyramid equalizer
void dirpyr_channel (float ** data_fine, float ** data_coarse, int width, int height, LUTf & rangefn, int level, int scale, const double * mult );
void dirpyr_channel (float ** data_fine, float ** data_coarse, int width, int height, int level, int scale, const double * mult );
void idirpyr_eq_channel (float ** data_coarse, float ** data_fine, float ** buffer, int width, int height, int level, const double * mult );
void defringe (LabImage* lab);