Speedup for Vibrance and Contrast by Detail Levels, Issue 2520

This commit is contained in:
Ingo
2014-10-04 12:10:31 +02:00
parent e182daaddc
commit 96d80d1102
5 changed files with 723 additions and 419 deletions

View File

@@ -24,15 +24,11 @@
#include "labimage.h"
#include "color.h"
#include "mytime.h"
//#include "StopWatch.h"
#include "improcfun.h"
#include "rawimagesource.h"
#include "array2D.h"
#include "rt_math.h"
#ifdef __SSE2__
#include "sleefsseavx.c"
#endif
#include "opthelper.h"
#ifdef _OPENMP
#include <omp.h>
#endif
@@ -46,20 +42,16 @@ namespace rtengine {
static const int maxlevel = 5;
static const float noise = 2000;
static const float thresh = 1000;
//sequence of scales
static const int scales[8] = {1,2,4,8,16,32,64,128};
static const int scales[5] = {1,2,4,8,16};
extern const Settings* settings;
//sequence of scales
void ImProcFunctions :: dirpyr_equalizer(float ** src, float ** dst, int srcwidth, int srcheight, float ** l_a, float ** l_b, float ** dest_a, float ** dest_b,const double * mult, const double dirpyrThreshold, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r, int choice, int scaleprev)
SSEFUNCTION void ImProcFunctions :: dirpyr_equalizer(float ** src, float ** dst, int srcwidth, int srcheight, float ** l_a, float ** l_b, float ** dest_a, float ** dest_b,const double * mult, const double dirpyrThreshold, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r, int choice, int scaleprev)
{
// StopWatch Stop1("Dirpyr equalizer");
int lastlevel=maxlevel;
if(settings->verbose) printf("Dirpyr scaleprev=%i\n",scaleprev);
float atten123=(float) settings->level123_cbdl;
@@ -69,6 +61,9 @@ namespace rtengine {
if(atten0 > 40.f) atten123=40.f;
if(atten0 < 0.f) atten0=0.f;
if((t_r-t_l)<0.55f)
t_l = t_r + 0.55f;//avoid too small range
while (lastlevel>0 && fabs(mult[lastlevel-1]-1)<0.001) {
lastlevel--;
@@ -97,7 +92,7 @@ namespace rtengine {
if(scale < 1) scale=1;
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale, l_a, l_b, false );
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale);
level = 1;
@@ -107,48 +102,103 @@ namespace rtengine {
scale = (int)(scales[level])/scaleprev;
if(scale < 1) scale=1;
dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, level, scale, l_a, l_b, false );
dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, level, scale);
level ++;
}
float **tmpHue,**tmpChr;
if(skinprot != 0.f) {
// precalculate hue and chroma, use SSE, if available
// by precalculating these values we can greatly reduce the number of calculations in idirpyr_eq_channel()
// but we need two additional buffers for this preprocessing
tmpHue = new float*[srcheight];
for (int i=0; i<srcheight; i++) {
tmpHue[i] = new float[srcwidth];
}
#ifdef __SSE2__
#pragma omp parallel for
for(int i=0;i<srcheight;i++) {
int j;
for(j=0;j<srcwidth-3;j+=4) {
_mm_storeu_ps(&tmpHue[i][j],xatan2f(LVFU(l_b[i][j]),LVFU(l_a[i][j])));
}
for(;j<srcwidth;j++) {
tmpHue[i][j] = xatan2f(l_b[i][j],l_a[i][j]);
}
}
#else
#pragma omp parallel for
for(int i=0;i<srcheight;i++) {
for(int j=0;j<srcwidth;j++) {
tmpHue[i][j] = xatan2f(l_b[i][j],l_a[i][j]);
}
}
#endif
tmpChr = new float*[srcheight];
for (int i=0; i<srcheight; i++) {
tmpChr[i] = new float[srcwidth];
}
#ifdef __SSE2__
#pragma omp parallel
{
__m128 div = _mm_set1_ps(327.68f);
#pragma omp for
for(int i=0;i<srcheight;i++) {
int j;
for(j=0;j<srcwidth-3;j+=4) {
_mm_storeu_ps(&tmpChr[i][j], _mm_sqrt_ps(SQRV(LVFU(l_b[i][j]))+SQRV(LVFU(l_a[i][j])))/div);
}
for(;j<srcwidth;j++) {
tmpChr[i][j] = sqrtf(SQR((l_b[i][j]))+SQR((l_a[i][j])))/327.68f;
}
}
}
#else
#pragma omp parallel for
for(int i=0;i<srcheight;i++) {
for(int j=0;j<srcwidth;j++) {
tmpChr[i][j] = sqrtf(SQR((l_b[i][j]))+SQR((l_a[i][j])))/327.68f;
}
}
#endif
}
// with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory
float ** buffer = dirpyrlo[lastlevel-1];
for(int level = lastlevel - 1; level > 0; level--)
{
idirpyr_eq_channel(dirpyrlo[level], dirpyrlo[level-1], buffer, srcwidth, srcheight, level, multi, dirpyrThreshold, l_a, l_b, false, skinprot, gamutlab, b_l,t_l,t_r,b_r, choice );
idirpyr_eq_channel(dirpyrlo[level], dirpyrlo[level-1], buffer, srcwidth, srcheight, level, multi, dirpyrThreshold, tmpHue, tmpChr, skinprot, gamutlab, b_l,t_l,t_r,b_r, choice );
}
scale = scales[0];
idirpyr_eq_channel(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, multi, dirpyrThreshold, l_a, l_b, false, skinprot, gamutlab, b_l,t_l,t_r,b_r, choice );
idirpyr_eq_channel(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, multi, dirpyrThreshold, tmpHue, tmpChr, skinprot, gamutlab, b_l,t_l,t_r,b_r, choice );
if(skinprot != 0.f) {
for (int i=0; i<srcheight; i++)
delete [] tmpChr[i];
delete [] tmpChr;
for (int i=0; i<srcheight; i++)
delete [] tmpHue[i];
delete [] tmpHue;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#pragma omp parallel for
for (int i=0; i<srcheight; i++)
for (int j=0; j<srcwidth; j++) {
dst[i][j] = CLIP( buffer[i][j] ); // TODO: Really a clip necessary?
dest_a[i][j] = l_a[i][j];
dest_b[i][j] = l_b[i][j];
dst[i][j] = CLIP(buffer[i][j]); // TODO: Really a clip necessary?
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}
void ImProcFunctions :: dirpyr_equalizercam (CieImage *ncie, float ** src, float ** dst, int srcwidth, int srcheight, float ** h_p, float ** C_p, const double * mult, const double dirpyrThreshold, const double skinprot, bool execdir, const bool gamutlab, float b_l, float t_l, float t_r, float b_r, int choice, int scaleprev)
{
// StopWatch Stop1("Dirpyr equalizer CAM");
int lastlevel=maxlevel;
if(settings->verbose) printf("CAM dirpyr scaleprev=%i\n",scaleprev);
float atten123=(float) settings->level123_cbdl;
@@ -159,6 +209,9 @@ namespace rtengine {
if(atten0 > 40.f) atten123=40.f;
if(atten0 < 0.f) atten0=0.f;
if((t_r-t_l)<0.55f)
t_l = t_r + 0.55f;//avoid too small range
while (fabs(mult[lastlevel-1]-1)<0.001 && lastlevel>0) {
lastlevel--;
//printf("last level to process %d \n",lastlevel);
@@ -190,7 +243,7 @@ namespace rtengine {
int scale = (int)(scales[level])/scaleprev;
if(scale < 1) scale=1;
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale, h_p, C_p, true );
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale);
level = 1;
@@ -199,7 +252,7 @@ namespace rtengine {
scale = (int)(scales[level])/scaleprev;
if(scale < 1) scale=1;
dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, level, scale, h_p, C_p, true );
dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, level, scale);
level ++;
}
@@ -210,19 +263,19 @@ namespace rtengine {
for(int level = lastlevel - 1; level > 0; level--)
{
idirpyr_eq_channel(dirpyrlo[level], dirpyrlo[level-1], buffer, srcwidth, srcheight, level, multi, dirpyrThreshold , h_p, C_p, true, skinprot, false, b_l,t_l,t_r,b_r, choice);
idirpyr_eq_channelcam(dirpyrlo[level], dirpyrlo[level-1], buffer, srcwidth, srcheight, level, multi, dirpyrThreshold , h_p, C_p, skinprot, b_l,t_l,t_r);
}
scale = scales[0];
idirpyr_eq_channel(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, multi, dirpyrThreshold, h_p, C_p, true, skinprot, false, b_l,t_l,t_r,b_r, choice);
idirpyr_eq_channelcam(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, multi, dirpyrThreshold, h_p, C_p, skinprot, b_l,t_l,t_r);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if(execdir){
#ifdef _OPENMP
#pragma omp parallel for
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int i=0; i<srcheight; i++)
for (int j=0; j<srcwidth; j++) {
@@ -241,44 +294,36 @@ namespace rtengine {
}
#if defined( __SSE2__ ) && defined( WIN32 )
__attribute__((force_align_arg_pointer)) void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, int width, int height, int level, int scale, float ** l_a_h, float ** l_b_c, bool ciec)
#else
void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, int width, int height, int level, int scale, float ** l_a_h, float ** l_b_c, bool ciec )
#endif
SSEFUNCTION void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, int width, int height, int level, int scale)
{
//scale is spacing of directional averaging weights
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// calculate weights, compute directionally weighted average
int halfwin;
int scalewin;
if(level > 1) {
//generate domain kernel
int domker[5][5] = {{1,1,1,1,1},{1,2,2,2,1},{1,2,2,2,1},{1,2,2,2,1},{1,1,1,1,1}};
halfwin=2;
scalewin = halfwin*scale;
static const int halfwin=2;
const int scalewin = halfwin*scale;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef __SSE2__
__m128 thousandv = _mm_set1_ps( 1000.0f );
__m128 dirwtv, valv, normv;
float domkerv[5][5][4] = {{{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1}}};
__m128 dirwtv, valv, normv, dftemp1v, dftemp2v;
// multiplied each value of domkerv by 1000 to avoid multiplication by 1000 inside the loop
float domkerv[5][5][4] __attribute__ ((aligned (16))) = {{{1000,1000,1000,1000},{1000,1000,1000,1000},{1000,1000,1000,1000},{1000,1000,1000,1000},{1000,1000,1000,1000}},{{1000,1000,1000,1000},{2000,2000,2000,2000},{2000,2000,2000,2000},{2000,2000,2000,2000},{1000,1000,1000,1000}},{{1000,1000,1000,1000},{2000,2000,2000,2000},{2000,2000,2000,2000},{2000,2000,2000,2000},{1000,1000,1000,1000}},{{1000,1000,1000,1000},{2000,2000,2000,2000},{2000,2000,2000,2000},{2000,2000,2000,2000},{1000,1000,1000,1000}},{{1000,1000,1000,1000},{1000,1000,1000,1000},{1000,1000,1000,1000},{1000,1000,1000,1000},{1000,1000,1000,1000}}};
#endif // __SSE2__
int j;
#ifdef _OPENMP
#pragma omp for
#pragma omp for //schedule (dynamic,8)
#endif
for(int i = 0; i < height; i++) {
float dirwt;
for(j = 0; j < scalewin; j++)
{
float val=0;
float norm=0;
for(j = 0; j < scalewin; j++) {
float val=0.f;
float norm=0.f;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=max(0,j-scalewin); jnbr<=j+scalewin; jnbr+=scale) {
@@ -294,11 +339,13 @@ void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, i
{
valv = _mm_setzero_ps();
normv = _mm_setzero_ps();
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwtv = _mm_loadu_ps((float*)&domkerv[(inbr-i)/scale+halfwin][(jnbr-j)/scale+halfwin]) * (thousandv / (vabsf(LVFU(data_fine[inbr][jnbr])-(LVFU(data_fine[i][j]))) + thousandv));
valv += dirwtv*LVFU(data_fine[inbr][jnbr]);
dftemp1v = LVFU(data_fine[i][j]);
for(int inbr=MAX(0,i-scalewin); inbr<=MIN(height-1,i+scalewin); inbr+=scale) {
int indexihlp = (inbr-i)/scale+halfwin;
for (int jnbr=j-scalewin, indexjhlp = 0; jnbr<=j+scalewin; jnbr+=scale,indexjhlp++) {
dftemp2v = LVFU(data_fine[inbr][jnbr]);
dirwtv = _mm_load_ps((float*)&domkerv[indexihlp][indexjhlp]) / (vabsf(dftemp1v-dftemp2v) + thousandv);
valv += dirwtv*dftemp2v;
normv += dirwtv;
}
}
@@ -306,8 +353,8 @@ void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, i
}
for(; j < width-scalewin; j++)
{
float val=0;
float norm=0;
float val=0.f;
float norm=0.f;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
@@ -321,8 +368,8 @@ void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, i
#else
for(; j < width-scalewin; j++)
{
float val=0;
float norm=0;
float val=0.f;
float norm=0.f;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
@@ -336,8 +383,8 @@ void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, i
#endif
for(; j < width; j++)
{
float val=0;
float norm=0;
float val=0.f;
float norm=0.f;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=min(width-1,j+scalewin); jnbr+=scale) {
@@ -351,29 +398,28 @@ void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, i
}
}
} else { // level <=1 means that all values of domker would be 1.0f, so no need for multiplication
halfwin = 1;
scalewin = halfwin*scale;
// const int scalewin = scale;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef __SSE2__
__m128 thousandv = _mm_set1_ps( 1000.0f );
__m128 dirwtv, valv, normv;
__m128 dirwtv, valv, normv, dftemp1v, dftemp2v;
#endif // __SSE2__
int j;
#ifdef _OPENMP
#pragma omp for
#pragma omp for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++) {
float dirwt;
for(j = 0; j < scalewin; j++)
for(j = 0; j < scale; j++)
{
float val=0;
float norm=0;
float val=0.f;
float norm=0.f;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=max(0,j-scalewin); jnbr<=j+scalewin; jnbr+=scale) {
for(int inbr=max(0,i-scale); inbr<=min(height-1,i+scale); inbr+=scale) {
for (int jnbr=max(0,j-scale); jnbr<=j+scale; jnbr+=scale) {
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j]));
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
@@ -382,28 +428,29 @@ void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, i
data_coarse[i][j]=val/norm;//low pass filter
}
#ifdef __SSE2__
for(; j < width-scalewin-3; j+=4)
for(; j < width-scale-3; j+=4)
{
valv = _mm_setzero_ps();
normv = _mm_setzero_ps();
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwtv = thousandv / (vabsf(LVFU(data_fine[inbr][jnbr])-(LVFU(data_fine[i][j]))) + thousandv);
valv += dirwtv*LVFU(data_fine[inbr][jnbr]);
dftemp1v = LVFU(data_fine[i][j]);
for(int inbr=MAX(0,i-scale); inbr<=MIN(height-1,i+scale); inbr+=scale) {
for (int jnbr=j-scale; jnbr<=j+scale; jnbr+=scale) {
dftemp2v = LVFU(data_fine[inbr][jnbr]);
dirwtv = thousandv / (vabsf(dftemp2v-dftemp1v) + thousandv);
valv += dirwtv*dftemp2v;
normv += dirwtv;
}
}
_mm_storeu_ps( &data_coarse[i][j], valv/normv);//low pass filter
}
for(; j < width-scalewin; j++)
for(; j < width-scale; j++)
{
float val=0;
float norm=0;
float val=0.f;
float norm=0.f;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
for(int inbr=max(0,i-scale); inbr<=min(height-1,i+scale); inbr+=scale) {
for (int jnbr=j-scale; jnbr<=j+scale; jnbr+=scale) {
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j]));
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
@@ -412,13 +459,13 @@ void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, i
data_coarse[i][j]=val/norm;//low pass filter
}
#else
for(; j < width-scalewin; j++)
for(; j < width-scale; j++)
{
float val=0;
float norm=0;
float val=0.f;
float norm=0.f;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
for(int inbr=max(0,i-scale); inbr<=min(height-1,i+scale); inbr+=scale) {
for (int jnbr=j-scale; jnbr<=j+scale; jnbr+=scale) {
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j]));
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
@@ -429,11 +476,11 @@ void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, i
#endif
for(; j < width; j++)
{
float val=0;
float norm=0;
float val=0.f;
float norm=0.f;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=min(width-1,j+scalewin); jnbr+=scale) {
for(int inbr=max(0,i-scale); inbr<=min(height-1,i+scale); inbr+=scale) {
for (int jnbr=j-scale; jnbr<=min(width-1,j+scale); jnbr+=scale) {
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j]));
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
@@ -448,81 +495,157 @@ void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, i
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void ImProcFunctions::idirpyr_eq_channel(float ** data_coarse, float ** data_fine, float ** buffer, int width, int height, int level, float mult[5], const double dirpyrThreshold, float ** l_a_h, float ** l_b_c, bool ciec, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r , int choice)
void ImProcFunctions::idirpyr_eq_channel(float ** data_coarse, float ** data_fine, float ** buffer, int width, int height, int level, float mult[5], const double dirpyrThreshold, float ** hue, float ** chrom, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r , int choice)
{
TMatrix wiprof = iccStore->workingSpaceInverseMatrix (params->icm.working);
double wip[3][3] = {
{wiprof[0][0],wiprof[0][1],wiprof[0][2]},
{wiprof[1][0],wiprof[1][1],wiprof[1][2]},
{wiprof[2][0],wiprof[2][1],wiprof[2][2]}
};
bool highlight = params->toneCurve.hrenabled; //Get the value if "highlight reconstruction" is activated
const float skinprotneg = -skinprot;
const float factorHard = (1.f - skinprotneg/100.f);
float noisehi = 1.33f*noise*dirpyrThreshold/expf(level*log(3.0)), noiselo = 0.66f*noise*dirpyrThreshold/expf(level*log(3.0));
float offs;
if(skinprot==0.f)
offs = 0.f;
else
offs = -1.f;
LUTf irangefn (0x20000);
{
const float noisehi = 1.33f*noise*dirpyrThreshold/expf(level*log(3.0)), noiselo = 0.66f*noise*dirpyrThreshold/expf(level*log(3.0));
//printf("level=%i multlev=%f noisehi=%f noiselo=%f skinprot=%f\n",level,mult[level], noisehi, noiselo, skinprot);
LUTf irangefn (0x20000);
for (int i=0; i<0x20000; i++) {
if (abs(i-0x10000)>noisehi || mult[level]<1.0) {
irangefn[i] = mult[level] ;
irangefn[i] = mult[level] + offs;
} else {
if (abs(i-0x10000)<noiselo) {
irangefn[i] = 1.f ;
irangefn[i] = 1.f + offs ;
} else {
irangefn[i] = 1.f + (mult[level]-1.f) * (noisehi-abs(i-0x10000))/(noisehi-noiselo+0.01f) ;
irangefn[i] = 1.f + offs + (mult[level]-1.f) * (noisehi-abs(i-0x10000))/(noisehi-noiselo+0.01f) ;
}
}
}
}
if(skinprot==0.f)
#ifdef _OPENMP
#pragma omp parallel for
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++) {
float hipass = (data_fine[i][j]-data_coarse[i][j]);
buffer[i][j] += irangefn[hipass+0x10000] * hipass;
}
}
else if(skinprot > 0.f)
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++) {
float scale=1.f;
float hipass = (data_fine[i][j]-data_coarse[i][j]);
if(ciec) {//Ciecam
if(skinprot >= 0.) {
Color::SkinSatcdbl ((data_fine[i][j])/327.68f, l_a_h[i][j] ,l_b_c[i][j], skinprot, scale, ciec, true, b_l, t_l, t_r, b_r, choice);
buffer[i][j] += (1.f +(irangefn[hipass+0x10000]-1.f)*scale) * hipass ;
}
else {
double skinprotneg = -skinprot;
float correct;
correct=irangefn[hipass+0x10000];
Color::SkinSatcdbl ((data_fine[i][j])/327.68f, l_a_h[i][j],l_b_c[i][j] , skinprotneg, scale, ciec, false, b_l, t_l, t_r, b_r, choice);
if (scale == 1.f) {//image hard
//buffer[i][j] += hipass ;
buffer[i][j] += (1.f +(correct-1.f)* (1.f- (float) skinprotneg/100.f)) * hipass ;
}
else {//image soft
buffer[i][j] += (1.f +(correct-1.f)) * hipass ;
}
}
// These values are precalculated now
float modhue = hue[i][j];
float modchro = chrom[i][j];
Color::SkinSatCbdl ((data_fine[i][j])/327.68f, modhue, modchro, skinprot, scale, true, b_l, t_l, t_r);
buffer[i][j] += (1.f +(irangefn[hipass+0x10000])*scale) * hipass ;
}
}
else
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++) {
float scale=1.f;
float hipass = (data_fine[i][j]-data_coarse[i][j]);
// These values are precalculated now
float modhue = hue[i][j];
float modchro = chrom[i][j];
Color::SkinSatCbdl ((data_fine[i][j])/327.68f, modhue, modchro, skinprotneg, scale, false, b_l, t_l, t_r);
float correct = irangefn[hipass+0x10000];
if (scale == 1.f) {//image hard
buffer[i][j] += (1.f +(correct)* (factorHard)) * hipass ;
}
else {//image soft with scale < 1 ==> skin
buffer[i][j] += (1.f +(correct)) * hipass ;
}
}
}
}
void ImProcFunctions::idirpyr_eq_channelcam(float ** data_coarse, float ** data_fine, float ** buffer, int width, int height, int level, float mult[5], const double dirpyrThreshold, float ** l_a_h, float ** l_b_c, const double skinprot, float b_l, float t_l, float t_r)
{
const float skinprotneg = -skinprot;
const float factorHard = (1.f - skinprotneg/100.f);
float offs;
if(skinprot==0.f)
offs = 0.f;
else
offs = -1.f;
LUTf irangefn (0x20000);
{
const float noisehi = 1.33f*noise*dirpyrThreshold/expf(level*log(3.0)), noiselo = 0.66f*noise*dirpyrThreshold/expf(level*log(3.0));
//printf("level=%i multlev=%f noisehi=%f noiselo=%f skinprot=%f\n",level,mult[level], noisehi, noiselo, skinprot);
for (int i=0; i<0x20000; i++) {
if (abs(i-0x10000)>noisehi || mult[level]<1.0) {
irangefn[i] = mult[level] + offs;
} else {
if (abs(i-0x10000)<noiselo) {
irangefn[i] = 1.f + offs ;
} else {
irangefn[i] = 1.f + offs + (mult[level]-1.f) * (noisehi-abs(i-0x10000))/(noisehi-noiselo+0.01f) ;
}
}
}
}
if(skinprot == 0.f)
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++) {
float hipass = (data_fine[i][j]-data_coarse[i][j]);
buffer[i][j] += irangefn[hipass+0x10000] * hipass ;
}
}
else if(skinprot > 0.f)
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++) {
float hipass = (data_fine[i][j]-data_coarse[i][j]);
float scale=1.f;
Color::SkinSatCbdlCam ((data_fine[i][j])/327.68f, l_a_h[i][j] ,l_b_c[i][j], skinprot, scale, true, b_l, t_l, t_r);
buffer[i][j] += (1.f +(irangefn[hipass+0x10000])*scale) * hipass ;
}
}
else
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++) {
float hipass = (data_fine[i][j]-data_coarse[i][j]);
float scale=1.f;
float correct;
correct=irangefn[hipass+0x10000];
Color::SkinSatCbdlCam ((data_fine[i][j])/327.68f, l_a_h[i][j],l_b_c[i][j] , skinprotneg, scale, false, b_l, t_l, t_r);
if (scale == 1.f) {//image hard
buffer[i][j] += (1.f +(correct)* factorHard) * hipass ;
}
else {//image soft
buffer[i][j] += (1.f +(correct)) * hipass ;
}
}
}
// if(gamutlab) {
// ImProcFunctions::badpixcam (buffer[i][j], 6.0, 10, 2);//for bad pixels
// }
}
else {//lab
float modhue=atan2(l_b_c[i][j],l_a_h[i][j]);
float modchro=sqrt(SQR((l_b_c[i][j])/327.68f)+SQR((l_a_h[i][j])/327.68f));
if(skinprot >= 0.) {
Color::SkinSatcdbl ((data_fine[i][j])/327.68f, modhue, modchro, skinprot, scale, ciec, true, b_l, t_l, t_r, b_r, choice);
buffer[i][j] += (1.f +(irangefn[hipass+0x10000]-1.f)*scale) * hipass ;
}
else {
double skinprotneg = -skinprot;
float correct;
Color::SkinSatcdbl ((data_fine[i][j])/327.68f, modhue, modchro, skinprotneg, scale, ciec, false, b_l, t_l, t_r, b_r, choice);
correct=irangefn[hipass+0x10000];
if (scale == 1.f) {//image hard
buffer[i][j] += (1.f +(correct-1.f)* (1.f- (float)skinprotneg/100.f)) * hipass ;
}
else {//image soft with scale < 1 ==> skin
buffer[i][j] += (1.f +(correct-1.f)) * hipass ;
}
}
/* if(gamutlab) {//disabled
float Lprov1=(buffer[i][j])/327.68f;
float R,G,B;
@@ -542,12 +665,8 @@ void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, i
l_b_c[i][j]=327.68f*modchro*sincosval.x;
}
*/
}
}
}
}
// float hipass = (data_fine[i][j]-data_coarse[i][j]);
// buffer[i][j] += irangefn[hipass+0x10000] * hipass ;