Cleaned gauss code and included some speedups

This commit is contained in:
heckflosse
2016-01-18 23:56:02 +01:00
parent 33ea7156b8
commit a3c20daa46
12 changed files with 2117 additions and 2177 deletions

View File

@@ -32,7 +32,6 @@ namespace rtengine
SSEFUNCTION void ImProcFunctions::impulse_nr (LabImage* lab, double thresh)
{
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// impulse noise removal
// local variables
@@ -41,15 +40,15 @@ SSEFUNCTION void ImProcFunctions::impulse_nr (LabImage* lab, double thresh)
int height = lab->H;
// buffer for the lowpass image
float ** lpf = new float *[height];
float * lpf[height] ALIGNED16;
lpf[0] = new float [width * height];
// buffer for the highpass image
float ** impish = new float *[height];
char * impish[height] ALIGNED16;
impish[0] = new char [width * height];
for (int i = 0; i < height; i++) {
lpf[i] = new float [width];
//memset (lpf[i], 0, width*sizeof(float));
impish[i] = new float [width];
//memset (impish[i], 0, width*sizeof(unsigned short));
for (int i = 1; i < height; i++) {
lpf[i] = lpf[i - 1] + width;
impish[i] = impish[i - 1] + width;
}
@@ -60,12 +59,11 @@ SSEFUNCTION void ImProcFunctions::impulse_nr (LabImage* lab, double thresh)
const float eps = 1.0;
//rangeblur<unsigned short, unsigned int> (lab->L, lpf, impish /*used as buffer here*/, width, height, thresh, false);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur<float> (lab->L, lpf, width, height, max(2.0, thresh - 1.0));
gaussianBlur (lab->L, lpf, width, height, max(2.0, thresh - 1.0));
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -81,9 +79,9 @@ SSEFUNCTION void ImProcFunctions::impulse_nr (LabImage* lab, double thresh)
int i1, j1, j;
float hpfabs, hfnbrave;
#ifdef __SSE2__
__m128 hfnbravev, hpfabsv;
__m128 impthrDiv24v = _mm_set1_ps( impthrDiv24 );
__m128 onev = _mm_set1_ps( 1.0f );
vfloat hfnbravev, hpfabsv;
vfloat impthrDiv24v = F2V( impthrDiv24 );
vfloat onev = F2V( 1.0f );
#endif
#ifdef _OPENMP
#pragma omp for
@@ -105,46 +103,37 @@ SSEFUNCTION void ImProcFunctions::impulse_nr (LabImage* lab, double thresh)
#ifdef __SSE2__
for (; j < width - 5; j += 4) {
hfnbravev = _mm_setzero_ps( );
hfnbravev = ZEROV;
hpfabsv = vabsf(LVFU(lab->L[i][j]) - LVFU(lpf[i][j]));
//block average of high pass data
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) {
for (j1 = j - 2; j1 <= j + 2; j1++) {
hfnbravev += vabsf(LVFU(lab->L[i1][j1]) - LVFU(lpf[i1][j1]));
}
}
_mm_storeu_ps(&impish[i][j], vself(vmaskf_gt(hpfabsv, (hfnbravev - hpfabsv)*impthrDiv24v), onev, _mm_setzero_ps()));
}
for (; j < width - 2; j++) {
hpfabs = fabs(lab->L[i][j] - lpf[i][j]);
//block average of high pass data
for (i1 = max(0, i - 2), hfnbrave = 0; i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 <= j + 2; j1++) {
hfnbrave += fabs(lab->L[i1][j1] - lpf[i1][j1]);
}
impish[i][j] = (hpfabs > ((hfnbrave - hpfabs) * impthrDiv24));
}
#else
for (; j < width - 2; j++) {
hpfabs = fabs(lab->L[i][j] - lpf[i][j]);
//block average of high pass data
for (i1 = max(0, i - 2), hfnbrave = 0; i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 <= j + 2; j1++) {
hfnbrave += fabs(lab->L[i1][j1] - lpf[i1][j1]);
}
impish[i][j] = (hpfabs > ((hfnbrave - hpfabs) * impthrDiv24));
int mask = _mm_movemask_ps((hfnbravev - hpfabsv) * impthrDiv24v - hpfabsv);
impish[i][j] = (mask & 1);
impish[i][j + 1] = ((mask & 2) >> 1);
impish[i][j + 2] = ((mask & 4) >> 2);
impish[i][j + 3] = ((mask & 8) >> 3);
}
#endif
for (; j < width - 2; j++) {
hpfabs = fabs(lab->L[i][j] - lpf[i][j]);
//block average of high pass data
for (i1 = max(0, i - 2), hfnbrave = 0; i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 <= j + 2; j1++) {
hfnbrave += fabs(lab->L[i1][j1] - lpf[i1][j1]);
}
impish[i][j] = (hpfabs > ((hfnbrave - hpfabs) * impthrDiv24));
}
for (; j < width; j++) {
hpfabs = fabs(lab->L[i][j] - lpf[i][j]);
@@ -188,10 +177,6 @@ SSEFUNCTION void ImProcFunctions::impulse_nr (LabImage* lab, double thresh)
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = 0; j1 <= j + 2; j1++ ) {
if (i1 == i && j1 == j) {
continue;
}
if (impish[i1][j1]) {
continue;
}
@@ -220,10 +205,6 @@ SSEFUNCTION void ImProcFunctions::impulse_nr (LabImage* lab, double thresh)
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 <= j + 2; j1++ ) {
if (i1 == i && j1 == j) {
continue;
}
if (impish[i1][j1]) {
continue;
}
@@ -252,10 +233,6 @@ SSEFUNCTION void ImProcFunctions::impulse_nr (LabImage* lab, double thresh)
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 < width; j1++ ) {
if (i1 == i && j1 == j) {
continue;
}
if (impish[i1][j1]) {
continue;
}
@@ -277,13 +254,8 @@ SSEFUNCTION void ImProcFunctions::impulse_nr (LabImage* lab, double thresh)
}
//now impulsive values have been corrected
for (int i = 0; i < height; i++) {
delete [] lpf[i];
delete [] impish[i];
}
delete [] lpf;
delete [] impish;
delete [] lpf[0];
delete [] impish[0];
}
@@ -317,7 +289,7 @@ SSEFUNCTION void ImProcFunctions::impulse_nrcam (CieImage* ncie, double thresh,
#pragma omp parallel
#endif
{
gaussianBlur<float> (ncie->sh_p, lpf, width, height, max(2.0, thresh - 1.0));
gaussianBlur (ncie->sh_p, lpf, width, height, max(2.0, thresh - 1.0));
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -332,9 +304,9 @@ SSEFUNCTION void ImProcFunctions::impulse_nrcam (CieImage* ncie, double thresh,
int i1, j1, j;
float hpfabs, hfnbrave;
#ifdef __SSE2__
__m128 hfnbravev, hpfabsv;
__m128 impthrDiv24v = _mm_set1_ps( impthrDiv24 );
__m128 onev = _mm_set1_ps( 1.0f );
vfloat hfnbravev, hpfabsv;
vfloat impthrDiv24v = F2V( impthrDiv24 );
vfloat onev = F2V( 1.0f );
#endif
#ifdef _OPENMP
#pragma omp for
@@ -357,7 +329,7 @@ SSEFUNCTION void ImProcFunctions::impulse_nrcam (CieImage* ncie, double thresh,
for (; j < width - 5; j += 4) {
hpfabsv = vabsf(LVFU(ncie->sh_p[i][j]) - LVFU(lpf[i][j]));
hfnbravev = _mm_setzero_ps();
hfnbravev = ZEROV;
//block average of high pass data
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) {
@@ -365,38 +337,25 @@ SSEFUNCTION void ImProcFunctions::impulse_nrcam (CieImage* ncie, double thresh,
hfnbravev += vabsf(LVFU(ncie->sh_p[i1][j1]) - LVFU(lpf[i1][j1]));
}
_mm_storeu_ps(&impish[i][j], vself(vmaskf_gt(hpfabsv, (hfnbravev - hpfabsv)*impthrDiv24v), onev, _mm_setzero_ps()));
}
}
for (; j < width - 2; j++) {
hpfabs = fabs(ncie->sh_p[i][j] - lpf[i][j]);
//block average of high pass data
for (i1 = max(0, i - 2), hfnbrave = 0; i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 <= j + 2; j1++ ) {
hfnbrave += fabs(ncie->sh_p[i1][j1] - lpf[i1][j1]);
}
impish[i][j] = (hpfabs > ((hfnbrave - hpfabs) * impthrDiv24));
}
#else
for (; j < width - 2; j++) {
hpfabs = fabs(ncie->sh_p[i][j] - lpf[i][j]);
//block average of high pass data
for (i1 = max(0, i - 2), hfnbrave = 0; i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 <= j + 2; j1++ ) {
hfnbrave += fabs(ncie->sh_p[i1][j1] - lpf[i1][j1]);
}
impish[i][j] = (hpfabs > ((hfnbrave - hpfabs) * impthrDiv24));
STVFU(impish[i][j], vselfzero(vmaskf_gt(hpfabsv, (hfnbravev - hpfabsv)*impthrDiv24v), onev));
}
#endif
for (; j < width - 2; j++) {
hpfabs = fabs(ncie->sh_p[i][j] - lpf[i][j]);
//block average of high pass data
for (i1 = max(0, i - 2), hfnbrave = 0; i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 <= j + 2; j1++ ) {
hfnbrave += fabs(ncie->sh_p[i1][j1] - lpf[i1][j1]);
}
impish[i][j] = (hpfabs > ((hfnbrave - hpfabs) * impthrDiv24));
}
for (; j < width; j++) {
hpfabs = fabs(ncie->sh_p[i][j] - lpf[i][j]);
@@ -422,42 +381,34 @@ SSEFUNCTION void ImProcFunctions::impulse_nrcam (CieImage* ncie, double thresh,
#pragma omp parallel
#endif
{
int j;
float2 sincosval;
#ifdef __SSE2__
vfloat2 sincosvalv;
__m128 piidv = _mm_set1_ps( piid );
__m128 tempv;
vfloat piidv = F2V( piid );
vfloat tempv;
#endif
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < height; i++) {
int j = 0;
#ifdef __SSE2__
for (j = 0; j < width - 3; j += 4) {
for (; j < width - 3; j += 4) {
sincosvalv = xsincosf(piidv * LVFU(ncie->h_p[i][j]));
tempv = LVFU(ncie->C_p[i][j]);
_mm_storeu_ps(&sraa[i][j], tempv * sincosvalv.y);
_mm_storeu_ps(&srbb[i][j], tempv * sincosvalv.x);
}
for (; j < width; j++) {
sincosval = xsincosf(piid * ncie->h_p[i][j]);
sraa[i][j] = ncie->C_p[i][j] * sincosval.y;
srbb[i][j] = ncie->C_p[i][j] * sincosval.x;
}
#else
for (j = 0; j < width; j++) {
sincosval = xsincosf(piid * ncie->h_p[i][j]);
sraa[i][j] = ncie->C_p[i][j] * sincosval.y;
srbb[i][j] = ncie->C_p[i][j] * sincosval.x;
STVFU(sraa[i][j], tempv * sincosvalv.y);
STVFU(srbb[i][j], tempv * sincosvalv.x);
}
#endif
for (; j < width; j++) {
float2 sincosval = xsincosf(piid * ncie->h_p[i][j]);
sraa[i][j] = ncie->C_p[i][j] * sincosval.y;
srbb[i][j] = ncie->C_p[i][j] * sincosval.x;
}
}
}
@@ -488,10 +439,6 @@ SSEFUNCTION void ImProcFunctions::impulse_nrcam (CieImage* ncie, double thresh,
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = 0; j1 <= j + 2; j1++ ) {
if (i1 == i && j1 == j) {
continue;
}
if (impish[i1][j1]) {
continue;
}
@@ -520,10 +467,6 @@ SSEFUNCTION void ImProcFunctions::impulse_nrcam (CieImage* ncie, double thresh,
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 <= j + 2; j1++ ) {
if (i1 == i && j1 == j) {
continue;
}
if (impish[i1][j1]) {
continue;
}
@@ -552,10 +495,6 @@ SSEFUNCTION void ImProcFunctions::impulse_nrcam (CieImage* ncie, double thresh,
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 < width; j1++ ) {
if (i1 == i && j1 == j) {
continue;
}
if (impish[i1][j1]) {
continue;
}
@@ -583,41 +522,32 @@ SSEFUNCTION void ImProcFunctions::impulse_nrcam (CieImage* ncie, double thresh,
#endif
{
#ifdef __SSE2__
__m128 interav, interbv;
__m128 piidv = _mm_set1_ps(piid);
vfloat interav, interbv;
vfloat piidv = F2V(piid);
#endif // __SSE2__
int j;
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++ ) {
int j = 0;
#ifdef __SSE2__
for(j = 0; j < width - 3; j += 4) {
for(; j < width - 3; j += 4) {
interav = LVFU(sraa[i][j]);
interbv = LVFU(srbb[i][j]);
_mm_storeu_ps(&ncie->h_p[i][j], (xatan2f(interbv, interav)) / piidv);
_mm_storeu_ps(&ncie->C_p[i][j], _mm_sqrt_ps(SQRV(interbv) + SQRV(interav)));
STVFU(ncie->h_p[i][j], (xatan2f(interbv, interav)) / piidv);
STVFU(ncie->C_p[i][j], vsqrtf(SQRV(interbv) + SQRV(interav)));
}
#endif
for(; j < width; j++) {
float intera = sraa[i][j];
float interb = srbb[i][j];
ncie->h_p[i][j] = (xatan2f(interb, intera)) / piid;
ncie->C_p[i][j] = sqrt(SQR(interb) + SQR(intera));
}
#else
for(j = 0; j < width; j++) {
float intera = sraa[i][j];
float interb = srbb[i][j];
ncie->h_p[i][j] = (xatan2f(interb, intera)) / piid;
ncie->C_p[i][j] = sqrt(SQR(interb) + SQR(intera));
}
#endif
}
}