Changes to black compression and saturation controls. Black compression from 0-50 acts the same as 0-100 on the previous version, compressing dark tones without crushing blacks. 50-100 then starts crushing blacks until by 100 on the slider, all tones up to the set black point are sent to zero. In the new saturation control, negative values of the slider set a linear curve rather than an inverted S curve, and smoothly decrease saturation to zero across the board.

This commit is contained in:
Emil Martinec
2010-10-26 22:59:18 -05:00
commit 926056c2c2
620 changed files with 130476 additions and 0 deletions

351
rtengine/hlmultipliers.cc Normal file
View File

@@ -0,0 +1,351 @@
/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include <limits.h>
#include <stdio.h>
#include <rawimagesource.h>
#include <rawimagesource_i.h>
#define MAXVAL 0xffff
#define CLIP(a) ((a)>0?((a)<MAXVAL?(a):MAXVAL):0)
namespace rtengine {
// computes highlight recovery multipliers. Needs a possibly downscaled image where
// the highlights are indicated by INT_MAX
void hlmultipliers (int** rec[3], int max[3], int dh, int dw) {
// STEP I. recover color with two-color information
int phase = -1;
int k=0;
for (k=0; k<1000; k++) {
int changed = 0;
for (int i=1; i<dh-1; i++)
for (int j=1; j<dw-1; j++) {
int co, c1, c2;
// if (phase==2)
// phase++;
// if (phase>0)// && phase!=4)
// continue;
if (phase==-1 || phase==0 || phase==2) {
if (rec[0][i][j] == INT_MAX && rec[1][i][j] != INT_MAX && rec[1][i][j] >=0 && rec[2][i][j] != INT_MAX && rec[2][i][j] >=0) {
co = 0;
c1 = 1;
c2 = 2;
}
else if (rec[1][i][j] == INT_MAX && rec[0][i][j] != INT_MAX && rec[0][i][j] >=0 && rec[2][i][j] != INT_MAX && rec[2][i][j] >=0) {
co = 1;
c1 = 0;
c2 = 2;
}
else if (rec[2][i][j] == INT_MAX && rec[1][i][j] != INT_MAX && rec[1][i][j] >=0 && rec[0][i][j] != INT_MAX && rec[0][i][j] >=0) {
co = 2;
c1 = 1;
c2 = 0;
}
else
continue;
double ratio[2] = {0.0, 0.0};
int count = 0;
double rato = (double)rec[c1][i][j] / rec[c2][i][j];
double arato = 0.0;
if (phase==2) {
for (int x=-1; x<=1; x++)
for (int y=-1; y<=1; y++) {
// average m/c color ratios in the surrounding pixels
if (rec[co][i+x][j+y]>=0 && rec[co][i+x][j+y]!=INT_MAX && rec[c1][i+x][j+y]>=0 && rec[c1][i+x][j+y]!=INT_MAX && rec[c2][i+x][j+y]>0 && rec[c2][i+x][j+y]!=INT_MAX) {
double ratt = (double)rec[c1][i+x][j+y] / rec[c2][i+x][j+y];
if (ratt > rato*1.2 || ratt < rato / 1.2 || rec[co][i+x][j+y]<max[co]*1/2)
continue;
ratio[0] += (double)rec[c1][i+x][j+y] / rec[co][i+x][j+y];
ratio[1] += (double)rec[c2][i+x][j+y] / rec[co][i+x][j+y];
count++;
}
}
}
else if (phase==-1) {
for (int x=-1; x<=1; x++)
for (int y=-1; y<=1; y++) {
// average m/c color ratios in the surrounding pixels
if (rec[co][i+x][j+y]>=0 && rec[co][i+x][j+y]!=INT_MAX && rec[c1][i+x][j+y]>=0 && rec[c1][i+x][j+y]!=INT_MAX && rec[c2][i+x][j+y]>0 && rec[c2][i+x][j+y]!=INT_MAX) {
double ratt = (double)rec[c1][i+x][j+y] / rec[c2][i+x][j+y];
if (ratt > rato*1.05 || ratt < rato / 1.05 || rec[co][i+x][j+y]<max[co]*4/5)
continue;
arato += ratt;
ratio[0] += (double)rec[c1][i+x][j+y] / rec[co][i+x][j+y];
ratio[1] += (double)rec[c2][i+x][j+y] / rec[co][i+x][j+y];
count++;
}
}
}
else {
for (int x=-1; x<=1; x++)
for (int y=-1; y<=1; y++) {
// average m/c color ratios in the surrounding pixels
if (rec[co][i+x][j+y]>=0 && rec[co][i+x][j+y]!=INT_MAX && rec[c1][i+x][j+y]>=0 && rec[c1][i+x][j+y]!=INT_MAX && rec[c2][i+x][j+y]>0 && rec[c2][i+x][j+y]!=INT_MAX) {
double ratt = (double)rec[c1][i+x][j+y] / rec[c2][i+x][j+y];
if (ratt > rato*1.1 || ratt < rato / 1.1 || rec[co][i+x][j+y]<max[co]*3/4)
continue;
arato += ratt;
ratio[0] += (double)rec[c1][i+x][j+y] / rec[co][i+x][j+y];
ratio[1] += (double)rec[c2][i+x][j+y] / rec[co][i+x][j+y];
count++;
}
}
}
// compute new pixel values from the surrounding color ratios
if (count>1) { //(phase==0 && count>1) || (phase==2 && count>1)) {
rec[co][i][j] = -(int)((rec[c1][i][j] / ratio[0] * count + rec[c2][i][j] / ratio[1] * count) / 2);
changed++;
}
}
else if (phase==1 || phase==3) {
if (rec[0][i][j] == INT_MAX && rec[1][i][j] == INT_MAX && rec[2][i][j] != INT_MAX && rec[2][i][j] >=0) {
co = 2;
c1 = 0;
c2 = 1;
}
else if (rec[0][i][j] == INT_MAX && rec[2][i][j] == INT_MAX && rec[1][i][j] != INT_MAX && rec[1][i][j] >=0) {
co = 1;
c1 = 0;
c2 = 2;
}
else if (rec[1][i][j] == INT_MAX && rec[2][i][j] == INT_MAX && rec[0][i][j] != INT_MAX && rec[0][i][j] >=0) {
co = 0;
c1 = 1;
c2 = 2;
}
else
continue;
double ratio[2] = {0.0, 0.0};
int count[2] = {0, 0};
int ix = 0;
for (int x=-1; x<=1; x++)
for (int y=-1; y<=1; y++) {
// average m/c color ratios in the surrounding pixels
if (rec[co][i+x][j+y]>=0 && rec[co][i+x][j+y]!=INT_MAX && rec[c1][i+x][j+y]>0 && rec[c1][i+x][j+y]!=INT_MAX) {
if ((phase==1 && rec[c1][i+x][j+y]<max[c1]*3/4) || (phase==3 && rec[c1][i+x][j+y]<max[c1]*1/2))
continue;
ratio[0] += (double)rec[co][i+x][j+y] / rec[c1][i+x][j+y];
count[0] ++;
}
if (rec[co][i+x][j+y]>=0 && rec[co][i+x][j+y]!=INT_MAX && rec[c2][i+x][j+y]>0 && rec[c2][i+x][j+y]!=INT_MAX) {
if ((phase==1 && rec[c2][i+x][j+y]<max[c2]*3/4) || (phase==3 && rec[c2][i+x][j+y]<max[c2]*1/2))
// if (/*phase!=3 && */rec[c2][i+x][j+y]<max[c2]*3/4)
continue;
ratio[1] += (double)rec[co][i+x][j+y] / rec[c2][i+x][j+y];
count[1] ++;
}
}
// compute new pixel values from the surrounding color ratios
int nc = 0;
if ((phase==1 && count[0]>2) || (phase==3 && count[0]>1)) {
rec[c1][i][j] = - (int) ((double)rec[co][i][j] / ratio[0] * count[0]);
changed++;
}
if ((phase==1 && count[1]>2) || (phase==3 && count[1]>1)) {
rec[c2][i][j] = - (int) ((double)rec[co][i][j] / ratio[1] * count[1]);
changed++;
}
}
else {
int val = 0;
int num = 0;
for (int c=0; c<3; c++)
if (rec[c][i][j]!=INT_MAX) {
val += rec[c][i][j];
num++;
}
if (num<3 && num>0) {
for (int c=0; c<3; c++)
rec[c][i][j] = val / num;
}
}
}
bool change = false;
for (int i=1; i<dh-1; i++)
for (int j=1; j<dw-1; j++)
for (int c=0; c<3; c++) {
if (rec[c][i][j]<0) {
rec[c][i][j] = -rec[c][i][j];
change = true;
}
}
if (!change && phase<4) {
phase++;
printf ("phc %d: %d\n", phase, k);
}
else if (!change)
break;
if (k%20 == 0)
printf ("changed %d\n", changed);
}
printf ("Highlight recovery ends in %d iterations\n", k);
int maxval = MAX(MAX(max[0], max[1]), max[2]);
for (int i=0; i<dh; i++)
for (int j=0; j<dw; j++)
if (rec[0][i][j]==INT_MAX || rec[1][i][j]==INT_MAX || rec[2][i][j]==INT_MAX) {
rec[0][i][j] = maxval;
rec[1][i][j] = maxval;
rec[2][i][j] = maxval;
}
}
void RawImageSource::HLRecovery_ColorPropagation (unsigned short* red, unsigned short* green, unsigned short* blue, int i, int sx1, int width, int skip) {
int blr = (i+HR_SCALE/2) / HR_SCALE - 1;
if (blr<0 || blr>=H/HR_SCALE-2)
return;
double mr1 = 1.0 - ((double)((i+HR_SCALE/2) % HR_SCALE) / HR_SCALE + 0.5 / HR_SCALE);
int jx = 0;
int maxcol = W/HR_SCALE-2;
for (int j=sx1, jx=0; jx<width; j+=skip, jx++) {
if (needhr[i][j]) {
int blc = (j+HR_SCALE/2) / HR_SCALE - 1;
if (blc<0 || blc>=maxcol)
continue;
double mc1 = 1.0 - ((double)((j+HR_SCALE/2) % HR_SCALE) / HR_SCALE + 0.5 / HR_SCALE);
double mulr = mr1*mc1 * hrmap[0][blr][blc] + mr1*(1.0-mc1) * hrmap[0][blr][blc+1] + (1.0-mr1)*mc1 * hrmap[0][blr+1][blc] + (1.0-mr1)*(1.0-mc1) * hrmap[0][blr+1][blc+1];
double mulg = mr1*mc1 * hrmap[1][blr][blc] + mr1*(1.0-mc1) * hrmap[1][blr][blc+1] + (1.0-mr1)*mc1 * hrmap[1][blr+1][blc] + (1.0-mr1)*(1.0-mc1) * hrmap[1][blr+1][blc+1];
double mulb = mr1*mc1 * hrmap[2][blr][blc] + mr1*(1.0-mc1) * hrmap[2][blr][blc+1] + (1.0-mr1)*mc1 * hrmap[2][blr+1][blc] + (1.0-mr1)*(1.0-mc1) * hrmap[2][blr+1][blc+1];
red[jx] = CLIP(red[jx] * mulr);
green[jx] = CLIP(green[jx] * mulg);
blue[jx] = CLIP(blue[jx] * mulb);
}
}
}
void RawImageSource::updateHLRecoveryMap_ColorPropagation () {
// detect maximal pixel values
unsigned short* red = new unsigned short[W];
unsigned short* blue = new unsigned short[W];
int maxr = 0, maxg = 0, maxb = 0;
for (int i=32; i<H-32; i++) {
interpolate_row_rb (red, blue, green[i-1], green[i], green[i+1], i);
for (int j=32; j<W-32; j++) {
if ((ISRED(ri,i,j) || !ri->filters) && red[j] > maxr) maxr = red[j];
if ((ISGREEN(ri,i,j) || !ri->filters) && green[i][j] > maxg) maxg = green[i][j];
if ((ISBLUE(ri,i,j) || !ri->filters) && blue[j] > maxb) maxb = blue[j];
}
}
delete [] red;
delete [] blue;
maxr = maxr * 19 / 20;
maxg = maxg * 19 / 20;
maxb = maxb * 19 / 20;
max[0] = maxr;
max[1] = maxg;
max[2] = maxb;
// downscale image
int dw = W/HR_SCALE;
int dh = H/HR_SCALE;
Image16* ds = new Image16 (dw, dh);
// overburnt areas
int** rec[3];
for (int i=0; i<3; i++)
rec[i] = allocArray<int> (dw, dh);
unsigned short* reds[HR_SCALE];
unsigned short* blues[HR_SCALE];
for (int i=0; i<HR_SCALE; i++) {
reds[i] = new unsigned short[W];
blues[i] = new unsigned short[W];
}
if (needhr)
freeArray<char>(needhr, H);
needhr = allocArray<char> (W, H);
for (int i=0; i<dh; i++) {
for (int j=0; j<HR_SCALE; j++) {
interpolate_row_rb (reds[j], blues[j], green[HR_SCALE*i+j-1], green[HR_SCALE*i+j], green[HR_SCALE*i+j+1], HR_SCALE*i+j);
for (int k=0; k<W; k++)
if (reds[j][k]>=max[0] || green[HR_SCALE*i+j][k]>=max[1] || blues[j][k]>=max[2])
needhr[HR_SCALE*i+j][k] = 1;
else
needhr[HR_SCALE*i+j][k] = 0;
}
for (int j=0; j<dw; j++) {
int sumr = 0; int cr = 0;
int sumg = 0; int cg = 0;
int sumb = 0; int cb = 0;
for (int x=0; x<HR_SCALE; x++)
for (int y=0; y<HR_SCALE; y++) {
int ix = HR_SCALE*i+x;
int jy = HR_SCALE*j+y;
sumr += reds[x][jy];
if (reds[x][jy] < maxr) cr++;
sumg += green[ix][jy];
if (green[ix][jy] < maxg) cg++;
sumb += blues[x][jy];
if (blues[x][jy] < maxb) cb++;
}
if (cr<HR_SCALE*HR_SCALE) rec[0][i][j] = INT_MAX; else rec[0][i][j] = sumr / HR_SCALE/HR_SCALE;
if (cg<HR_SCALE*HR_SCALE) rec[1][i][j] = INT_MAX; else rec[1][i][j] = sumg / HR_SCALE/HR_SCALE;
if (cb<HR_SCALE*HR_SCALE) rec[2][i][j] = INT_MAX; else rec[2][i][j] = sumb / HR_SCALE/HR_SCALE;
ds->r[i][j] = sumr / HR_SCALE/HR_SCALE;
ds->g[i][j] = sumg / HR_SCALE/HR_SCALE;
ds->b[i][j] = sumb / HR_SCALE/HR_SCALE;
}
}
for (int i=0; i<HR_SCALE; i++) {
delete [] reds[i];
delete [] blues[i];
}
hlmultipliers (rec, max, dh, dw);
if (hrmap[0]!=NULL) {
freeArray<float> (hrmap[0], dh);
freeArray<float> (hrmap[1], dh);
freeArray<float> (hrmap[2], dh);
}
hrmap[0] = allocArray<float> (dw, dh);
hrmap[1] = allocArray<float> (dw, dh);
hrmap[2] = allocArray<float> (dw, dh);
for (int i=0; i<dh; i++)
for (int j=0; j<dw; j++) {
hrmap[0][i][j] = ds->r[i][j]>0 ? (double)rec[0][i][j] / ds->r[i][j] : 1.0;
hrmap[1][i][j] = ds->g[i][j]>0 ? (double)rec[1][i][j] / ds->g[i][j] : 1.0;
hrmap[2][i][j] = ds->b[i][j]>0 ? (double)rec[2][i][j] / ds->b[i][j] : 1.0;
}
delete ds;
freeArray<int> (rec[0], dh);
freeArray<int> (rec[1], dh);
freeArray<int> (rec[2], dh);
}
}