further cleanup of rtengine/PF_correct_RT.cc

This commit is contained in:
heckflosse
2018-02-19 02:09:58 +01:00
parent ad0e05f846
commit d05a98807c

View File

@@ -7,6 +7,7 @@
//
// code dated: November 24, 2010
// optimized: September 2013, Ingo Weyrich
// further optimized: February 2018, Ingo Weyrich
//
// PF_correct_RT.cc is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
@@ -95,7 +96,7 @@ void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
}
}
#endif // __SSE2__
#endif
for(int j = 0; j < width; j++) {
if (chCurve) {
@@ -112,10 +113,10 @@ void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
chparam *= 2.f; // increased action if chparam < 0
}
chromaChfactor = 1.f + chparam;
chromaChfactor = SQR(1.f + chparam);
}
float chroma = SQR(chromaChfactor * (src->a[i][j] - tmpa[i][j])) + SQR(chromaChfactor * (src->b[i][j] - tmpb[i][j])); //modulate chroma function hue
float chroma = chromaChfactor * (SQR(src->a[i][j] - tmpa[i][j]) + SQR(src->b[i][j] - tmpb[i][j])); //modulate chroma function hue
chromave += chroma;
fringe[i * width + j] = chroma;
}
@@ -123,7 +124,8 @@ void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
}
chromave /= (height * width);
std::cout << chromave << std::endl;
if(chromave > 0.f) {
// now as chromave is calculated, we postprocess fringe to reduce the number of divisions in future
#ifdef _OPENMP
#pragma omp parallel for simd
@@ -216,7 +218,7 @@ void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
}
}
}//end of ab channel averaging
}
if(chCurve) {
delete chCurve;
}
@@ -237,7 +239,6 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
// local variables
const int width = src->W, height = src->H;
constexpr float eps2 = 0.01f;
//temporary array to store chromaticity
float *fringe = new float[width * height];
@@ -298,8 +299,7 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
#pragma omp for
#endif
for(int i = 0; i < height; i++ )
{
for(int i = 0; i < height; i++ ) {
int j = 0;
for(; j < width - 3; j += 4) {
STVFU(fringe[i * width + j], xatan2f(LVFU(srbb[i][j]), LVFU(sraa[i][j])));
@@ -339,10 +339,10 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
chparam *= 2.f; // increase action if chparam < 0
}
chromaChfactor = 1.f + chparam;
chromaChfactor = SQR(1.f + chparam);
}
float chroma = SQR(chromaChfactor * (sraa[i][j] - tmaa[i][j])) + SQR(chromaChfactor * (srbb[i][j] - tmbb[i][j])); //modulate chroma function hue
float chroma = chromaChfactor * (SQR(sraa[i][j] - tmaa[i][j]) + SQR(srbb[i][j] - tmbb[i][j])); //modulate chroma function hue
chromave += chroma;
fringe[i * width + j] = chroma;
}
@@ -351,16 +351,17 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
chromave /= (height * width);
if(chromave > 0.f) {
// now as chromave is calculated, we postprocess fringe to reduce the number of divisions in future
#ifdef _OPENMP
#pragma omp parallel for simd
#endif
for(int j = 0; j < width * height; j++) {
fringe[j] = 1.f / (fringe[j] + chromave + eps2);
fringe[j] = 1.f / (fringe[j] + chromave);
}
const float threshfactor = 1.f / (SQR(thresh / 33.f) * chromave * 5.0f + chromave + eps2);
const float threshfactor = 1.f / (SQR(thresh / 33.f) * chromave * 5.0f + chromave);
// Issue 1674:
// often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky.
@@ -475,6 +476,7 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
src->C_p[i][j] = sqrt(SQR(interb) + SQR(intera));
}
}
}
if(chCurve) {
delete chCurve;
@@ -491,7 +493,6 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
const int width = src->W, height = src->H;
constexpr float eps = 1.f;
constexpr float eps2 = 0.01f;
const JaggedArray<float> tmL(width, height);
@@ -546,7 +547,7 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
shmedv += vabsf(LVFU(src->sh_p[i1][j1]) - LVFU(tmL[i1][j1]));
}
STVFU(badpix[i * width + j], vself(vmaskf_gt(shfabsv, (shmedv - shfabsv) * shthrv), onev, ZEROV));
STVFU(badpix[i * width + j], vselfzero(vmaskf_gt(shfabsv, (shmedv - shfabsv) * shthrv), onev));
}
#endif
for (; j < width - 2; j++) {
@@ -825,13 +826,14 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
chrommed /= (height * width);
if(chrommed > 0.f) {
// now chrommed is calculated, so we postprocess badpix to reduce the number of divisions in future
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef __SSE2__
vfloat sumv = F2V(chrommed + eps2);
vfloat chrommedv = F2V(chrommed);
vfloat onev = F2V(1.f);
#endif
#ifdef _OPENMP
@@ -842,16 +844,16 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
int j = 0;
#ifdef __SSE2__
for(; j < width - 3; j += 4) {
STVFU(badpix[i * width + j], onev / (LVFU(badpix[i * width + j]) + sumv));
STVFU(badpix[i * width + j], onev / (LVFU(badpix[i * width + j]) + chrommedv));
}
#endif
for(; j < width; j++) {
badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed + eps2);
badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed);
}
}
}
const float threshfactor = 1.f / ((thresh * chrommed) / 33.f + chrommed + eps2);
const float threshfactor = 1.f / ((thresh * chrommed) / 33.f + chrommed);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
@@ -946,7 +948,7 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
}
}
}
}
delete [] badpix;
}
@@ -959,7 +961,6 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, in
const int width = src->W, height = src->H;
constexpr float eps = 1.f;
constexpr float eps2 = 0.01f;
const JaggedArray<float> tmL(width, height);
@@ -995,11 +996,11 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, in
float shfabs = fabs(src->L[i][j] - tmL[i][j]);
float shmed = 0.0f;
for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++) {
for (int j1 = 0; j1 <= j + 2; j1++) {
shmed += fabs(src->L[i1][j1] - tmL[i1][j1]);
}
}
badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr));
}
@@ -1009,23 +1010,23 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, in
vfloat shfabsv = vabsf(LVFU(src->L[i][j]) - LVFU(tmL[i][j]));
vfloat shmedv = ZEROV;
for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) {
shmedv += vabsf(LVFU(src->L[i1][j1]) - LVFU(tmL[i1][j1]));
}
STVFU(badpix[i * width + j], vself(vmaskf_gt(shfabsv, (shmedv - shfabsv) * shthrv), onev, ZEROV));
}
STVFU(badpix[i * width + j], vselfzero(vmaskf_gt(shfabsv, (shmedv - shfabsv) * shthrv), onev));
}
#endif
for (; j < width - 2; j++) {
float shfabs = fabs(src->L[i][j] - tmL[i][j]);
float shmed = 0.0f;
for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) {
shmed += fabs(src->L[i1][j1] - tmL[i1][j1]);
}
}
badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr));
}
@@ -1033,11 +1034,11 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, in
float shfabs = fabs(src->L[i][j] - tmL[i][j]);
float shmed = 0.0f;
for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 < width; j1++) {
shmed += fabs(src->L[i1][j1] - tmL[i1][j1]);
}
}
badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr));
}
}
@@ -1054,109 +1055,94 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, in
continue;
}
float norm = 0.0f;
float shsum = 0.0f;
float sum = 0.0f;
int tot = 0;
float norm = 0.f;
float shsum = 0.f;
float sum = 0.f;
float tot = 0.f;
for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++) {
for (int j1 = 0; j1 <= j + 2; j1++) {
if (i1 == i && j1 == j) {
continue;
}
if (badpix[i1 * width + j1]) {
continue;
}
sum += src->L[i1][j1];
tot++;
tot += 1.f;
float dirsh = 1.f / (SQR(src->L[i1][j1] - src->L[i][j]) + eps);
shsum += dirsh * src->L[i1][j1];
norm += dirsh;
}
}
if (norm > 0.f) {
src->L[i][j] = shsum / norm;
} else {
if(tot > 0) {
} else if(tot > 0.f) {
src->L[i][j] = sum / tot;
}
}
}
for (; j < width - 2; j++) {
if (!badpix[i * width + j]) {
continue;
}
float norm = 0.0f;
float shsum = 0.0f;
float sum = 0.0f;
int tot = 0;
float norm = 0.f;
float shsum = 0.f;
float sum = 0.f;
float tot = 0.f;
for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) {
if (i1 == i && j1 == j) {
continue;
}
if (badpix[i1 * width + j1]) {
continue;
}
sum += src->L[i1][j1];
tot++;
tot += 1.f;
float dirsh = 1.f / (SQR(src->L[i1][j1] - src->L[i][j]) + eps);
shsum += dirsh * src->L[i1][j1];
norm += dirsh;
}
}
if (norm > 0.f) {
src->L[i][j] = shsum / norm;
} else {
if(tot > 0) {
} else if(tot > 0.f) {
src->L[i][j] = sum / tot;
}
}
}
for (; j < width; j++) {
if (!badpix[i * width + j]) {
continue;
}
float norm = 0.0f;
float shsum = 0.0f;
float sum = 0.0f;
int tot = 0;
float norm = 0.f;
float shsum = 0.f;
float sum = 0.f;
float tot = 0.f;
for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 < width; j1++) {
if (i1 == i && j1 == j) {
continue;
}
if (badpix[i1 * width + j1]) {
continue;
}
sum += src->L[i1][j1];
tot++;
tot += 1.f;
float dirsh = 1.f / (SQR(src->L[i1][j1] - src->L[i][j]) + eps);
shsum += dirsh * src->L[i1][j1];
norm += dirsh;
}
}
if (norm > 0.f) {
src->L[i][j] = shsum / norm;
} else {
if(tot > 0) {
} else if(tot > 0.f) {
src->L[i][j] = sum / tot;
}
}
}
}
// end luma badpixels
@@ -1188,16 +1174,16 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, in
}
chrommed /= (height * width);
float threshfactor = (thresh * chrommed) / 33.f;
if(chrommed > 0.f) {
// now chrommed is calculated, so we postprocess badpix to reduce the number of divisions in future
// now as chrommed is calculated, we postprocess badpix to reduce the number of divisions in future
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef __SSE2__
vfloat sumv = F2V(chrommed + eps2);
vfloat chrommedv = F2V(chrommed);
vfloat onev = F2V(1.f);
#endif
#ifdef _OPENMP
@@ -1208,27 +1194,22 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, in
int j = 0;
#ifdef __SSE2__
for(; j < width - 3; j += 4) {
STVFU(badpix[i * width + j], onev / (LVFU(badpix[i * width + j]) + sumv));
STVFU(badpix[i * width + j], onev / (LVFU(badpix[i * width + j]) + chrommedv));
}
#endif
for(; j < width; j++) {
badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed + eps2);
badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed);
}
}
}
// because we changed the values of badpix we also have to recalculate threshfactor
threshfactor = 1.f / (threshfactor + chrommed + eps2);
const float threshfactor = 1.f / ((thresh * chrommed) / 33.f + chrommed);
chrom *= 327.68f;
chrom *= chrom;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++ ) {
@@ -1240,14 +1221,14 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, in
float btot = 0.f;
float norm = 0.f;
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++)
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) {
for (int j1 = 0; j1 < j + halfwin; j1++) {
float wt = badpix[i1 * width + j1];
atot += wt * src->a[i1][j1];
btot += wt * src->b[i1][j1];
norm += wt;
}
}
if(SQR(atot) + SQR(btot) < chrom * SQR(norm)) {
src->a[i][j] = atot / norm;
src->b[i][j] = btot / norm;
@@ -1266,13 +1247,14 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, in
vfloat btotv = ZEROV;
vfloat normv = ZEROV;
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++)
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
vfloat wtv = LVFU(badpix[i1 * width + j1]);
atotv += wtv * LVFU(src->a[i1][j1]);
btotv += wtv * LVFU(src->b[i1][j1]);
normv += wtv;
}
}
selMask = vandm(selMask, vmaskf_lt(SQRV(atotv) + SQR(btotv), chromv * SQRV(normv)));
if(_mm_movemask_ps((vfloat)selMask)) {
vfloat aOrig = LVFU(src->a[i][j]);
@@ -1290,14 +1272,14 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, in
float btot = 0.f;
float norm = 0.f;
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++)
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
float wt = badpix[i1 * width + j1];
atot += wt * src->a[i1][j1];
btot += wt * src->b[i1][j1];
norm += wt;
}
}
if(SQR(atot) + SQR(btot) < chrom * SQR(norm)) {
src->a[i][j] = atot / norm;
src->b[i][j] = btot / norm;
@@ -1312,14 +1294,14 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, in
float btot = 0.f;
float norm = 0.f;
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++)
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < width; j1++) {
float wt = badpix[i1 * width + j1];
atot += wt * src->a[i1][j1];
btot += wt * src->b[i1][j1];
norm += wt;
}
}
if(SQR(atot) + SQR(btot) < chrom * SQR(norm)) {
src->a[i][j] = atot / norm;
src->b[i][j] = btot / norm;
@@ -1328,7 +1310,6 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, in
}
}
}
delete [] badpix;
}