Changes to black compression and saturation controls. Black compression from 0-50 acts the same as 0-100 on the previous version, compressing dark tones without crushing blacks. 50-100 then starts crushing blacks until by 100 on the slider, all tones up to the set black point are sent to zero. In the new saturation control, negative values of the slider set a linear curve rather than an inverted S curve, and smoothly decrease saturation to zero across the board.

This commit is contained in:
Emil Martinec
2010-10-26 22:59:18 -05:00
commit 926056c2c2
620 changed files with 130476 additions and 0 deletions

338
rtengine/rawimagesource_i.h Normal file
View File

@@ -0,0 +1,338 @@
/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef RAWIMAGESOURCE_I_H_INCLUDED
#define RAWIMAGESOURCE_I_H_INCLUDED
#include <rawimagesource.h>
#include <curves.h>
#undef MAXVAL
#undef CLIP
#define MAXVAL 0xffff
#define CLIP(a) ((a)>0?((a)<MAXVAL?(a):MAXVAL):0)
namespace rtengine {
inline void RawImageSource::convert_row_to_YIQ (unsigned short* r, unsigned short* g, unsigned short* b, int* Y, int* I, int* Q, int W) {
for (int j=0; j<W; j++) {
Y[j] = 299 * r[j] + 587 * g[j] + 114 * b[j];
I[j] = 596 * r[j] - 275 * g[j] - 321 * b[j];
Q[j] = 212 * r[j] - 523 * g[j] + 311 * b[j];
}
}
inline void RawImageSource::convert_row_to_RGB (unsigned short* r, unsigned short* g, unsigned short* b, int* Y, int* I, int* Q, int W) {
for (int j=1; j<W-1; j++) {
int ir = Y[j]/1000 + 0.956*I[j]/1000 + 0.621*Q[j]/1000;
int ig = Y[j]/1000 - 0.272*I[j]/1000 - 0.647*Q[j]/1000;
int ib = Y[j]/1000 - 1.105*I[j]/1000 + 1.702*Q[j]/1000;
r[j] = CLIP(ir);
g[j] = CLIP(ig);
b[j] = CLIP(ib);
}
}
inline void RawImageSource::convert_to_cielab_row (unsigned short* ar, unsigned short* ag, unsigned short* ab, short* oL, short* oa, short* ob) {
for (int j=0; j<W; j++) {
double r = ar[j];
double g = ag[j];
double b = ab[j];
double x = lc00 * r + lc01 * g + lc02 * b;
double y = lc10 * r + lc11 * g + lc12 * b;
double z = lc20 * r + lc21 * g + lc22 * b;
if (y>threshold)
oL[j] = 300.0*cache[(int)y];
else
oL[j] = 300.0 * 903.3 * y / CMAXVAL;
oa[j] = 32.0 * 500.0 * ((x>threshold ? cache[(int)x] : 7.787*x/CMAXVAL+16.0/116.0) - (y>threshold ? cache[(int)y] : 7.787*y/CMAXVAL+16.0/116.0));
ob[j] = 32.0 * 200.0 * ((y>threshold ? cache[(int)y] : 7.787*y/CMAXVAL+16.0/116.0) - (z>threshold ? cache[(int)z] : 7.787*z/CMAXVAL+16.0/116.0));
}
}
inline void RawImageSource::interpolate_row_g (unsigned short* agh, unsigned short* agv, int i) {
for (int j=0; j<W; j++) {
if (ISGREEN(ri,i,j)) {
agh[j] = ri->data[i][j];
agv[j] = ri->data[i][j];
}
else {
int gh=0;
int gv=0;
if (j>1 && j<W-2) {
gh = (-ri->data[i][j-2] + 2*ri->data[i][j-1] + 2*ri->data[i][j] + 2*ri->data[i][j+1] -ri->data[i][j+2]) / 4;
int maxgh = MAX(ri->data[i][j-1], ri->data[i][j+1]);
int mingh = MIN(ri->data[i][j-1], ri->data[i][j+1]);
if (gh>maxgh)
gh = maxgh;
else if (gh<mingh)
gh = mingh;
}
else if (j==0)
gh = ri->data[i][1];
else if (j==1)
gh = (ri->data[i][0] + ri->data[i][2]) / 2;
else if (j==W-1)
gh = ri->data[i][W-2];
else if (j==W-2)
gh = (ri->data[i][W-1] + ri->data[i][W-3]) / 2;
if (i>1 && i<H-2) {
gv = (-ri->data[i-2][j] + 2*ri->data[i-1][j] + 2*ri->data[i][j] + 2*ri->data[i+1][j] - ri->data[i+2][j]) / 4;
int maxgv = MAX(ri->data[i-1][j], ri->data[i+1][j]);
int mingv = MIN(ri->data[i-1][j], ri->data[i+1][j]);
if (gv>maxgv)
gv = maxgv;
else if (gv<mingv)
gv = mingv;
}
else if (i==0)
gv = ri->data[1][j];
else if (i==1)
gv = (ri->data[0][j] + ri->data[2][j]) / 2;
else if (i==H-1)
gv = ri->data[H-2][j];
else if (i==H-2)
gv = (ri->data[H-1][j] + ri->data[H-3][j]) / 2;
agh[j] = CLIP(gh);
agv[j] = CLIP(gv);
}
}
}
inline void RawImageSource::interpolate_row_rb (unsigned short* ar, unsigned short* ab, unsigned short* pg, unsigned short* cg, unsigned short* ng, int i) {
if (ISRED(ri,i,0) || ISRED(ri,i,1)) {
// RGRGR or GRGRGR line
for (int j=0; j<W; j++) {
if (ISRED(ri,i,j)) {
// red is simple
ar[j] = ri->data[i][j];
// blue: cross interpolation
int b = 0;
int n = 0;
if (i>0 && j>0) {
b += ri->data[i-1][j-1] - pg[j-1];
n++;
}
if (i>0 && j<W-1) {
b += ri->data[i-1][j+1] - pg[j+1];
n++;
}
if (i<H-1 && j>0) {
b += ri->data[i+1][j-1] - ng[j-1];
n++;
}
if (i<H-1 && j<W-1) {
b += ri->data[i+1][j+1] - ng[j+1];
n++;
}
b = cg[j] + b / n;
ab[j] = CLIP(b);
}
else {
// linear R-G interp. horizontally
int r;
if (j==0)
r = cg[0] + ri->data[i][1] - cg[1];
else if (j==W-1)
r = cg[W-1] + ri->data[i][W-2] - cg[W-2];
else
r = cg[j] + (ri->data[i][j-1] - cg[j-1] + ri->data[i][j+1] - cg[j+1]) / 2;
ar[j] = CLIP(r);
// linear B-G interp. vertically
int b;
if (i==0)
b = ng[j] + ri->data[1][j] - cg[j];
else if (i==H-1)
b = pg[j] + ri->data[H-2][j] - cg[j];
else
b = cg[j] + (ri->data[i-1][j] - pg[j] + ri->data[i+1][j] - ng[j]) / 2;
ab[j] = CLIP(b);
}
}
}
else {
// BGBGB or GBGBGB line
for (int j=0; j<W; j++) {
if (ISBLUE(ri,i,j)) {
// red is simple
ab[j] = ri->data[i][j];
// blue: cross interpolation
int r = 0;
int n = 0;
if (i>0 && j>0) {
r += ri->data[i-1][j-1] - pg[j-1];
n++;
}
if (i>0 && j<W-1) {
r += ri->data[i-1][j+1] - pg[j+1];
n++;
}
if (i<H-1 && j>0) {
r += ri->data[i+1][j-1] - ng[j-1];
n++;
}
if (i<H-1 && j<W-1) {
r += ri->data[i+1][j+1] - ng[j+1];
n++;
}
r = cg[j] + r / n;
ar[j] = CLIP(r);
}
else {
// linear B-G interp. horizontally
int b;
if (j==0)
b = cg[0] + ri->data[i][1] - cg[1];
else if (j==W-1)
b = cg[W-1] + ri->data[i][W-2] - cg[W-2];
else
b = cg[j] + (ri->data[i][j-1] - cg[j-1] + ri->data[i][j+1] - cg[j+1]) / 2;
ab[j] = CLIP(b);
// linear R-G interp. vertically
int r;
if (i==0)
r = ng[j] + ri->data[1][j] - cg[j];
else if (i==H-1)
r = pg[j] + ri->data[H-2][j] - cg[j];
else
r = cg[j] + (ri->data[i-1][j] - pg[j] + ri->data[i+1][j] - ng[j]) / 2;
ar[j] = CLIP(r);
}
}
}
}
inline void RawImageSource::interpolate_row_rb_mul_pp (unsigned short* ar, unsigned short* ab, unsigned short* pg, unsigned short* cg, unsigned short* ng, int i, double r_mul, double g_mul, double b_mul, int x1, int width, int skip) {
if (ISRED(ri,i,0) || ISRED(ri,i,1)) {
// RGRGR or GRGRGR line
for (int j=x1, jx=0; jx<width; j+=skip, jx++) {
if (ISRED(ri,i,j)) {
// red is simple
ar[jx] = CLIP(r_mul * ri->data[i][j]);
// blue: cross interpolation
int b = 0;
int n = 0;
if (i>0 && j>0) {
b += b_mul*ri->data[i-1][j-1] - g_mul*pg[j-1];
n++;
}
if (i>0 && j<W-1) {
b += b_mul*ri->data[i-1][j+1] - g_mul*pg[j+1];
n++;
}
if (i<H-1 && j>0) {
b += b_mul*ri->data[i+1][j-1] - g_mul*ng[j-1];
n++;
}
if (i<H-1 && j<W-1) {
b += b_mul*ri->data[i+1][j+1] - g_mul*ng[j+1];
n++;
}
b = g_mul*cg[j] + b / n;
ab[jx] = CLIP(b);
}
else {
// linear R-G interp. horizontally
int r;
if (j==0)
r = g_mul*cg[0] + r_mul*ri->data[i][1] - g_mul*cg[1];
else if (j==W-1)
r = g_mul*cg[W-1] + r_mul*ri->data[i][W-2] - g_mul*cg[W-2];
else
r = g_mul*cg[j] + (r_mul*ri->data[i][j-1] - g_mul*cg[j-1] + r_mul*ri->data[i][j+1] - g_mul*cg[j+1]) / 2;
ar[jx] = CLIP(r);
// linear B-G interp. vertically
int b;
if (i==0)
b = g_mul*ng[j] + b_mul*ri->data[1][j] - g_mul*cg[j];
else if (i==H-1)
b = g_mul*pg[j] + b_mul*ri->data[H-2][j] - g_mul*cg[j];
else
b = g_mul*cg[j] + (b_mul*ri->data[i-1][j] - g_mul*pg[j] + b_mul*ri->data[i+1][j] - g_mul*ng[j]) / 2;
ab[jx] = CLIP(b);
}
}
}
else {
// BGBGB or GBGBGB line
for (int j=x1, jx=0; jx<width; j+=skip, jx++) {
if (ISBLUE(ri,i,j)) {
// red is simple
ab[jx] = CLIP(b_mul*ri->data[i][j]);
// blue: cross interpolation
int r = 0;
int n = 0;
if (i>0 && j>0) {
r += r_mul*ri->data[i-1][j-1] - g_mul*pg[j-1];
n++;
}
if (i>0 && j<W-1) {
r += r_mul*ri->data[i-1][j+1] - g_mul*pg[j+1];
n++;
}
if (i<H-1 && j>0) {
r += r_mul*ri->data[i+1][j-1] - g_mul*ng[j-1];
n++;
}
if (i<H-1 && j<W-1) {
r += r_mul*ri->data[i+1][j+1] - g_mul*ng[j+1];
n++;
}
r = g_mul*cg[j] + r / n;
ar[jx] = CLIP(r);
}
else {
// linear B-G interp. horizontally
int b;
if (j==0)
b = g_mul*cg[0] + b_mul*ri->data[i][1] - g_mul*cg[1];
else if (j==W-1)
b = g_mul*cg[W-1] + b_mul*ri->data[i][W-2] - g_mul*cg[W-2];
else
b = g_mul*cg[j] + (b_mul*ri->data[i][j-1] - g_mul*cg[j-1] + b_mul*ri->data[i][j+1] - g_mul*cg[j+1]) / 2;
ab[jx] = CLIP(b);
// linear R-G interp. vertically
int r;
if (i==0)
r = g_mul*ng[j] + r_mul*ri->data[1][j] - g_mul*cg[j];
else if (i==H-1)
r = g_mul*pg[j] + r_mul*ri->data[H-2][j] - g_mul*cg[j];
else
r = g_mul*cg[j] + (r_mul*ri->data[i-1][j] - g_mul*pg[j] + r_mul*ri->data[i+1][j] - g_mul*ng[j]) / 2;
ar[jx] = CLIP(r);
}
}
}
}
};
#endif