diff --git a/rtengine/CMakeLists.txt b/rtengine/CMakeLists.txt index ff3024beb..74497d7d0 100644 --- a/rtengine/CMakeLists.txt +++ b/rtengine/CMakeLists.txt @@ -32,6 +32,7 @@ set(RTENGINESOURCEFILES EdgePreservingDecomposition.cc FTblockDN.cc PF_correct_RT.cc + ahd_demosaic_RT.cc amaze_demosaic_RT.cc cJSON.c calc_distort.cc diff --git a/rtengine/ahd_demosaic_RT.cc b/rtengine/ahd_demosaic_RT.cc new file mode 100644 index 000000000..f394fbfc7 --- /dev/null +++ b/rtengine/ahd_demosaic_RT.cc @@ -0,0 +1,230 @@ +/* + * This file is part of RawTherapee. + * + * Copyright (c) 2018 Ingo Weyrich (heckflosse67@gmx.de) + * + * RawTherapee is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * RawTherapee is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with RawTherapee. If not, see . + */ + +// +// Adaptive Homogeneity-Directed interpolation is based on +// the work of Keigo Hirakawa, Thomas Parks, and Paul Lee. +// Optimized for speed and reduced memory usage 2018 Ingo Weyrich +// + +#include "rtengine.h" +#include "rawimagesource.h" +#include "rt_math.h" +#include "../rtgui/multilangmgr.h" +#include "median.h" +#include "StopWatch.h" + +namespace rtengine +{ +#define TS 144 +void RawImageSource::ahd_demosaic() +{ + BENCHFUN + + constexpr int dir[4] = { -1, 1, -TS, TS }; + float xyz_cam[3][3]; + LUTf cbrt(65536); + + int width = W, height = H; + + constexpr double xyz_rgb[3][3] = { /* XYZ from RGB */ + { 0.412453, 0.357580, 0.180423 }, + { 0.212671, 0.715160, 0.072169 }, + { 0.019334, 0.119193, 0.950227 } + }; + + constexpr float d65_white[3] = { 0.950456, 1, 1.088754 }; + + volatile double progress = 0.0; + if (plistener) { + plistener->setProgressStr (Glib::ustring::compose(M("TP_RAW_DMETHOD_PROGRESSBAR"), RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::AHD))); + plistener->setProgress (0.0); + } + + for (int i = 0; i < 0x10000; i++) { + double r = (double)i / 65535.0; + cbrt[i] = r > 0.008856 ? std::cbrt(r) : 7.787 * r + 16 / 116.0; + } + + for (int i = 0; i < 3; i++) + for (unsigned int j = 0; j < 3; j++) { + xyz_cam[i][j] = 0; + for (int k = 0; k < 3; k++) { + xyz_cam[i][j] += xyz_rgb[i][k] * imatrices.rgb_cam[k][j] / d65_white[i]; + } + } + + border_interpolate2(W, H, 5, rawData, red, green, blue); + +#ifdef _OPENMP +#pragma omp parallel +#endif +{ + int progresscounter = 0; + float (*pix), (*rix)[3]; + float ldiff[2][4], abdiff[2][4]; + float (*lix)[3]; + char *buffer = (char *) malloc (12 * TS * TS * sizeof(float) + 2 * TS * TS * sizeof(uint16_t)); /* 1053 kB per core */ + float (*rgb)[TS][TS][3] = (float(*)[TS][TS][3]) buffer; + float (*lab)[TS][TS][3] = (float(*)[TS][TS][3])(buffer + 6 * TS * TS * sizeof(float)); + uint16_t (*homo)[TS][TS] = (uint16_t(*)[TS][TS])(buffer + 12 * TS * TS * sizeof(float)); + +#ifdef _OPENMP + #pragma omp for collapse(2) schedule(dynamic) nowait +#endif + for (int top = 2; top < height - 5; top += TS - 6) { + for (int left = 2; left < width - 5; left += TS - 6) { + // Interpolate green horizontally and vertically: + for (int row = top; row < top + TS && row < height - 2; row++) { + for (int col = left + (FC(row, left) & 1); col < std::min(left + TS, width - 2); col += 2) { + pix = &(rawData[row][col]); + float val0 = 0.25f * ((pix[-1] + pix[0] + pix[1]) * 2 + - pix[-2] - pix[2]) ; + rgb[0][row - top][col - left][1] = median(val0, pix[-1], pix[1]); + float val1 = 0.25f * ((pix[-width] + pix[0] + pix[width]) * 2 + - pix[-2 * width] - pix[2 * width]) ; + rgb[1][row - top][col - left][1] = median(val1, pix[-width], pix[width]); + } + } + + // Interpolate red and blue, and convert to CIELab: + for (int d = 0; d < 2; d++) + for (int row = top + 1; row < top + TS - 1 && row < height - 3; row++) { + int cng = FC(row + 1, FC(row + 1, 0) & 1); + for (int col = left + 1; col < std::min(left + TS - 1, width - 3); col++) { + pix = &(rawData[row][col]); + rix = &rgb[d][row - top][col - left]; + lix = &lab[d][row - top][col - left]; + if (FC(row, col) == 1) { + rix[0][2 - cng] = CLIP(pix[0] + (0.5f * (pix[-1] + pix[1] + - rix[-1][1] - rix[1][1] ) )); + rix[0][cng] = CLIP(pix[0] + (0.5f * (pix[-width] + pix[width] + - rix[-TS][1] - rix[TS][1]))); + rix[0][1] = pix[0]; + } else { + rix[0][cng] = CLIP(rix[0][1] + (0.25f * (pix[-width - 1] + pix[-width + 1] + + pix[+width - 1] + pix[+width + 1] + - rix[-TS - 1][1] - rix[-TS + 1][1] + - rix[+TS - 1][1] - rix[+TS + 1][1]))); + rix[0][2 - cng] = pix[0]; + } + float xyz0 = 0.f; + float xyz1 = 0.f; + float xyz2 = 0.f; + + for(unsigned int c = 0; c < 3; ++c) { + xyz0 += xyz_cam[0][c] * rix[0][c]; + xyz1 += xyz_cam[1][c] * rix[0][c]; + xyz2 += xyz_cam[2][c] * rix[0][c]; + } + + xyz0 = cbrt[xyz0]; + xyz1 = cbrt[xyz1]; + xyz2 = cbrt[xyz2]; + + lix[0][0] = 116.f * xyz1 - 16.f; + lix[0][1] = 500.f * (xyz0 - xyz1); + lix[0][2] = 200.f * (xyz1 - xyz2); + } + } + + // Build homogeneity maps from the CIELab images: + + for (int row = top + 2; row < top + TS - 2 && row < height - 4; row++) { + int tr = row - top; + + for (int col = left + 2, tc = 2; col < left + TS - 2 && col < width - 4; col++, tc++) { + for (int d = 0; d < 2; d++) { + lix = &lab[d][tr][tc]; + + for (int i = 0; i < 4; i++) { + ldiff[d][i] = std::fabs(lix[0][0] - lix[dir[i]][0]); + abdiff[d][i] = SQR(lix[0][1] - lix[dir[i]][1]) + + SQR(lix[0][2] - lix[dir[i]][2]); + } + } + + float leps = min(max(ldiff[0][0], ldiff[0][1]), + max(ldiff[1][2], ldiff[1][3])); + float abeps = min(max(abdiff[0][0], abdiff[0][1]), + max(abdiff[1][2], abdiff[1][3])); + + for (int d = 0; d < 2; d++) { + homo[d][tr][tc] = 0; + for (int i = 0; i < 4; i++) { + if (ldiff[d][i] <= leps && abdiff[d][i] <= abeps) { + homo[d][tr][tc]++; + } + } + } + } + } + + // Combine the most homogenous pixels for the final result: + for (int row = top + 3; row < top + TS - 3 && row < height - 5; row++) { + int tr = row - top; + + for (int col = left + 3, tc = 3; col < std::min(left + TS - 3, width - 5); col++, tc++) { + uint16_t hm0 = 0, hm1 = 0; + for (int i = tr - 1; i <= tr + 1; i++) + for (int j = tc - 1; j <= tc + 1; j++) { + hm0 += homo[0][i][j]; + hm1 += homo[1][i][j]; + } + + if (hm0 != hm1) { + int dir = hm1 > hm0; + red[row][col] = rgb[dir][tr][tc][0]; + green[row][col] = rgb[dir][tr][tc][1]; + blue[row][col] = rgb[dir][tr][tc][2]; + } else { + red[row][col] = 0.5f * (rgb[0][tr][tc][0] + rgb[1][tr][tc][0]); + green[row][col] = 0.5f * (rgb[0][tr][tc][1] + rgb[1][tr][tc][1]); + blue[row][col] = 0.5f * (rgb[0][tr][tc][2] + rgb[1][tr][tc][2]); + } + } + } + + if(plistener) { + progresscounter++; + + if(progresscounter % 32 == 0) { +#ifdef _OPENMP + #pragma omp critical (ahdprogress) +#endif + { + progress += (double)32 * ((TS - 32) * (TS - 32)) / (height * width); + progress = progress > 1.0 ? 1.0 : progress; + plistener->setProgress(progress); + } + } + } + + } + } + free (buffer); +} + if(plistener) { + plistener->setProgress (1.0); + } + +} +#undef TS + +} \ No newline at end of file diff --git a/rtengine/demosaic_algos.cc b/rtengine/demosaic_algos.cc index a806268d0..5955c758b 100644 --- a/rtengine/demosaic_algos.cc +++ b/rtengine/demosaic_algos.cc @@ -37,7 +37,6 @@ #include "sleef.c" #include "opthelper.h" #include "median.h" -#define BENCHMARK #include "StopWatch.h" #ifdef _OPENMP #include @@ -1221,7 +1220,7 @@ void RawImageSource::lmmse_interpolate_omp(int winw, int winh, array2D &r // apply low pass filter on differential colors #ifdef _OPENMP - #pragma omp for + #pragma omp for #endif for (int rr = 4; rr < rr1 - 4; rr++) @@ -1447,7 +1446,7 @@ void RawImageSource::lmmse_interpolate_omp(int winw, int winh, array2D &r // interpolate R/B at B/R location #ifdef _OPENMP - #pragma omp for + #pragma omp for #endif for (int rr = 1; rr < rr1 - 1; rr++) @@ -2328,208 +2327,6 @@ void RawImageSource::igv_interpolate(int winw, int winh) } #endif - -/* - Adaptive Homogeneity-Directed interpolation is based on - the work of Keigo Hirakawa, Thomas Parks, and Paul Lee. - Optimized for speed and reduced memory usage 2018 Ingo Weyrich - */ - -#define TS 144 -void RawImageSource::ahd_demosaic() -{ - BENCHFUN - - constexpr int dir[4] = { -1, 1, -TS, TS }; - float xyz_cam[3][3]; - LUTf cbrt(65536); - - int width = W, height = H; - - constexpr double xyz_rgb[3][3] = { /* XYZ from RGB */ - { 0.412453, 0.357580, 0.180423 }, - { 0.212671, 0.715160, 0.072169 }, - { 0.019334, 0.119193, 0.950227 } - }; - - constexpr float d65_white[3] = { 0.950456, 1, 1.088754 }; - - volatile double progress = 0.0; - if (plistener) { - plistener->setProgressStr (Glib::ustring::compose(M("TP_RAW_DMETHOD_PROGRESSBAR"), RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::AHD))); - plistener->setProgress (0.0); - } - - for (int i = 0; i < 0x10000; i++) { - double r = (double)i / 65535.0; - cbrt[i] = r > 0.008856 ? std::cbrt(r) : 7.787 * r + 16 / 116.0; - } - - for (int i = 0; i < 3; i++) - for (unsigned int j = 0; j < 3; j++) { - xyz_cam[i][j] = 0; - for (int k = 0; k < 3; k++) { - xyz_cam[i][j] += xyz_rgb[i][k] * imatrices.rgb_cam[k][j] / d65_white[i]; - } - } - - border_interpolate2(W, H, 5, rawData, red, green, blue); - -#ifdef _OPENMP -#pragma omp parallel -#endif -{ - int progresscounter = 0; - float (*pix), (*rix)[3]; - float ldiff[2][4], abdiff[2][4]; - float (*lix)[3]; - char *buffer = (char *) malloc (12 * TS * TS * sizeof(float) + 2 * TS * TS * sizeof(uint16_t)); /* 1053 kB per core */ - float (*rgb)[TS][TS][3] = (float(*)[TS][TS][3]) buffer; - float (*lab)[TS][TS][3] = (float(*)[TS][TS][3])(buffer + 6 * TS * TS * sizeof(float)); - uint16_t (*homo)[TS][TS] = (uint16_t(*)[TS][TS])(buffer + 12 * TS * TS * sizeof(float)); - -#ifdef _OPENMP - #pragma omp for collapse(2) schedule(dynamic) nowait -#endif - for (int top = 2; top < height - 5; top += TS - 6) { - for (int left = 2; left < width - 5; left += TS - 6) { - // Interpolate green horizontally and vertically: - for (int row = top; row < top + TS && row < height - 2; row++) { - for (int col = left + (FC(row, left) & 1); col < std::min(left + TS, width - 2); col += 2) { - pix = &(rawData[row][col]); - float val0 = 0.25f * ((pix[-1] + pix[0] + pix[1]) * 2 - - pix[-2] - pix[2]) ; - rgb[0][row - top][col - left][1] = median(val0, pix[-1], pix[1]); - float val1 = 0.25f * ((pix[-width] + pix[0] + pix[width]) * 2 - - pix[-2 * width] - pix[2 * width]) ; - rgb[1][row - top][col - left][1] = median(val1, pix[-width], pix[width]); - } - } - - // Interpolate red and blue, and convert to CIELab: - for (int d = 0; d < 2; d++) - for (int row = top + 1; row < top + TS - 1 && row < height - 3; row++) { - int cng = FC(row + 1, FC(row + 1, 0) & 1); - for (int col = left + 1; col < std::min(left + TS - 1, width - 3); col++) { - pix = &(rawData[row][col]); - rix = &rgb[d][row - top][col - left]; - lix = &lab[d][row - top][col - left]; - if (FC(row, col) == 1) { - rix[0][2 - cng] = CLIP(pix[0] + (0.5f * (pix[-1] + pix[1] - - rix[-1][1] - rix[1][1] ) )); - rix[0][cng] = CLIP(pix[0] + (0.5f * (pix[-width] + pix[width] - - rix[-TS][1] - rix[TS][1]))); - rix[0][1] = pix[0]; - } else { - rix[0][cng] = CLIP(rix[0][1] + (0.25f * (pix[-width - 1] + pix[-width + 1] - + pix[+width - 1] + pix[+width + 1] - - rix[-TS - 1][1] - rix[-TS + 1][1] - - rix[+TS - 1][1] - rix[+TS + 1][1]))); - rix[0][2 - cng] = pix[0]; - } - float xyz0 = 0.f; - float xyz1 = 0.f; - float xyz2 = 0.f; - - for(unsigned int c = 0; c < 3; ++c) { - xyz0 += xyz_cam[0][c] * rix[0][c]; - xyz1 += xyz_cam[1][c] * rix[0][c]; - xyz2 += xyz_cam[2][c] * rix[0][c]; - } - - xyz0 = cbrt[xyz0]; - xyz1 = cbrt[xyz1]; - xyz2 = cbrt[xyz2]; - - lix[0][0] = 116.f * xyz1 - 16.f; - lix[0][1] = 500.f * (xyz0 - xyz1); - lix[0][2] = 200.f * (xyz1 - xyz2); - } - } - - // Build homogeneity maps from the CIELab images: - - for (int row = top + 2; row < top + TS - 2 && row < height - 4; row++) { - int tr = row - top; - - for (int col = left + 2, tc = 2; col < left + TS - 2 && col < width - 4; col++, tc++) { - for (int d = 0; d < 2; d++) { - lix = &lab[d][tr][tc]; - - for (int i = 0; i < 4; i++) { - ldiff[d][i] = std::fabs(lix[0][0] - lix[dir[i]][0]); - abdiff[d][i] = SQR(lix[0][1] - lix[dir[i]][1]) - + SQR(lix[0][2] - lix[dir[i]][2]); - } - } - - float leps = min(max(ldiff[0][0], ldiff[0][1]), - max(ldiff[1][2], ldiff[1][3])); - float abeps = min(max(abdiff[0][0], abdiff[0][1]), - max(abdiff[1][2], abdiff[1][3])); - - for (int d = 0; d < 2; d++) { - homo[d][tr][tc] = 0; - for (int i = 0; i < 4; i++) { - if (ldiff[d][i] <= leps && abdiff[d][i] <= abeps) { - homo[d][tr][tc]++; - } - } - } - } - } - - // Combine the most homogenous pixels for the final result: - for (int row = top + 3; row < top + TS - 3 && row < height - 5; row++) { - int tr = row - top; - - for (int col = left + 3, tc = 3; col < std::min(left + TS - 3, width - 5); col++, tc++) { - uint16_t hm0 = 0, hm1 = 0; - for (int i = tr - 1; i <= tr + 1; i++) - for (int j = tc - 1; j <= tc + 1; j++) { - hm0 += homo[0][i][j]; - hm1 += homo[1][i][j]; - } - - if (hm0 != hm1) { - int dir = hm1 > hm0; - red[row][col] = rgb[dir][tr][tc][0]; - green[row][col] = rgb[dir][tr][tc][1]; - blue[row][col] = rgb[dir][tr][tc][2]; - } else { - red[row][col] = 0.5f * (rgb[0][tr][tc][0] + rgb[1][tr][tc][0]); - green[row][col] = 0.5f * (rgb[0][tr][tc][1] + rgb[1][tr][tc][1]); - blue[row][col] = 0.5f * (rgb[0][tr][tc][2] + rgb[1][tr][tc][2]); - } - } - } - - if(plistener) { - progresscounter++; - - if(progresscounter % 32 == 0) { -#ifdef _OPENMP - #pragma omp critical (ahdprogress) -#endif - { - progress += (double)32 * ((TS - 32) * (TS - 32)) / (height * width); - progress = progress > 1.0 ? 1.0 : progress; - plistener->setProgress(progress); - } - } - } - - } - } - free (buffer); -} - if(plistener) { - plistener->setProgress (1.0); - } - -} -#undef TS - void RawImageSource::nodemosaic(bool bw) { red(W, H);