Changes to black compression and saturation controls. Black compression from 0-50 acts the same as 0-100 on the previous version, compressing dark tones without crushing blacks. 50-100 then starts crushing blacks until by 100 on the slider, all tones up to the set black point are sent to zero. In the new saturation control, negative values of the slider set a linear curve rather than an inverted S curve, and smoothly decrease saturation to zero across the board.
This commit is contained in:
268
rtengine/fast_demo.cc
Normal file
268
rtengine/fast_demo.cc
Normal file
@@ -0,0 +1,268 @@
|
||||
////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Fast demosaicing algorythm
|
||||
//
|
||||
// copyright (c) 2008-2010 Emil Martinec <ejmartin@uchicago.edu>
|
||||
//
|
||||
//
|
||||
// code dated: August 26, 2010
|
||||
//
|
||||
// fast_demo.cc is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
//
|
||||
////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
|
||||
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
|
||||
void RawImageSource::fast_demo() {
|
||||
int winx=0, winy=0;
|
||||
int winw=W, winh=H;
|
||||
|
||||
if (plistener) {
|
||||
plistener->setProgressStr ("Fast demosaicing...");
|
||||
plistener->setProgress (0.0);
|
||||
}
|
||||
float progress = 0.0;
|
||||
|
||||
//allocate output arrays
|
||||
|
||||
red = new unsigned short*[H];
|
||||
for (int i=0; i<H; i++) {
|
||||
red[i] = new unsigned short[W];
|
||||
}
|
||||
green = new unsigned short* [H];
|
||||
for (int i=0; i<H; i++) {
|
||||
green[i] = new unsigned short[W];
|
||||
}
|
||||
blue = new unsigned short*[H];
|
||||
for (int i=0; i<H; i++) {
|
||||
blue[i] = new unsigned short[W];
|
||||
}
|
||||
|
||||
|
||||
#define bord 4
|
||||
|
||||
int clip_pt = 4*65535*ri->defgain;
|
||||
|
||||
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
//first, interpolate borders using bilinear
|
||||
for (int i=0; i<H; i++) {
|
||||
for (int j=0; j<bord; j++) {//first few columns
|
||||
unsigned int sum[6];
|
||||
for (int c=0; c<6; c++) sum[c]=0;
|
||||
for (int i1=i-1; i1<i+2; i1++)
|
||||
for (int j1=j-1; j1<j+2; j1++) {
|
||||
if ((i1 > -1) && (i1 < H) && (j1 > -1)) {
|
||||
int c = FC(i1,j1);
|
||||
sum[c] += ri->data[i1][j1];
|
||||
sum[c+3]++;
|
||||
}
|
||||
}
|
||||
int c=FC(i,j);
|
||||
if (c==1) {
|
||||
red[i][j]=sum[0]/sum[3];
|
||||
green[i][j]=ri->data[i][j];
|
||||
blue[i][j]=sum[2]/sum[5];
|
||||
} else {
|
||||
green[i][j]=sum[1]/sum[4];
|
||||
if (c==0) {
|
||||
red[i][j]=ri->data[i][j];
|
||||
blue[i][j]=sum[2]/sum[5];
|
||||
} else {
|
||||
red[i][j]=sum[0]/sum[3];
|
||||
blue[i][j]=ri->data[i][j];
|
||||
}
|
||||
}
|
||||
}//j
|
||||
|
||||
for (int j=W-bord; j<W; j++) {//last few columns
|
||||
unsigned int sum[6];
|
||||
for (int c=0; c<6; c++) sum[c]=0;
|
||||
for (int i1=i-1; i1<i+2; i1++)
|
||||
for (int j1=j-1; j1<j+2; j1++) {
|
||||
if ((i1 > -1) && (i1 < H ) && (j1 < W)) {
|
||||
int c = FC(i1,j1);
|
||||
sum[c] += ri->data[i1][j1];
|
||||
sum[c+3]++;
|
||||
}
|
||||
}
|
||||
int c=FC(i,j);
|
||||
if (c==1) {
|
||||
red[i][j]=sum[0]/sum[3];
|
||||
green[i][j]=ri->data[i][j];
|
||||
blue[i][j]=sum[2]/sum[5];
|
||||
} else {
|
||||
green[i][j]=sum[1]/sum[4];
|
||||
if (c==0) {
|
||||
red[i][j]=ri->data[i][j];
|
||||
blue[i][j]=sum[2]/sum[5];
|
||||
} else {
|
||||
red[i][j]=sum[0]/sum[3];
|
||||
blue[i][j]=ri->data[i][j];
|
||||
}
|
||||
}
|
||||
}//j
|
||||
}//i
|
||||
|
||||
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
for (int j=bord; j<W-bord; j++) {
|
||||
for (int i=0; i<bord; i++) {//first few rows
|
||||
unsigned int sum[6];
|
||||
for (int c=0; c<6; c++) sum[c]=0;
|
||||
for (int i1=i-1; i1<i+2; i1++)
|
||||
for (int j1=j-1; j1<j+2; j1++) {
|
||||
if ((j1 > -1) && (j1 < W) && (i1 > -1)) {
|
||||
int c = FC(i1,j1);
|
||||
sum[c] += ri->data[i1][j1];
|
||||
sum[c+3]++;
|
||||
}
|
||||
}
|
||||
int c=FC(i,j);
|
||||
if (c==1) {
|
||||
red[i][j]=sum[0]/sum[3];
|
||||
green[i][j]=ri->data[i][j];
|
||||
blue[i][j]=sum[2]/sum[5];
|
||||
} else {
|
||||
green[i][j]=sum[1]/sum[4];
|
||||
if (c==0) {
|
||||
red[i][j]=ri->data[i][j];
|
||||
blue[i][j]=sum[2]/sum[5];
|
||||
} else {
|
||||
red[i][j]=sum[0]/sum[3];
|
||||
blue[i][j]=ri->data[i][j];
|
||||
}
|
||||
}
|
||||
}//i
|
||||
|
||||
for (int i=H-bord; i<H; i++) {//last few rows
|
||||
unsigned int sum[6];
|
||||
for (int c=0; c<6; c++) sum[c]=0;
|
||||
for (int i1=i-1; i1<i+2; i1++)
|
||||
for (int j1=j-1; j1<j+2; j1++) {
|
||||
if ((j1 > -1) && (j1 < W) && (i1 < H)) {
|
||||
int c = FC(i1,j1);
|
||||
sum[c] += ri->data[i1][j1];
|
||||
sum[c+3]++;
|
||||
}
|
||||
}
|
||||
int c=FC(i,j);
|
||||
if (c==1) {
|
||||
red[i][j]=sum[0]/sum[3];
|
||||
green[i][j]=ri->data[i][j];
|
||||
blue[i][j]=sum[2]/sum[5];
|
||||
} else {
|
||||
green[i][j]=sum[1]/sum[4];
|
||||
if (c==0) {
|
||||
red[i][j]=ri->data[i][j];
|
||||
blue[i][j]=sum[2]/sum[5];
|
||||
} else {
|
||||
red[i][j]=sum[0]/sum[3];
|
||||
blue[i][j]=ri->data[i][j];
|
||||
}
|
||||
}
|
||||
}//i
|
||||
}//j
|
||||
|
||||
if(plistener) plistener->setProgress(0.05);
|
||||
|
||||
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
float * dirwt = new float [0x20000];
|
||||
|
||||
//set up directional weight function
|
||||
for (int i=0; i<0x10000; i++)
|
||||
dirwt[i] = 1.0/SQR(1.0+i);
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
|
||||
#pragma omp for
|
||||
// interpolate G using gradient weights
|
||||
for (int i=bord; i< H-bord; i++) {
|
||||
float wtu, wtd, wtl, wtr;
|
||||
for (int j=bord; j < W-bord; j++) {
|
||||
|
||||
if (FC(i,j)==1) {
|
||||
green[i][j] = ri->data[i][j];
|
||||
//red[i][j] = green[i][j];
|
||||
//blue[i][j] = green[i][j];
|
||||
|
||||
} else {
|
||||
//compute directional weights using image gradients
|
||||
wtu=dirwt[(abs(ri->data[i+1][j]-ri->data[i-1][j])+abs(ri->data[i][j]-ri->data[i-2][j])+abs(ri->data[i-1][j]-ri->data[i-3][j])) >>4];
|
||||
wtd=dirwt[(abs(ri->data[i-1][j]-ri->data[i+1][j])+abs(ri->data[i][j]-ri->data[i+2][j])+abs(ri->data[i+1][j]-ri->data[i+3][j])) >>4];
|
||||
wtl=dirwt[(abs(ri->data[i][j+1]-ri->data[i][j-1])+abs(ri->data[i][j]-ri->data[i][j-2])+abs(ri->data[i][j-1]-ri->data[i][j-3])) >>4];
|
||||
wtr=dirwt[(abs(ri->data[i][j-1]-ri->data[i][j+1])+abs(ri->data[i][j]-ri->data[i][j+2])+abs(ri->data[i][j+1]-ri->data[i][j+3])) >>4];
|
||||
|
||||
//store in rgb array the interpolated G value at R/B grid points using directional weighted average
|
||||
green[i][j]=(int)((wtu*ri->data[i-1][j]+wtd*ri->data[i+1][j]+wtl*ri->data[i][j-1]+wtr*ri->data[i][j+1])/(wtu+wtd+wtl+wtr));
|
||||
//red[i][j] = green[i][j];
|
||||
//blue[i][j] = green[i][j];
|
||||
|
||||
}
|
||||
}
|
||||
//progress+=(double)0.33/(H);
|
||||
//if(plistener) plistener->setProgress(progress);
|
||||
}
|
||||
if(plistener) plistener->setProgress(0.4);
|
||||
|
||||
|
||||
#pragma omp for
|
||||
for (int i=bord; i< H-bord; i++) {
|
||||
for (int j=bord+(FC(i,2)&1); j < W-bord; j+=2) {
|
||||
|
||||
int c=FC(i,j);
|
||||
//interpolate B/R colors at R/B sites
|
||||
|
||||
if (c==0) {//R site
|
||||
red[i][j] = ri->data[i][j];
|
||||
blue[i][j] = CLIP((int)(green[i][j] - 0.25*((green[i-1][j-1]+green[i-1][j+1]+green[i+1][j+1]+green[i+1][j-1]) - \
|
||||
MIN(clip_pt,ri->data[i-1][j-1]+ri->data[i-1][j+1]+ri->data[i+1][j+1]+ri->data[i+1][j-1]))));
|
||||
} else {//B site
|
||||
red[i][j] = CLIP((int)(green[i][j] - 0.25*((green[i-1][j-1]+green[i-1][j+1]+green[i+1][j+1]+green[i+1][j-1]) - \
|
||||
MIN(clip_pt,ri->data[i-1][j-1]+ri->data[i-1][j+1]+ri->data[i+1][j+1]+ri->data[i+1][j-1]))));
|
||||
blue[i][j] = ri->data[i][j];
|
||||
}
|
||||
}
|
||||
//progress+=(double)0.33/(H);
|
||||
//if(plistener) plistener->setProgress(progress);
|
||||
}
|
||||
if(plistener) plistener->setProgress(0.7);
|
||||
|
||||
#pragma omp barrier
|
||||
|
||||
#pragma omp for
|
||||
|
||||
// interpolate R/B using color differences
|
||||
for (int i=bord; i< H-bord; i++) {
|
||||
for (int j=bord+1-(FC(i,2)&1); j < W-bord; j+=2) {
|
||||
|
||||
//interpolate R and B colors at G sites
|
||||
red[i][j] = CLIP((int)(green[i][j] - 0.25*((green[i-1][j]-red[i-1][j])+(green[i+1][j]-red[i+1][j])+ \
|
||||
(green[i][j-1]-red[i][j-1])+(green[i][j+1]-red[i][j+1]))));
|
||||
blue[i][j] = CLIP((int)(green[i][j] - 0.25*((green[i-1][j]-blue[i-1][j])+(green[i+1][j]-blue[i+1][j])+ \
|
||||
(green[i][j-1]-blue[i][j-1])+(green[i][j+1]-blue[i][j+1]))));
|
||||
}
|
||||
progress+=(double)0.33/(H);
|
||||
//if(plistener) plistener->setProgress(progress);
|
||||
}
|
||||
if(plistener) plistener->setProgress(0.99);
|
||||
}
|
||||
|
||||
#undef bord
|
||||
|
||||
}//namespace
|
Reference in New Issue
Block a user