Changes to black compression and saturation controls. Black compression from 0-50 acts the same as 0-100 on the previous version, compressing dark tones without crushing blacks. 50-100 then starts crushing blacks until by 100 on the slider, all tones up to the set black point are sent to zero. In the new saturation control, negative values of the slider set a linear curve rather than an inverted S curve, and smoothly decrease saturation to zero across the board.
This commit is contained in:
70
rtengine/cubic.cc
Normal file
70
rtengine/cubic.cc
Normal file
@@ -0,0 +1,70 @@
|
||||
/* Copyright (C) 1997-2001 Ken Turkowski. <turk_at_computer.org>
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining
|
||||
* a copy of this software and associated documentation files (the
|
||||
* "Software"), to deal in the Software without restriction, including
|
||||
* without limitation the rights to use, copy, modify, merge, publish,
|
||||
* distribute, sublicense, and/or sell copies of the Software, and to
|
||||
* permit persons to whom the Software is furnished to do so, subject to
|
||||
* the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included
|
||||
* in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
|
||||
|
||||
#define FLOAT float
|
||||
#define double_t double
|
||||
|
||||
/*******************************************************************************
|
||||
* FindCubicRoots
|
||||
*
|
||||
* Solve:
|
||||
* coeff[3] * x^3 + coeff[2] * x^2 + coeff[1] * x + coeff[0] = 0
|
||||
*
|
||||
* returns:
|
||||
* 3 - 3 real roots
|
||||
* 1 - 1 real root (2 complex conjugate)
|
||||
*******************************************************************************/
|
||||
|
||||
long
|
||||
FindCubicRoots(const FLOAT coeff[4], FLOAT x[3])
|
||||
{
|
||||
FLOAT a1 = coeff[2] / coeff[3];
|
||||
FLOAT a2 = coeff[1] / coeff[3];
|
||||
FLOAT a3 = coeff[0] / coeff[3];
|
||||
|
||||
double_t Q = (a1 * a1 - 3 * a2) / 9;
|
||||
double_t R = (2 * a1 * a1 * a1 - 9 * a1 * a2 + 27 * a3) / 54;
|
||||
double_t Qcubed = Q * Q * Q;
|
||||
double_t d = Qcubed - R * R;
|
||||
|
||||
/* Three real roots */
|
||||
if (d >= 0) {
|
||||
double_t theta = acos(R / sqrt(Qcubed));
|
||||
double_t sqrtQ = sqrt(Q);
|
||||
x[0] = -2 * sqrtQ * cos( theta / 3) - a1 / 3;
|
||||
x[1] = -2 * sqrtQ * cos((theta + 2 * 3.14159265) / 3) - a1 / 3;
|
||||
x[2] = -2 * sqrtQ * cos((theta + 4 * 3.14159265) / 3) - a1 / 3;
|
||||
return (3);
|
||||
}
|
||||
|
||||
/* One real root */
|
||||
else {
|
||||
double_t e = pow(sqrt(-d) + fabs(R), 1. / 3.);
|
||||
if (R > 0)
|
||||
e = -e;
|
||||
x[0] = (e + Q / e) - a1 / 3.;
|
||||
return (1);
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user