Remove unused rtengine/colorclip.h
This commit is contained in:
@@ -1,169 +0,0 @@
|
|||||||
/*
|
|
||||||
* This file is part of RawTherapee.
|
|
||||||
*
|
|
||||||
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
|
|
||||||
*
|
|
||||||
* RawTherapee is free software: you can redistribute it and/or modify
|
|
||||||
* it under the terms of the GNU General Public License as published by
|
|
||||||
* the Free Software Foundation, either version 3 of the License, or
|
|
||||||
* (at your option) any later version.
|
|
||||||
*
|
|
||||||
* RawTherapee is distributed in the hope that it will be useful,
|
|
||||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
* GNU General Public License for more details.
|
|
||||||
*
|
|
||||||
* You should have received a copy of the GNU General Public License
|
|
||||||
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
|
|
||||||
*/
|
|
||||||
inline double tightestroot (double L, double a, double b, double r1, double r2, double r3);
|
|
||||||
|
|
||||||
#ifndef __COLORCLIP__
|
|
||||||
#define __COLORCLIP__
|
|
||||||
|
|
||||||
#include <cmath>
|
|
||||||
#include "median.h"
|
|
||||||
|
|
||||||
// gives back the tightest >0 amplification by which color clipping occures
|
|
||||||
|
|
||||||
inline double tightestroot (double L, double a, double b, double r1, double r2, double r3)
|
|
||||||
{
|
|
||||||
|
|
||||||
double an = a / 500.0, bn = b / 200.0, p = (L + 16.0) / 116.0;
|
|
||||||
|
|
||||||
double coeff3 = r1 * an * an * an - r3 * bn * bn * bn;
|
|
||||||
double coeff2 = 3.0 * p * (r1 * an * an + r3 * bn * bn);
|
|
||||||
double coeff1 = 3.0 * p * p * (r1 * an - r3 * bn);
|
|
||||||
double coeff0 = p * p * p * (r1 + r2 + r3) - 1.0;
|
|
||||||
|
|
||||||
double a1 = coeff2 / coeff3;
|
|
||||||
double a2 = coeff1 / coeff3;
|
|
||||||
double a3 = coeff0 / coeff3;
|
|
||||||
|
|
||||||
double Q = (a1 * a1 - 3.0 * a2) / 9.0;
|
|
||||||
double R = (2.0 * a1 * a1 * a1 - 9.0 * a1 * a2 + 27.0 * a3) / 54.0;
|
|
||||||
double Qcubed = Q * Q * Q;
|
|
||||||
double d = Qcubed - R * R;
|
|
||||||
|
|
||||||
// printf ("input L=%g, a=%g, b=%g\n", L, a, b);
|
|
||||||
// printf ("c1=%g, c2=%g, c3=%g, c4=%g\n", coeff3, coeff2, coeff1, coeff0);
|
|
||||||
|
|
||||||
|
|
||||||
/* Three real roots */
|
|
||||||
if (d >= 0) {
|
|
||||||
double theta = acos(R / sqrt(Qcubed));
|
|
||||||
double sqrtQ = sqrt(Q);
|
|
||||||
double x0 = -2.0 * sqrtQ * cos( theta / 3.0) - a1 / 3.0;
|
|
||||||
double x1 = -2.0 * sqrtQ * cos((theta + 2.0 * M_PI) / 3.0) - a1 / 3.0;
|
|
||||||
double x2 = -2.0 * sqrtQ * cos((theta + 4.0 * M_PI) / 3.0) - a1 / 3.0;
|
|
||||||
|
|
||||||
// printf ("3 roots: %g, %g, %g\n", x0, x1, x2);
|
|
||||||
|
|
||||||
SORT3 (x0, x1, x2, a1, a2, a3);
|
|
||||||
|
|
||||||
if (a1 > 0) {
|
|
||||||
return a1;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (a2 > 0) {
|
|
||||||
return a2;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (a3 > 0) {
|
|
||||||
return a3;
|
|
||||||
}
|
|
||||||
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* One real root */
|
|
||||||
else {
|
|
||||||
// double e = pow(sqrt(-d) + fabs(R), 1.0 / 3.0);
|
|
||||||
double e = exp (1.0 / 3.0 * log (sqrt(-d) + fabs(R)));
|
|
||||||
|
|
||||||
if (R > 0) {
|
|
||||||
e = -e;
|
|
||||||
}
|
|
||||||
|
|
||||||
double x0 = (e + Q / e) - a1 / 3.0;
|
|
||||||
|
|
||||||
// printf ("1 root: %g\n", x0);
|
|
||||||
|
|
||||||
if (x0 < 0) {
|
|
||||||
return -1;
|
|
||||||
} else {
|
|
||||||
return x0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
/*******************************************************************************
|
|
||||||
* FindCubicRoots
|
|
||||||
* --------------
|
|
||||||
*
|
|
||||||
* Copyright (C) 1997-2001 Ken Turkowski. <turk_at_computer.org>
|
|
||||||
*
|
|
||||||
* Permission is hereby granted, free of charge, to any person obtaining
|
|
||||||
* a copy of this software and associated documentation files (the
|
|
||||||
* "Software"), to deal in the Software without restriction, including
|
|
||||||
* without limitation the rights to use, copy, modify, merge, publish,
|
|
||||||
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
||||||
* permit persons to whom the Software is furnished to do so, subject to
|
|
||||||
* the following conditions:
|
|
||||||
*
|
|
||||||
* The above copyright notice and this permission notice shall be included
|
|
||||||
* in all copies or substantial portions of the Software.
|
|
||||||
*
|
|
||||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
||||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
||||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
||||||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
|
||||||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
||||||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
||||||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
||||||
*
|
|
||||||
* ------------------------------------------------------------------------
|
|
||||||
*
|
|
||||||
* Solve:
|
|
||||||
* coeff[3] * x^3 + coeff[2] * x^2 + coeff[1] * x + coeff[0] = 0
|
|
||||||
*
|
|
||||||
* returns:
|
|
||||||
* 3 - 3 real roots
|
|
||||||
* 1 - 1 real root (2 complex conjugate)
|
|
||||||
*
|
|
||||||
*******************************************************************************/
|
|
||||||
|
|
||||||
/*long
|
|
||||||
FindCubicRoots(const FLOAT coeff[4], FLOAT x[3])
|
|
||||||
{
|
|
||||||
FLOAT a1 = coeff[2] / coeff[3];
|
|
||||||
FLOAT a2 = coeff[1] / coeff[3];
|
|
||||||
FLOAT a3 = coeff[0] / coeff[3];
|
|
||||||
|
|
||||||
double_t Q = (a1 * a1 - 3 * a2) / 9;
|
|
||||||
double_t R = (2 * a1 * a1 * a1 - 9 * a1 * a2 + 27 * a3) / 54;
|
|
||||||
double_t Qcubed = Q * Q * Q;
|
|
||||||
double_t d = Qcubed - R * R;
|
|
||||||
|
|
||||||
// Three real roots
|
|
||||||
if (d >= 0) {
|
|
||||||
double_t theta = acos(R / sqrt(Qcubed));
|
|
||||||
double_t sqrtQ = sqrt(Q);
|
|
||||||
x[0] = -2 * sqrtQ * cos( theta / 3) - a1 / 3;
|
|
||||||
x[1] = -2 * sqrtQ * cos((theta + 2 * pi) / 3) - a1 / 3;
|
|
||||||
x[2] = -2 * sqrtQ * cos((theta + 4 * pi) / 3) - a1 / 3;
|
|
||||||
return (3);
|
|
||||||
}
|
|
||||||
|
|
||||||
// One real root
|
|
||||||
else {
|
|
||||||
double_t e = pow(sqrt(-d) + fabs(R), 1. / 3.);
|
|
||||||
if (R > 0)
|
|
||||||
e = -e;
|
|
||||||
x[0] = (e + Q / e) - a1 / 3.;
|
|
||||||
return (1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
*/
|
|
||||||
#endif
|
|
Reference in New Issue
Block a user