Additional cleanups for dcp.* (#3343)

This commit is contained in:
Flössie
2016-06-12 12:07:15 +02:00
parent b8749f8484
commit 97dae796c6
3 changed files with 295 additions and 282 deletions

View File

@@ -17,6 +17,7 @@
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iostream>
#include <cstring>
#include "dcp.h"
@@ -36,104 +37,92 @@ namespace
// This sRGB gamma is taken from DNG reference code, with the added linear extension past 1.0, as we run clipless here
void invert3x3(const DCPProfile::Matrix& a, DCPProfile::Matrix& b)
DCPProfile::Matrix invert3x3(const DCPProfile::Matrix& a)
{
const double& a00 = a[0][0];
const double& a01 = a[0][1];
const double& a02 = a[0][2];
const double& a10 = a[1][0];
const double& a11 = a[1][1];
const double& a12 = a[1][2];
const double& a20 = a[2][0];
const double& a21 = a[2][1];
const double& a22 = a[2][2];
const double res00 = a[1][1] * a[2][2] - a[2][1] * a[1][2];
const double res10 = a[2][0] * a[1][2] - a[1][0] * a[2][2];
const double res20 = a[1][0] * a[2][1] - a[2][0] * a[1][1];
double temp[3][3];
const double det = a[0][0] * res00 + a[0][1] * res10 + a[0][2] * res20;
temp[0][0] = a11 * a22 - a21 * a12;
temp[0][1] = a21 * a02 - a01 * a22;
temp[0][2] = a01 * a12 - a11 * a02;
temp[1][0] = a20 * a12 - a10 * a22;
temp[1][1] = a00 * a22 - a20 * a02;
temp[1][2] = a10 * a02 - a00 * a12;
temp[2][0] = a10 * a21 - a20 * a11;
temp[2][1] = a20 * a01 - a00 * a21;
temp[2][2] = a00 * a11 - a10 * a01;
const double det = a00 * temp[0][0] + a01 * temp[1][0] + a02 * temp[2][0];
if (fabs(det) < 1.0e-10) {
abort(); // Can't be inverted, we shouldn't be dealing with such matrices
if (std::fabs(det) < 1.0e-10) {
std::cerr << "DCP matrix cannot be inverted! Expect weird output." << std::endl;
return a;
}
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 3; ++k) {
b[j][k] = temp[j][k] / det;
}
}
DCPProfile::Matrix res;
res[0][0] = res00 / det;
res[0][1] = (a[2][1] * a[0][2] - a[0][1] * a[2][2]) / det;
res[0][2] = (a[0][1] * a[1][2] - a[1][1] * a[0][2]) / det;
res[1][0] = res10 / det;
res[1][1] = (a[0][0] * a[2][2] - a[2][0] * a[0][2]) / det;
res[1][2] = (a[1][0] * a[0][2] - a[0][0] * a[1][2]) / det;
res[2][0] = res20 / det;
res[2][1] = (a[2][0] * a[0][1] - a[0][0] * a[2][1]) / det;
res[2][2] = (a[0][0] * a[1][1] - a[1][0] * a[0][1]) / det;
return res;
}
void multiply3x3(const DCPProfile::Matrix& a, const DCPProfile::Matrix& b, DCPProfile::Matrix& c)
DCPProfile::Matrix multiply3x3(const DCPProfile::Matrix& a, const DCPProfile::Matrix& b)
{
// Use temp to support having output same as input
DCPProfile::Matrix m;
DCPProfile::Matrix res;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
m[i][j] = 0;
res[i][j] = 0;
for (int k = 0; k < 3; ++k) {
m[i][j] += a[i][k] * b[k][j];
res[i][j] += a[i][k] * b[k][j];
}
}
}
c = m;
return res;
}
void multiply3x3_v3(const DCPProfile::Matrix& a, const DCPProfile::Triple& b, DCPProfile::Triple& c)
DCPProfile::Triple multiply3x3_v3(const DCPProfile::Matrix& a, const DCPProfile::Triple& b)
{
// Use temp to support having output same as input
DCPProfile::Triple m = {};
DCPProfile::Triple res = {};
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
m[i] += a[i][j] * b[j];
res[i] += a[i][j] * b[j];
}
}
c = m;
return res;
}
void mix3x3(const DCPProfile::Matrix& a, double mul_a, const DCPProfile::Matrix& b, double mul_b, DCPProfile::Matrix& c)
DCPProfile::Matrix mix3x3(const DCPProfile::Matrix& a, double mul_a, const DCPProfile::Matrix& b, double mul_b)
{
DCPProfile::Matrix m;
DCPProfile::Matrix res;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
m[i][j] = a[i][j] * mul_a + b[i][j] * mul_b;
res[i][j] = a[i][j] * mul_a + b[i][j] * mul_b;
}
}
c = m;
return res;
}
void mapWhiteMatrix(const DCPProfile::Triple& white1, const DCPProfile::Triple& white2, DCPProfile::Matrix& b)
DCPProfile::Matrix mapWhiteMatrix(const DCPProfile::Triple& white1, const DCPProfile::Triple& white2)
{
// Code adapted from dng_color_spec::MapWhiteMatrix
// Use the linearized Bradford adaptation matrix
const DCPProfile::Matrix mb = {{
const DCPProfile::Matrix mb = {
{
{ 0.8951, 0.2664, -0.1614 },
{ -0.7502, 1.7135, 0.0367 },
{ 0.0389, -0.0685, 1.0296 }
}
};
DCPProfile::Triple w1;
multiply3x3_v3(mb, white1, w1);
DCPProfile::Triple w2;
multiply3x3_v3(mb, white2, w2);
DCPProfile::Triple w1 = multiply3x3_v3(mb, white1);
DCPProfile::Triple w2 = multiply3x3_v3(mb, white2);
// Negative white coordinates are kind of meaningless.
w1[0] = std::max(w1[0], 0.0);
@@ -149,44 +138,46 @@ void mapWhiteMatrix(const DCPProfile::Triple& white1, const DCPProfile::Triple&
a[1][1] = std::max(0.1, std::min(w1[1] > 0.0 ? w2[1] / w1[1] : 10.0, 10.0));
a[2][2] = std::max(0.1, std::min(w1[2] > 0.0 ? w2[2] / w1[2] : 10.0, 10.0));
DCPProfile::Matrix temp;
invert3x3(mb, temp);
multiply3x3(temp, a, temp);
multiply3x3(temp, mb, b);
return multiply3x3(multiply3x3(invert3x3(mb), a), mb);
}
void xyzToXy(const DCPProfile::Triple& xyz, double xy[2])
std::array<double, 2> xyzToXy(const DCPProfile::Triple& xyz)
{
const double total = xyz[0] + xyz[1] + xyz[2];
if (total > 0.0) {
xy[0] = xyz[0] / total;
xy[1] = xyz[1] / total;
} else {
xy[0] = 0.3457;
xy[1] = 0.3585;
}
return
total > 0.0
? std::array<double, 2>{
xyz[0] / total,
xyz[1] / total
}
: std::array<double, 2>{
0.3457,
0.3585
};
}
void xyToXyz(const double xy[2], DCPProfile::Triple& xyz)
DCPProfile::Triple xyToXyz(std::array<double, 2> xy)
{
double temp[2] = {xy[0], xy[1]};
// Restrict xy coord to someplace inside the range of real xy coordinates.
// This prevents math from doing strange things when users specify
// extreme temperature/tint coordinates.
temp[0] = std::max(0.000001, std::min(temp[0], 0.999999));
temp[1] = std::max(0.000001, std::min(temp[1], 0.999999));
xy[0] = std::max(0.000001, std::min(xy[0], 0.999999));
xy[1] = std::max(0.000001, std::min(xy[1], 0.999999));
if (temp[0] + temp[1] > 0.999999) {
double scale = 0.999999 / (temp[0] + temp[1]);
temp[0] *= scale;
temp[1] *= scale;
const double sum = xy[0] + xy[1];
if (sum > 0.999999) {
const double scale = 0.999999 / sum;
xy[0] *= scale;
xy[1] *= scale;
}
xyz[0] = temp[0] / temp[1];
xyz[1] = 1.0;
xyz[2] = (1.0 - temp[0] - temp[1]) / temp[1];
return {
xy[0] / xy[1],
1.0,
(1.0 - xy[0] - xy[1]) / xy[1]
};
}
double calibrationIlluminantToTemperature(int light)
@@ -277,7 +268,7 @@ double calibrationIlluminantToTemperature(int light)
}
}
void xyCoordToTemperature(const double white_xy[2], double* temp, double* tint)
double xyCoordToTemperature(const std::array<double, 2>& white_xy)
{
struct Ruvt {
double r;
@@ -322,8 +313,7 @@ void xyCoordToTemperature(const double white_xy[2], double* temp, double* tint)
constexpr double tint_scale = -3000.0;
double temperature = 0;
double computed_tint = 0;
double res = 0;
// Convert to uv space.
double u = 2.0 * white_xy[0] / (1.5 - white_xy[0] + 6.0 * white_xy[1]);
@@ -367,7 +357,7 @@ void xyCoordToTemperature(const double white_xy[2], double* temp, double* tint)
}
// Interpolate the temperature.
temperature = 1.0e6 / (temp_table[index - 1].r * f + temp_table[index].r * (1.0 - f));
res = 1.0e6 / (temp_table[index - 1].r * f + temp_table[index].r * (1.0 - f));
// Find delta from black body point to test coordinate.
uu = u - (temp_table [index - 1].u * f + temp_table [index].u * (1.0 - f));
@@ -378,9 +368,6 @@ void xyCoordToTemperature(const double white_xy[2], double* temp, double* tint)
len = sqrt (du * du + dv * dv);
du /= len;
dv /= len;
// Find distance along slope.
computed_tint = (uu * du + vv * dv) * tint_scale;
break;
}
@@ -390,13 +377,7 @@ void xyCoordToTemperature(const double white_xy[2], double* temp, double* tint)
last_dv = dv;
}
if (temp != nullptr) {
*temp = temperature;
}
if (tint != nullptr) {
*tint = computed_tint;
}
return res;
}
}
@@ -758,9 +739,8 @@ DCPProfile::DCPProfile(const Glib::ustring& filename) :
tag = tagDir->getTag(toUnderlying(TagKey::COLOR_MATRIX_1));
if (!tag) {
// FIXME: better error handling
fprintf(stderr, "Bad DCP, no ColorMatrix1\n");
abort();
std::cerr << "DCP '" << filename << "' is missing 'ColorMatrix1'. Skipped." << std::endl;
return;
}
has_color_matrix_1 = true;
@@ -963,6 +943,11 @@ DCPProfile::~DCPProfile()
{
}
DCPProfile::operator bool() const
{
return has_color_matrix_1;
}
bool DCPProfile::getHasToneCurve() const
{
return has_tone_curve;
@@ -1007,8 +992,7 @@ void DCPProfile::apply(
BENCHFUN
const TMatrix work_matrix = iccStore->workingSpaceInverseMatrix(working_space);
Matrix xyz_cam; // Camera RGB to XYZ D50 matrix
makeXyzCam(white_balance, pre_mul, cam_wb_matrix, preferred_illuminant, xyz_cam);
const Matrix xyz_cam = makeXyzCam(white_balance, pre_mul, cam_wb_matrix, preferred_illuminant); // Camera RGB to XYZ D50 matrix
const std::vector<HsbModify> delta_base = makeHueSatMap(white_balance, preferred_illuminant);
@@ -1232,7 +1216,7 @@ void DCPProfile::step2ApplyTile(float* rc, float* gc, float* bc, int width, int
}
}
void DCPProfile::findXyztoCamera(const double white_xy[2], int preferred_illuminant, Matrix& xyz_to_camera) const
DCPProfile::Matrix DCPProfile::findXyztoCamera(const std::array<double, 2>& white_xy, int preferred_illuminant) const
{
bool has_col_1 = has_color_matrix_1;
bool has_col_2 = has_color_matrix_2;
@@ -1248,17 +1232,14 @@ void DCPProfile::findXyztoCamera(const double white_xy[2], int preferred_illumin
}
// Mix if we have two matrices
double mix;
Matrix col;
if (has_col_1 && has_col_2) {
double wbtemp;
/*
Note: We're using DNG SDK reference code for XY to temperature translation to get the exact same mix as
the reference code does.
*/
xyCoordToTemperature(white_xy, &wbtemp, nullptr);
const double wbtemp = xyCoordToTemperature(white_xy);
double mix;
if (wbtemp <= temperature_1) {
mix = 1.0;
} else if (wbtemp >= temperature_2) {
@@ -1270,45 +1251,36 @@ void DCPProfile::findXyztoCamera(const double white_xy[2], int preferred_illumin
// Interpolate
if (mix >= 1.0) {
col = color_matrix_1;
return color_matrix_1;
} else if (mix <= 0.0) {
col = color_matrix_2;
return color_matrix_2;
} else {
mix3x3(color_matrix_1, mix, color_matrix_2, 1.0 - mix, col);
return mix3x3(color_matrix_1, mix, color_matrix_2, 1.0 - mix);
}
} else if (has_col_1) {
col = color_matrix_1;
return color_matrix_1;
} else {
col = color_matrix_2;
return color_matrix_2;
}
xyz_to_camera = col;
}
void DCPProfile::neutralToXy(const Triple& neutral, int preferred_illuminant, double xy[2]) const
std::array<double, 2> DCPProfile::neutralToXy(const Triple& neutral, int preferred_illuminant) const
{
enum {
MAX_PASSES = 30
};
double last_xy[2] = {0.3457, 0.3585}; // D50
std::array<double, 2> last_xy = {0.3457, 0.3585}; // D50
for (unsigned int pass = 0; pass < MAX_PASSES; ++pass) {
Matrix xyz_to_camera;
findXyztoCamera(last_xy, preferred_illuminant, xyz_to_camera);
const Matrix& xyz_to_camera = findXyztoCamera(last_xy, preferred_illuminant);
const Matrix& inv_m = invert3x3(xyz_to_camera);
const Triple& next_xyz = multiply3x3_v3(inv_m, neutral);
Matrix inv_m;
Triple next_xyz;
double next_xy[2];
invert3x3(xyz_to_camera, inv_m);
multiply3x3_v3(inv_m, neutral, next_xyz);
xyzToXy(next_xyz, next_xy);
std::array<double, 2> next_xy = xyzToXy(next_xyz);
if (fabs(next_xy[0] - last_xy[0]) +
fabs(next_xy[1] - last_xy[1]) < 0.0000001) {
xy[0] = next_xy[0];
xy[1] = next_xy[1];
return;
if (std::fabs(next_xy[0] - last_xy[0]) + std::fabs(next_xy[1] - last_xy[1]) < 0.0000001) {
return next_xy;
}
// If we reach the limit without converging, we are most likely
@@ -1319,15 +1291,13 @@ void DCPProfile::neutralToXy(const Triple& neutral, int preferred_illuminant, do
next_xy[1] = (last_xy[1] + next_xy[1]) * 0.5;
}
last_xy[0] = next_xy[0];
last_xy[1] = next_xy[1];
last_xy = next_xy;
}
xy[0] = last_xy[0];
xy[1] = last_xy[1];
return last_xy;
}
void DCPProfile::makeXyzCam(const ColorTemp& white_balance, const Triple& pre_mul, const Matrix& cam_wb_matrix, int preferred_illuminant, Matrix& xyz_cam) const
DCPProfile::Matrix DCPProfile::makeXyzCam(const ColorTemp& white_balance, const Triple& pre_mul, const Matrix& cam_wb_matrix, int preferred_illuminant) const
{
// Code adapted from dng_color_spec::FindXYZtoCamera.
// Note that we do not support monochrome or colorplanes > 3 (no reductionMatrix support),
@@ -1340,32 +1310,24 @@ void DCPProfile::makeXyzCam(const ColorTemp& white_balance, const Triple& pre_mu
double r, g, b;
white_balance.getMultipliers(r, g, b);
// camWbMatrix == imatrices.xyz_cam
Matrix cam_xyz;
invert3x3(cam_wb_matrix, cam_xyz);
Matrix cam_rgb;
constexpr Matrix xyz_srgb = {{
constexpr Matrix xyz_srgb = {
{
{xyz_sRGB[0][0], xyz_sRGB[0][1], xyz_sRGB[0][2]},
{xyz_sRGB[1][0], xyz_sRGB[1][1], xyz_sRGB[1][2]},
{xyz_sRGB[2][0], xyz_sRGB[2][1], xyz_sRGB[2][2]}
}
};
multiply3x3(cam_xyz, xyz_srgb, cam_rgb);
const Matrix cam_rgb = multiply3x3(invert3x3(cam_wb_matrix), xyz_srgb);
double camwb_red = cam_rgb[0][0] * r + cam_rgb[0][1] * g + cam_rgb[0][2] * b;
double camwb_green = cam_rgb[1][0] * r + cam_rgb[1][1] * g + cam_rgb[1][2] * b;
double camwb_blue = cam_rgb[2][0] * r + cam_rgb[2][1] * g + cam_rgb[2][2] * b;
neutral[0] = camwb_red / pre_mul[0];
neutral[1] = camwb_green / pre_mul[1];
neutral[2] = camwb_blue / pre_mul[2];
double maxentry = 0;
for (int i = 0; i < 3; i++) {
if (neutral[i] > maxentry) {
maxentry = neutral[i];
}
}
const double maxentry = std::max({neutral[0], neutral[1], neutral[2]});
for (int i = 0; i < 3; i++) {
for (int i = 0; i < 3; ++i) {
neutral[i] /= maxentry;
}
}
@@ -1374,8 +1336,7 @@ void DCPProfile::makeXyzCam(const ColorTemp& white_balance, const Triple& pre_mu
DCP ColorMatrix or ColorMatrices if dual-illuminant. This is the DNG reference code way to
do it, which is a bit different from RT's own white balance model at the time of writing.
When RT's white balance can make use of the DCP color matrices we could use that instead. */
double white_xy[2];
neutralToXy(neutral, preferred_illuminant, white_xy);
const std::array<double, 2> white_xy = neutralToXy(neutral, preferred_illuminant);
bool has_fwd_1 = has_forward_matrix_1;
bool has_fwd_2 = has_forward_matrix_2;
@@ -1404,18 +1365,17 @@ void DCPProfile::makeXyzCam(const ColorTemp& white_balance, const Triple& pre_mu
double mix = 1.0;
if ((has_col_1 && has_col_2) || (has_fwd_1 && has_fwd_2)) {
double wbtemp;
/* DNG ref way to convert XY to temperature, which affect matrix mixing. A different model here
typically does not affect the result too much, ie it's probably not strictly necessary to
use the DNG reference code here, but we do it for now. */
xyCoordToTemperature(white_xy, &wbtemp, nullptr);
const double wbtemp = xyCoordToTemperature(white_xy);
if (wbtemp <= temperature_1) {
mix = 1.0;
} else if (wbtemp >= temperature_2) {
mix = 0.0;
} else {
double invT = 1.0 / wbtemp;
const double& invT = 1.0 / wbtemp;
mix = (invT - (1.0 / temperature_2)) / ((1.0 / temperature_1) - (1.0 / temperature_2));
}
}
@@ -1430,7 +1390,7 @@ void DCPProfile::makeXyzCam(const ColorTemp& white_balance, const Triple& pre_mu
} else if (mix <= 0.0) {
color_matrix = color_matrix_2;
} else {
mix3x3(color_matrix_1, mix, color_matrix_2, 1.0 - mix, color_matrix);
color_matrix = mix3x3(color_matrix_1, mix, color_matrix_2, 1.0 - mix);
}
} else if (has_col_1) {
color_matrix = color_matrix_1;
@@ -1446,8 +1406,7 @@ void DCPProfile::makeXyzCam(const ColorTemp& white_balance, const Triple& pre_mu
will show incorrect color.
*/
Triple white_xyz;
xyToXyz(white_xy, white_xyz);
const Triple white_xyz = xyToXyz(white_xy);
Matrix cam_xyz;
@@ -1462,7 +1421,7 @@ void DCPProfile::makeXyzCam(const ColorTemp& white_balance, const Triple& pre_mu
} else if (mix <= 0.0) {
fwd = forward_matrix_2;
} else {
mix3x3(forward_matrix_1, mix, forward_matrix_2, 1.0 - mix, fwd);
fwd = mix3x3(forward_matrix_1, mix, forward_matrix_2, 1.0 - mix);
}
} else if (has_fwd_1) {
fwd = forward_matrix_1;
@@ -1471,76 +1430,66 @@ void DCPProfile::makeXyzCam(const ColorTemp& white_balance, const Triple& pre_mu
}
// adapted from dng_color_spec::SetWhiteXY
Triple camera_white;
multiply3x3_v3(color_matrix, white_xyz, camera_white);
const Matrix white_diag = {{
const Triple camera_white = multiply3x3_v3(color_matrix, white_xyz);
const Matrix white_diag = {
{
{camera_white[0], 0, 0},
{0, camera_white[1], 0},
{0, 0, camera_white[2]}
}
};
Matrix white_diag_inv;
invert3x3(white_diag, white_diag_inv);
Matrix xyz_cam;
multiply3x3(fwd, white_diag_inv, xyz_cam);
invert3x3(xyz_cam, cam_xyz);
cam_xyz = invert3x3(multiply3x3(fwd, invert3x3(white_diag)));
} else {
Matrix white_matrix;
const Triple white_d50 = {0.3457, 0.3585, 0.2958}; // D50
mapWhiteMatrix(white_d50, white_xyz, white_matrix);
multiply3x3(color_matrix, white_matrix, cam_xyz);
constexpr Triple white_d50 = {0.3457, 0.3585, 0.2958}; // D50
cam_xyz = multiply3x3(color_matrix, mapWhiteMatrix(white_d50, white_xyz));
}
// Convert cam_xyz (XYZ D50 to CameraRGB, "PCS to Camera" in DNG terminology) to mXYZCAM
{
// This block can probably be simplified, seems unnecessary to pass through the sRGB matrix
// (probably dcraw legacy), it does no harm though as we don't clip anything.
int i, j, k;
// This block can probably be simplified, seems unnecessary to pass through the sRGB matrix
// (probably dcraw legacy), it does no harm though as we don't clip anything.
int i, j, k;
// Multiply out XYZ colorspace
double cam_rgb[3][3] = {};
// Multiply out XYZ colorspace
double cam_rgb[3][3] = {};
for (i = 0; i < 3; ++i) {
for (j = 0; j < 3; ++j) {
for (k = 0; k < 3; ++k) {
cam_rgb[i][j] += cam_xyz[i][k] * xyz_sRGB[k][j];
}
}
}
// Normalize cam_rgb so that cam_rgb * (1,1,1) is (1,1,1,1)
double num;
for (i = 0; i < 3; ++i) {
for (num = j = 0; j < 3; ++j) {
num += cam_rgb[i][j];
}
for (j = 0; j < 3; ++j) {
cam_rgb[i][j] /= num;
}
}
double rgb_cam[3][3] = {};
RawImageSource::inverse33(cam_rgb, rgb_cam);
for (i = 0; i < 3; ++i) {
for (j = 0; j < 3; ++j) {
xyz_cam[i][j] = 0;
}
}
for (i = 0; i < 3; ++i) {
for (j = 0; j < 3; ++j) {
for (k = 0; k < 3; ++k) {
xyz_cam[i][j] += xyz_sRGB[i][k] * rgb_cam[k][j];
}
for (i = 0; i < 3; ++i) {
for (j = 0; j < 3; ++j) {
for (k = 0; k < 3; ++k) {
cam_rgb[i][j] += cam_xyz[i][k] * xyz_sRGB[k][j];
}
}
}
// Normalize cam_rgb so that cam_rgb * (1,1,1) is (1,1,1,1)
double num;
for (i = 0; i < 3; ++i) {
for (num = j = 0; j < 3; ++j) {
num += cam_rgb[i][j];
}
for (j = 0; j < 3; ++j) {
cam_rgb[i][j] /= num;
}
}
double rgb_cam[3][3] = {};
RawImageSource::inverse33(cam_rgb, rgb_cam);
Matrix res = {};
for (i = 0; i < 3; ++i) {
for (j = 0; j < 3; ++j) {
for (k = 0; k < 3; ++k) {
res[i][j] += xyz_sRGB[i][k] * rgb_cam[k][j];
}
}
}
return res;
}
std::vector<DCPProfile::HsbModify> DCPProfile::makeHueSatMap(const ColorTemp& white_balance, int preferred_illuminant) const
@@ -1670,7 +1619,7 @@ void DCPProfile::hsdApply(const HsdTableInfo& table_info, const std::vector<HsbM
const float v_scaled = v_encoded * table_info.pc.v_scale;
int h_index0 = (int) h_scaled;
int h_index0 = h_scaled;
const int s_index0 = std::max(std::min<int>(s_scaled, table_info.pc.max_sat_index0), 0);
const int v_index0 = std::max(std::min<int>(v_scaled, table_info.pc.max_val_index0), 0);
@@ -1823,10 +1772,14 @@ DCPProfile* DCPStore::getProfile(const Glib::ustring& filename) const
DCPProfile* const res = new DCPProfile(filename);
// Add profile
profile_cache[filename] = res;
if (*res) {
// Add profile
profile_cache[filename] = res;
return res;
}
return res;
delete res;
return nullptr;
}
DCPProfile* DCPStore::getStdProfile(const Glib::ustring& cam_short_name) const