Changes to black compression and saturation controls. Black compression from 0-50 acts the same as 0-100 on the previous version, compressing dark tones without crushing blacks. 50-100 then starts crushing blacks until by 100 on the slider, all tones up to the set black point are sent to zero. In the new saturation control, negative values of the slider set a linear curve rather than an inverted S curve, and smoothly decrease saturation to zero across the board.

This commit is contained in:
Emil Martinec
2010-10-26 22:59:18 -05:00
commit 926056c2c2
620 changed files with 130476 additions and 0 deletions

View File

@@ -0,0 +1,285 @@
/*
* This file is part of RawTherapee.
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*
* © 2010 Emil Martinec <ejmartin@uchicago.edu>
*
*/
//#include <rtengine.h>
#include <cstddef>
#include <math.h>
#include <curves.h>
#include <labimage.h>
#include <improcfun.h>
#include <rawimagesource.h>
#ifdef _OPENMP
#include <omp.h>
#endif
#define SQR(x) ((x)*(x))
#define CLIPTO(a,b,c) ((a)>(b)?((a)<(c)?(a):(c)):(b))
#define CLIPC(a) ((a)>-32000?((a)<32000?(a):32000):-32000)
#define CLIP(a) (CLIPTO(a,0,65535))
#define DIRWT(i1,j1,i,j) ( domker[(i1-i)/scale+halfwin][(j1-j)/scale+halfwin] * rangefn[abs((int)data_fine[i1][j1]-data_fine[i][j])] )
namespace rtengine {
static const int maxlevel = 4;
static const float noise = 2000;
static const float thresh = 1000;
//sequence of scales
static const int scales[8] = {1,2,4,8,16,32,64,128};
//sequence of scales
//static const int scales[8] = {1,2,3,6,15,21,28,36};
//scale is spacing of directional averaging weights
void ImProcFunctions :: dirpyr_equalizer(unsigned short ** src, unsigned short ** dst, int srcwidth, int srcheight, const double * mult )
{
int lastlevel=maxlevel;
while (fabs(mult[lastlevel-1]-1)<0.001 && lastlevel>0) {
lastlevel--;
//printf("last level to process %d \n",lastlevel);
}
if (lastlevel==0) return;
/*float gam = 2.0;//MIN(3.0, 0.1*fabs(c[4])/3.0+0.001);
float gamthresh = 0.03;
float gamslope = exp(log((double)gamthresh)/gam)/gamthresh;
unsigned short gamcurve[65536];
for (int i=0; i<65536; i++) {
int g = (int)(CurveFactory::gamma((double)i/65535.0, gam, gamthresh, gamslope, 1.0, 0.0) * 65535.0);
//if (i<500) printf("%d %d \n",i,g);
gamcurve[i] = CLIP(g);
}
//#pragma omp parallel for if (multiThread)
for (int i=0; i<src->H; i++) {
for (int j=0; j<src->W; j++) {
src[i][j] = gamcurve[src[i][j] ];
}
}*/
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
int * rangefn = new int [0x20000];
int intfactor = 1024;//16384;
//set up range functions
for (int i=0; i<0x10000; i++) {
rangefn[i] = (int)((thresh/((double)(i) + thresh))*intfactor);
//rangefn[i] = (int)(exp(-(double)abs(i)/(5*thresh))*(thresh/((double)(i) + thresh))*intfactor);
//rangefn[i] = (int)((thresh*thresh/((double)(i)*(double)(i) + thresh*thresh))*intfactor);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
int level;
int ** buffer;
unsigned short ** dirpyrlo[maxlevel];
buffer = allocArray<int> (srcwidth, srcheight);
for (int i=0; i<srcheight; i++)
for (int j=0; j<srcwidth; j++) {
buffer[i][j]=0;
}
level = 0;
int scale = scales[level];
//int thresh = 100 * mult[5];
dirpyrlo[0] = allocArray<unsigned short> (srcwidth, srcheight);
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, rangefn, 0, scale, mult );
level = 1;
while(level < lastlevel)
{
scale = scales[level];
dirpyrlo[level] = allocArray<unsigned short>(srcwidth, srcheight);
dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, rangefn, level, scale, mult );
level ++;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//initiate buffer for final image
for(int i = 0; i < srcheight; i++)
for(int j = 0; j < srcwidth; j++) {
//copy pixels
buffer[i][j] = dirpyrlo[lastlevel-1][i][j];
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for(int level = lastlevel - 1; level > 0; level--)
{
idirpyr_eq_channel(dirpyrlo[level], dirpyrlo[level-1], buffer, srcwidth, srcheight, level, mult );
}
scale = scales[0];
idirpyr_eq_channel(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, mult );
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/*float igam = 1/gam;
float igamthresh = gamthresh*gamslope;
float igamslope = 1/gamslope;
for (int i=0; i<65536; i++) {
int g = (int)(CurveFactory::gamma((float)i/65535.0, igam, igamthresh, igamslope, 1.0, 0.0) * 65535.0);
gamcurve[i] = CLIP(g);
}*/
for (int i=0; i<srcheight; i++)
for (int j=0; j<srcwidth; j++) {
dst[i][j] = CLIP((int)( buffer[i][j] ));
//dst[i][j] = gamcurve[ dst->L[i][j] ];
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for(int i = 0; i < lastlevel; i++)
{
freeArray<unsigned short>(dirpyrlo[i], srcheight);
}
freeArray<int>(buffer, srcheight);
delete [] rangefn;
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}
void ImProcFunctions::dirpyr_channel(unsigned short ** data_fine, unsigned short ** data_coarse, int width, int height, int * rangefn, int level, int scale, const double * mult )
{
//scale is spacing of directional averaging weights
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// calculate weights, compute directionally weighted average
int halfwin=2;
int domker[5][5] = {{1,1,1,1,1},{1,2,2,2,1},{1,2,2,2,1},{1,2,2,2,1},{1,1,1,1,1}};
//generate domain kernel
if (level<2) {
halfwin = 1;
domker[1][1]=domker[1][2]=domker[2][1]=domker[2][2]=1;
}
int scalewin = halfwin*scale;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++)
{
float val=0;
float norm=0;
for(int inbr=MAX(0,i-scalewin); inbr<=MIN(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=MAX(0,j-scalewin); jnbr<=MIN(width-1,j+scalewin); jnbr+=scale) {
float dirwt = DIRWT(inbr, jnbr, i, j);
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j]=val/norm;//low pass filter
}
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void ImProcFunctions::idirpyr_eq_channel(unsigned short ** data_coarse, unsigned short ** data_fine, int ** buffer, int width, int height, int level, const double * mult )
{
float noisehi = 1.33*noise*mult[4]/pow(3,level), noiselo = 0.66*noise*mult[4]/pow(3,level);
float * irangefn = new float [0x20000];
for (int i=0; i<0x20000; i++) {
if (abs(i-0x10000)>noisehi || mult[level]<1.0) {
irangefn[i] = mult[level] ;
} else {
if (abs(i-0x10000)<noiselo) {
irangefn[i] = 1.0 ;
} else {
irangefn[i] = 1.0 + (mult[level]-1) * (noisehi-abs(i-0x10000))/(noisehi-noiselo+0.01) ;
}
}
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++) {
int hipass = (data_fine[i][j]-data_coarse[i][j]);
buffer[i][j] += irangefn[hipass+0x10000] * hipass ;
}
}
delete [] irangefn;
}
#undef DIRWT_L
#undef DIRWT_AB
#undef NRWT_L
#undef NRWT_AB
}