Issue 2134: removed obsolete raw highlight preservation setting from GUI (still left in procparams for backwards compatilibility)
This commit is contained in:
814
rtengine/EdgePreservingDecomposition.cc
Normal file
814
rtengine/EdgePreservingDecomposition.cc
Normal file
@@ -0,0 +1,814 @@
|
||||
#include <cmath>
|
||||
#include "rt_math.h"
|
||||
#include "EdgePreservingDecomposition.h"
|
||||
#ifdef _OPENMP
|
||||
#include <omp.h>
|
||||
#endif
|
||||
#include "sleef.c"
|
||||
#include "opthelper.h"
|
||||
|
||||
#define pow_F(a,b) (xexpf(b*xlogf(a)))
|
||||
|
||||
#define DIAGONALS 5
|
||||
#define DIAGONALSP1 6
|
||||
|
||||
/* Solves A x = b by the conjugate gradient method, where instead of feeding it the matrix A you feed it a function which
|
||||
calculates A x where x is some vector. Stops when rms residual < RMSResidual or when maximum iterates is reached.
|
||||
Stops at n iterates if MaximumIterates = 0 since that many iterates gives exact solution. Applicable to symmetric positive
|
||||
definite problems only, which is what unconstrained smooth optimization pretty much always is.
|
||||
Parameter pass can be passed through, containing whatever info you like it to contain (matrix info?).
|
||||
Takes less memory with OkToModify_b = true, and Preconditioner = NULL. */
|
||||
float *SparseConjugateGradient(void Ax(float *Product, float *x, void *Pass), float *b, int n, bool OkToModify_b,
|
||||
float *x, float RMSResidual, void *Pass, int MaximumIterates, void Preconditioner(float *Product, float *x, void *Pass)){
|
||||
int iterate, i;
|
||||
|
||||
char* buffer = (char*)malloc(2*n*sizeof(float)+128);
|
||||
float *r = (float*)(buffer+64);
|
||||
//Start r and x.
|
||||
if(x == NULL){
|
||||
x = new float[n];
|
||||
|
||||
memset(x, 0, sizeof(float)*n); //Zero initial guess if x == NULL.
|
||||
memcpy(r, b, sizeof(float)*n);
|
||||
}else{
|
||||
Ax(r, x, Pass);
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for // removed schedule(dynamic,10)
|
||||
#endif
|
||||
for(int ii = 0; ii < n; ii++)
|
||||
r[ii] = b[ii] - r[ii]; //r = b - A x.
|
||||
}
|
||||
//s is preconditionment of r. Without, direct to r.
|
||||
float *s = r, rs = 0.0f;
|
||||
if(Preconditioner != NULL){
|
||||
s = new float[n];
|
||||
|
||||
Preconditioner(s, r, Pass);
|
||||
}
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for reduction(+:rs) // removed schedule(dynamic,10)
|
||||
#endif
|
||||
for(int ii = 0; ii < n; ii++) {
|
||||
rs += r[ii]*s[ii];
|
||||
}
|
||||
//Search direction d.
|
||||
float *d = (float*)(buffer + n*sizeof(float) + 128);
|
||||
|
||||
memcpy(d, s, sizeof(float)*n);
|
||||
|
||||
//Store calculations of Ax in this.
|
||||
float *ax = b;
|
||||
if(!OkToModify_b) ax = new float[n];
|
||||
|
||||
//Start iterating!
|
||||
if(MaximumIterates == 0) MaximumIterates = n;
|
||||
for(iterate = 0; iterate < MaximumIterates; iterate++){
|
||||
//Get step size alpha, store ax while at it.
|
||||
float ab = 0.0f;
|
||||
Ax(ax, d, Pass);
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for reduction(+:ab)
|
||||
#endif
|
||||
for(int ii = 0; ii < n; ii++)
|
||||
ab += d[ii]*ax[ii];
|
||||
|
||||
if(ab == 0.0f) break; //So unlikely. It means perfectly converged or singular, stop either way.
|
||||
ab = rs/ab;
|
||||
|
||||
//Update x and r with this step size.
|
||||
float rms = 0.0;
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for reduction(+:rms)
|
||||
#endif
|
||||
for(int ii = 0; ii < n; ii++){
|
||||
x[ii] += ab*d[ii];
|
||||
r[ii] -= ab*ax[ii]; //"Fast recursive formula", use explicit r = b - Ax occasionally?
|
||||
rms += r[ii]*r[ii];
|
||||
}
|
||||
rms = sqrtf(rms/n);
|
||||
//Quit? This probably isn't the best stopping condition, but ok.
|
||||
if(rms < RMSResidual) break;
|
||||
|
||||
if(Preconditioner != NULL) Preconditioner(s, r, Pass);
|
||||
|
||||
//Get beta.
|
||||
ab = rs;
|
||||
rs = 0.0f;
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel
|
||||
#endif
|
||||
{
|
||||
float c = 0.0f;
|
||||
float t;
|
||||
float temp;
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for reduction(+:rs) // Summation with error correction
|
||||
#endif
|
||||
for(int ii = 0; ii < n; ii++) {
|
||||
temp = r[ii]*s[ii];
|
||||
t = rs + temp;
|
||||
if( fabsf(rs) >= fabsf(temp) )
|
||||
c += ((rs-t) + temp);
|
||||
else
|
||||
c += ((temp-t)+rs);
|
||||
rs = t;
|
||||
}
|
||||
#ifdef _OPENMP
|
||||
#pragma omp critical
|
||||
#endif
|
||||
rs += c;
|
||||
}
|
||||
|
||||
ab = rs/ab;
|
||||
|
||||
//Update search direction p.
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for(int ii = 0; ii < n; ii++)
|
||||
d[ii] = s[ii] + ab*d[ii];
|
||||
|
||||
|
||||
}
|
||||
|
||||
if(iterate == MaximumIterates)
|
||||
if(iterate != n && RMSResidual != 0.0f)
|
||||
printf("Warning: MaximumIterates (%u) reached in SparseConjugateGradient.\n", MaximumIterates);
|
||||
|
||||
if(ax != b) delete[] ax;
|
||||
if(s != r) delete[] s;
|
||||
free(buffer);
|
||||
return x;
|
||||
}
|
||||
|
||||
MultiDiagonalSymmetricMatrix::MultiDiagonalSymmetricMatrix(int Dimension, int NumberOfDiagonalsInLowerTriangle){
|
||||
n = Dimension;
|
||||
m = NumberOfDiagonalsInLowerTriangle;
|
||||
IncompleteCholeskyFactorization = NULL;
|
||||
|
||||
Diagonals = new float *[m];
|
||||
StartRows = new int [m+1];
|
||||
memset(Diagonals, 0, sizeof(float *)*m);
|
||||
memset(StartRows, 0, sizeof(int)*(m+1));
|
||||
StartRows[m] = n+1;
|
||||
}
|
||||
|
||||
MultiDiagonalSymmetricMatrix::~MultiDiagonalSymmetricMatrix(){
|
||||
if(DiagBuffer != NULL)
|
||||
free(buffer);
|
||||
else
|
||||
for(int i=0;i<m;i++)
|
||||
delete[] Diagonals[i];
|
||||
|
||||
delete[] Diagonals;
|
||||
delete[] StartRows;
|
||||
}
|
||||
|
||||
bool MultiDiagonalSymmetricMatrix::CreateDiagonal(int index, int StartRow){
|
||||
// Changed memory allocation for diagonals to avoid L1 conflict misses
|
||||
// Falls back to original version if big block could not be allocated
|
||||
int padding = 4096 - ((n*m*sizeof(float)) % 4096);
|
||||
if(index == 0){
|
||||
buffer = (char*)calloc( (n+padding) * m * sizeof(float)+ (m+16)*64 + 63,1);
|
||||
if(buffer == NULL)
|
||||
// no big memory block available => try to allocate smaller blocks
|
||||
DiagBuffer = NULL;
|
||||
else {
|
||||
DiagBuffer = (char*)( ( uintptr_t(buffer) + uintptr_t(63)) / 64 * 64);
|
||||
}
|
||||
}
|
||||
if(index >= m){
|
||||
printf("Error in MultiDiagonalSymmetricMatrix::CreateDiagonal: invalid index.\n");
|
||||
return false;
|
||||
}
|
||||
if(index > 0)
|
||||
if(StartRow <= StartRows[index - 1]){
|
||||
printf("Error in MultiDiagonalSymmetricMatrix::CreateDiagonal: each StartRow must exceed the previous.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
if(DiagBuffer != NULL)
|
||||
Diagonals[index] = (float*)(DiagBuffer+(index*(n+padding)*sizeof(float))+((index+16)*64));
|
||||
else {
|
||||
Diagonals[index] = new float[DiagonalLength(StartRow)];
|
||||
if(Diagonals[index] == NULL) {
|
||||
printf("Error in MultiDiagonalSymmetricMatrix::CreateDiagonal: memory allocation failed. Out of memory?\n");
|
||||
return false;
|
||||
}
|
||||
memset(Diagonals[index], 0, sizeof(float)*DiagonalLength(StartRow));
|
||||
}
|
||||
|
||||
StartRows[index] = StartRow;
|
||||
return true;
|
||||
}
|
||||
|
||||
inline int MultiDiagonalSymmetricMatrix::FindIndex(int StartRow) {
|
||||
//There's GOT to be a better way to do this. "Bidirectional map?"
|
||||
// Issue 1895 : Changed start of loop from zero to one
|
||||
// m is small (5 or 6)
|
||||
for(int i = 1; i < m; i++)
|
||||
if(StartRows[i] == StartRow)
|
||||
return i;
|
||||
return -1;
|
||||
}
|
||||
|
||||
bool MultiDiagonalSymmetricMatrix::LazySetEntry(float value, int row, int column){
|
||||
//On the strict upper triangle? Swap, this is ok due to symmetry.
|
||||
int i, sr;
|
||||
if(column > row)
|
||||
i = column,
|
||||
column = row,
|
||||
row = i;
|
||||
if(row >= n) return false;
|
||||
sr = row - column;
|
||||
|
||||
//Locate the relevant diagonal.
|
||||
i = FindIndex(sr);
|
||||
if(i < 0) return false;
|
||||
|
||||
Diagonals[i][column] = value;
|
||||
return true;
|
||||
}
|
||||
|
||||
SSEFUNCTION void MultiDiagonalSymmetricMatrix::VectorProduct(float* RESTRICT Product, float* RESTRICT x){
|
||||
|
||||
int srm = StartRows[m-1];
|
||||
int lm = DiagonalLength(srm);
|
||||
#ifdef _OPENMP
|
||||
#ifdef __SSE2__
|
||||
const int chunkSize = (lm-srm)/(omp_get_num_procs()*32);
|
||||
#else
|
||||
const int chunkSize = (lm-srm)/(omp_get_num_procs()*8);
|
||||
#endif
|
||||
#endif
|
||||
#pragma omp parallel
|
||||
{
|
||||
// First fill the big part in the middle
|
||||
// This can be done without intermediate stores to memory and it can be parallelized too
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for schedule(dynamic,chunkSize) nowait
|
||||
#endif
|
||||
#ifdef __SSE2__
|
||||
for(int j=srm;j<lm-3;j+=4) {
|
||||
__m128 prodv = LVFU(Diagonals[0][j]) * LVFU(x[j]);
|
||||
for(int i=m-1;i>0;i--) {
|
||||
int s = StartRows[i];
|
||||
prodv += (LVFU(Diagonals[i][j - s])*LVFU(x[j - s])) + (LVFU(Diagonals[i][j])*LVFU(x[j + s]));
|
||||
}
|
||||
_mm_storeu_ps(&Product[j],prodv);
|
||||
}
|
||||
#else
|
||||
for(int j=srm;j<lm;j++) {
|
||||
float prod = Diagonals[0][j]*x[j];
|
||||
for(int i=m-1;i>0;i--) {
|
||||
int s = StartRows[i];
|
||||
prod += (Diagonals[i][j - s]*x[j - s]) + (Diagonals[i][j]*x[j + s]);
|
||||
}
|
||||
Product[j] = prod;
|
||||
}
|
||||
|
||||
#endif
|
||||
#pragma omp single
|
||||
{
|
||||
#ifdef __SSE2__
|
||||
for(int j=lm-((lm-srm)%4);j<lm;j++) {
|
||||
float prod = Diagonals[0][j]*x[j];
|
||||
for(int i=m-1;i>0;i--) {
|
||||
int s = StartRows[i];
|
||||
prod += (Diagonals[i][j - s]*x[j - s]) + (Diagonals[i][j]*x[j + s]);
|
||||
}
|
||||
Product[j] = prod;
|
||||
}
|
||||
#endif
|
||||
// Fill remaining area
|
||||
// Loop over the stored diagonals.
|
||||
for(int i = 0; i < m; i++){
|
||||
int sr = StartRows[i];
|
||||
float *a = Diagonals[i]; //One fewer dereference.
|
||||
int l = DiagonalLength(sr);
|
||||
if(sr == 0) {
|
||||
for(int j = 0; j < srm; j++)
|
||||
Product[j] = a[j]*x[j]; //Separate, fairly simple treatment for the main diagonal.
|
||||
for(int j = lm; j < l; j++)
|
||||
Product[j] = a[j]*x[j]; //Separate, fairly simple treatment for the main diagonal.
|
||||
} else {
|
||||
// Split the loop in 3 parts, so now the big one in the middle can be parallelized without race conditions
|
||||
// updates 0 to sr - 1. Because sr is small (in the range of image-width) no benefit by omp
|
||||
for(int j=0;j<sr;j++) {
|
||||
Product[j] += a[j]*x[j + sr]; //Contribution from upper triangle
|
||||
}
|
||||
// Updates sr to l - 1. Because sr is small and l is big, this loop is parallelized
|
||||
for(int j = sr; j < srm; j++) {
|
||||
Product[j] += a[j - sr]*x[j - sr] + a[j]*x[j + sr]; //Contribution from lower and upper triangle
|
||||
}
|
||||
for(int j = lm; j < l; j++) {
|
||||
Product[j] += a[j - sr]*x[j - sr] + a[j]*x[j + sr]; //Contribution from lower and upper triangle
|
||||
}
|
||||
// Updates l to l + sr - 1. Because sr is small (in the range of image-width) no benefit by omp
|
||||
for(int j = l; j < l + sr; j++) {
|
||||
Product[j] += a[j-sr]*x[j - sr]; //Contribution from lower triangle
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool MultiDiagonalSymmetricMatrix::CreateIncompleteCholeskyFactorization(int MaxFillAbove){
|
||||
if(m == 1){
|
||||
printf("Error in MultiDiagonalSymmetricMatrix::CreateIncompleteCholeskyFactorization: just one diagonal? Can you divide?\n");
|
||||
return false;
|
||||
}
|
||||
if(StartRows[0] != 0){
|
||||
printf("Error in MultiDiagonalSymmetricMatrix::CreateIncompleteCholeskyFactorization: main diagonal required to exist for this math.\n");
|
||||
return false;
|
||||
}
|
||||
//How many diagonals in the decomposition?
|
||||
MaxFillAbove++; //Conceptually, now "fill" includes an existing diagonal. Simpler in the math that follows.
|
||||
int i, j, mic, fp;
|
||||
mic=1;
|
||||
fp=1;
|
||||
for(int ii = 1; ii < m; ii++) {
|
||||
fp = rtengine::min(StartRows[ii] - StartRows[ii - 1], MaxFillAbove); //Guarunteed positive since StartRows must be created in increasing order.
|
||||
mic=mic+fp;
|
||||
}
|
||||
//Initialize the decomposition - setup memory, start rows, etc.
|
||||
|
||||
MultiDiagonalSymmetricMatrix *ic = new MultiDiagonalSymmetricMatrix(n, mic);
|
||||
ic->CreateDiagonal(0, 0); //There's always a main diagonal in this type of decomposition.
|
||||
mic=1;
|
||||
for(int ii = 1; ii < m; ii++){
|
||||
//Set j to the number of diagonals to be created corresponding to a diagonal on this source matrix...
|
||||
j = rtengine::min(StartRows[ii] - StartRows[ii - 1], MaxFillAbove);
|
||||
|
||||
//...and create those diagonals. I want to take a moment to tell you about how much I love minimalistic loops: very much.
|
||||
while(j-- != 0)
|
||||
if(!ic->CreateDiagonal(mic++, StartRows[ii] - j)){
|
||||
//Beware of out of memory, possible for large, sparse problems if you ask for too much fill.
|
||||
printf("Error in MultiDiagonalSymmetricMatrix::CreateIncompleteCholeskyFactorization: Out of memory. Ask for less fill?\n");
|
||||
delete ic;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
//It's all initialized? Uhkay. Do the actual math then.
|
||||
int sss, ss, s;
|
||||
int k, MaxStartRow = StartRows[m - 1]; //Handy number.
|
||||
float **l = ic->Diagonals;
|
||||
float *d = ic->Diagonals[0]; //Describes D in LDLt.
|
||||
int icm = ic->m;
|
||||
int icn = ic->n;
|
||||
int* RESTRICT icStartRows = ic->StartRows;
|
||||
|
||||
//Loop over the columns.
|
||||
|
||||
// create array for quicker access to ic->StartRows
|
||||
struct s_diagmap {
|
||||
int sss;
|
||||
int ss;
|
||||
int k;
|
||||
};
|
||||
|
||||
|
||||
// Pass one: count number of needed entries
|
||||
int entrycount = 0;
|
||||
for(int i=1;i<icm;i++) {
|
||||
for(int j=1;j<icm;j++) {
|
||||
if(ic->FindIndex( icStartRows[i] + icStartRows[j]) > 0)
|
||||
entrycount ++;
|
||||
}
|
||||
}
|
||||
|
||||
// now we can create the array
|
||||
struct s_diagmap* RESTRICT DiagMap = new s_diagmap[entrycount];
|
||||
// we also need the maxvalues
|
||||
int entrynumber = 0;
|
||||
int index;
|
||||
int* RESTRICT MaxIndizes = new int[icm];
|
||||
|
||||
for(int i=1;i<icm;i++) {
|
||||
for(int j=1;j<icm;j++){
|
||||
index = ic->FindIndex( icStartRows[i] + icStartRows[j]);
|
||||
if(index > 0) {
|
||||
DiagMap[entrynumber].ss = j;
|
||||
DiagMap[entrynumber].sss = index;
|
||||
DiagMap[entrynumber].k = icStartRows[j];
|
||||
entrynumber ++;
|
||||
}
|
||||
}
|
||||
MaxIndizes[i] = entrynumber - 1;
|
||||
}
|
||||
|
||||
int* RESTRICT findmap = new int[icm];
|
||||
for(int j=0;j<icm;j++)
|
||||
findmap[j] = FindIndex( icStartRows[j]);
|
||||
|
||||
for(j = 0; j < n; j++){
|
||||
//Calculate d for this column.
|
||||
d[j] = Diagonals[0][j];
|
||||
|
||||
//This is a loop over k from 1 to j, inclusive. We'll cover that by looping over the index of the diagonals (s), and get k from it.
|
||||
//The first diagonal is d (k = 0), so skip that and have s start at 1. Cover all available s but stop if k exceeds j.
|
||||
s=1;
|
||||
k=icStartRows[s];
|
||||
while(k<=j) {
|
||||
d[j] -= l[s][j - k]*l[s][j - k]*d[j - k];
|
||||
s++;
|
||||
k=icStartRows[s];
|
||||
}
|
||||
if(UNLIKELY(d[j] == 0.0f)){
|
||||
printf("Error in MultiDiagonalSymmetricMatrix::CreateIncompleteCholeskyFactorization: division by zero. Matrix not decomposable.\n");
|
||||
delete ic;
|
||||
delete[] DiagMap;
|
||||
delete[] MaxIndizes;
|
||||
delete[] findmap;
|
||||
return false;
|
||||
}
|
||||
float id = 1.0f/d[j];
|
||||
//Now, calculate l from top down along this column.
|
||||
|
||||
int mapindex = 0;
|
||||
int jMax = icn - j;
|
||||
for(s = 1; s < icm; s++){
|
||||
if(icStartRows[s] >= jMax)
|
||||
break; //Possible values of j are limited
|
||||
|
||||
float temp = 0.0f;
|
||||
while(mapindex <= MaxIndizes[s] && ( k = DiagMap[mapindex].k) <= j) {
|
||||
temp -= l[DiagMap[mapindex].sss][j - k]*l[DiagMap[mapindex].ss][j - k]*d[j - k];
|
||||
mapindex ++;
|
||||
}
|
||||
sss = findmap[s];
|
||||
l[s][j] = id * (sss < 0 ? temp : (Diagonals[sss][j] + temp));
|
||||
}
|
||||
}
|
||||
delete[] DiagMap;
|
||||
delete[] MaxIndizes;
|
||||
delete[] findmap;
|
||||
IncompleteCholeskyFactorization = ic;
|
||||
return true;
|
||||
}
|
||||
|
||||
void MultiDiagonalSymmetricMatrix::KillIncompleteCholeskyFactorization(void){
|
||||
delete IncompleteCholeskyFactorization;
|
||||
}
|
||||
|
||||
void MultiDiagonalSymmetricMatrix::CholeskyBackSolve(float* RESTRICT x, float* RESTRICT b){
|
||||
//We want to solve L D Lt x = b where D is a diagonal matrix described by Diagonals[0] and L is a unit lower triagular matrix described by the rest of the diagonals.
|
||||
//Let D Lt x = y. Then, first solve L y = b.
|
||||
float* RESTRICT *d = IncompleteCholeskyFactorization->Diagonals;
|
||||
int* RESTRICT s = IncompleteCholeskyFactorization->StartRows;
|
||||
int M = IncompleteCholeskyFactorization->m, N = IncompleteCholeskyFactorization->n;
|
||||
int i, j;
|
||||
|
||||
if(M != DIAGONALSP1){ // can happen in theory
|
||||
for(j = 0; j < N; j++){
|
||||
float sub = b[j]; // using local var to reduce memory writes, gave a big speedup
|
||||
i = 1;
|
||||
int c = j - s[i];
|
||||
while(c >= 0) {
|
||||
sub -= d[i][c]*x[c];
|
||||
i++;
|
||||
c = j - s[i];
|
||||
}
|
||||
x[j] = sub; // only one memory-write per j
|
||||
}
|
||||
} else { // that's the case almost every time
|
||||
for(j = 0; j <= s[M-1]; j++){
|
||||
float sub = b[j]; // using local var to reduce memory writes, gave a big speedup
|
||||
i = 1;
|
||||
int c = j - s[1];
|
||||
while(c >= 0) {
|
||||
sub -= d[i][c]*x[c];
|
||||
i++;
|
||||
c = j - s[i];
|
||||
}
|
||||
x[j] = sub; // only one memory-write per j
|
||||
}
|
||||
for(j = s[M-1]+1; j<N; j++){
|
||||
float sub = b[j]; // using local var to reduce memory writes, gave a big speedup
|
||||
for(int i=DIAGONALSP1-1;i>0;i--){ // using a constant upperbound allows the compiler to unroll this loop (gives a good speedup)
|
||||
sub -= d[i][j-s[i]]*x[j-s[i]];
|
||||
}
|
||||
x[j] = sub; // only one memory-write per j
|
||||
}
|
||||
}
|
||||
|
||||
//Now, solve x from D Lt x = y -> Lt x = D^-1 y
|
||||
// Took this one out of the while, so it can be parallelized now, which speeds up, because division is expensive
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for(j = 0; j < N; j++)
|
||||
x[j] = x[j]/d[0][j];
|
||||
|
||||
if(M != DIAGONALSP1){ // can happen in theory
|
||||
while(j-- > 0){
|
||||
float sub = x[j]; // using local var to reduce memory writes, gave a big speedup
|
||||
i=1;
|
||||
int c = j+s[1];
|
||||
while(c < N) {
|
||||
sub -= d[i][j]*x[c];
|
||||
i++;
|
||||
c = j+s[i];
|
||||
}
|
||||
x[j] = sub; // only one memory-write per j
|
||||
}
|
||||
} else { // that's the case almost every time
|
||||
for(j=N-1;j>=(N-1)-s[M-1];j--) {
|
||||
float sub = x[j]; // using local var to reduce memory writes, gave a big speedup
|
||||
i=1;
|
||||
int c = j+s[1];
|
||||
while(c < N) {
|
||||
sub -= d[i][j]*x[j+s[i]];
|
||||
i++;
|
||||
c = j+s[i];
|
||||
}
|
||||
x[j] = sub; // only one memory-write per j
|
||||
}
|
||||
for(j=(N-2)-s[M-1];j>=0;j--) {
|
||||
float sub = x[j]; // using local var to reduce memory writes, gave a big speedup
|
||||
for(int i=DIAGONALSP1-1;i>0;i--){ // using a constant upperbound allows the compiler to unroll this loop (gives a good speedup)
|
||||
sub -= d[i][j]*x[j + s[i]];
|
||||
}
|
||||
x[j] = sub; // only one memory-write per j
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
EdgePreservingDecomposition::EdgePreservingDecomposition(int width, int height){
|
||||
w = width;
|
||||
h = height;
|
||||
n = w*h;
|
||||
|
||||
//Initialize the matrix just once at construction.
|
||||
A = new MultiDiagonalSymmetricMatrix(n, DIAGONALS);
|
||||
if(!(
|
||||
A->CreateDiagonal(0, 0) &&
|
||||
A->CreateDiagonal(1, 1) &&
|
||||
A->CreateDiagonal(2, w - 1) &&
|
||||
A->CreateDiagonal(3, w) &&
|
||||
A->CreateDiagonal(4, w + 1))){
|
||||
delete A;
|
||||
A = NULL;
|
||||
printf("Error in EdgePreservingDecomposition construction: out of memory.\n");
|
||||
}else{
|
||||
a0 = A->Diagonals[0];
|
||||
a_1 = A->Diagonals[1];
|
||||
a_w1 = A->Diagonals[2];
|
||||
a_w = A->Diagonals[3];
|
||||
a_w_1 = A->Diagonals[4];
|
||||
}
|
||||
}
|
||||
|
||||
EdgePreservingDecomposition::~EdgePreservingDecomposition(){
|
||||
delete A;
|
||||
}
|
||||
|
||||
SSEFUNCTION float *EdgePreservingDecomposition::CreateBlur(float *Source, float Scale, float EdgeStopping, int Iterates, float *Blur, bool UseBlurForEdgeStop){
|
||||
|
||||
if(Blur == NULL)
|
||||
UseBlurForEdgeStop = false, //Use source if there's no supplied Blur.
|
||||
Blur = new float[n];
|
||||
|
||||
if(Scale == 0.0f){
|
||||
memcpy(Blur, Source, n*sizeof(float));
|
||||
return Blur;
|
||||
}
|
||||
|
||||
//Create the edge stopping function a, rotationally symmetric and just one instead of (ax, ay). Maybe don't need Blur yet, so use its memory.
|
||||
float* RESTRICT a;
|
||||
float* RESTRICT g;
|
||||
if(UseBlurForEdgeStop) a = new float[n], g = Blur;
|
||||
else a = Blur, g = Source;
|
||||
|
||||
int i;
|
||||
int w1 = w - 1, h1 = h - 1;
|
||||
// float eps = 0.02f;
|
||||
const float sqreps = 0.0004f; // removed eps*eps from inner loop
|
||||
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel
|
||||
#endif
|
||||
{
|
||||
#ifdef __SSE2__
|
||||
int x;
|
||||
__m128 gxv,gyv;
|
||||
__m128 Scalev = _mm_set1_ps( Scale );
|
||||
__m128 sqrepsv = _mm_set1_ps( sqreps );
|
||||
__m128 EdgeStoppingv = _mm_set1_ps( -EdgeStopping );
|
||||
__m128 zd5v = _mm_set1_ps( 0.5f );
|
||||
#endif
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for(int y = 0; y < h1; y++){
|
||||
float *rg = &g[w*y];
|
||||
#ifdef __SSE2__
|
||||
for(x = 0; x < w1-3; x+=4){
|
||||
//Estimate the central difference gradient in the center of a four pixel square. (gx, gy) is actually 2*gradient.
|
||||
gxv = (LVFU(rg[x + 1]) - LVFU(rg[x])) + (LVFU(rg[x + w + 1]) - LVFU(rg[x + w]));
|
||||
gyv = (LVFU(rg[x + w]) - LVFU(rg[x])) + (LVFU(rg[x + w + 1]) - LVFU(rg[x + 1]));
|
||||
//Apply power to the magnitude of the gradient to get the edge stopping function.
|
||||
_mm_storeu_ps( &a[x + w*y], Scalev * pow_F((zd5v*_mm_sqrt_ps(gxv*gxv + gyv*gyv + sqrepsv)), EdgeStoppingv) );
|
||||
}
|
||||
for(; x < w1; x++){
|
||||
//Estimate the central difference gradient in the center of a four pixel square. (gx, gy) is actually 2*gradient.
|
||||
float gx = (rg[x + 1] - rg[x]) + (rg[x + w + 1] - rg[x + w]);
|
||||
float gy = (rg[x + w] - rg[x]) + (rg[x + w + 1] - rg[x + 1]);
|
||||
//Apply power to the magnitude of the gradient to get the edge stopping function.
|
||||
a[x + w*y] = Scale*pow_F(0.5f*sqrtf(gx*gx + gy*gy + sqreps), -EdgeStopping);
|
||||
}
|
||||
#else
|
||||
for(int x = 0; x < w1; x++){
|
||||
//Estimate the central difference gradient in the center of a four pixel square. (gx, gy) is actually 2*gradient.
|
||||
float gx = (rg[x + 1] - rg[x]) + (rg[x + w + 1] - rg[x + w]);
|
||||
float gy = (rg[x + w] - rg[x]) + (rg[x + w + 1] - rg[x + 1]);
|
||||
|
||||
//Apply power to the magnitude of the gradient to get the edge stopping function.
|
||||
a[x + w*y] = Scale*pow_F(0.5f*sqrtf(gx*gx + gy*gy + sqreps), -EdgeStopping);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Now setup the linear problem. I use the Maxima CAS, here's code for making an FEM formulation for the smoothness term:
|
||||
p(x, y) := (1 - x)*(1 - y);
|
||||
P(m, n) := A[m][n]*p(x, y) + A[m + 1][n]*p(1 - x, y) + A[m + 1][n + 1]*p(1 - x, 1 - y) + A[m][n + 1]*p(x, 1 - y);
|
||||
Integrate(f) := integrate(integrate(f, x, 0, 1), y, 0, 1);
|
||||
|
||||
Integrate(diff(P(u, v), x)*diff(p(x, y), x) + diff(P(u, v), y)*diff(p(x, y), y));
|
||||
Integrate(diff(P(u - 1, v), x)*diff(p(1 - x, y), x) + diff(P(u - 1, v), y)*diff(p(1 - x, y), y));
|
||||
Integrate(diff(P(u - 1, v - 1), x)*diff(p(1 - x, 1 - y), x) + diff(P(u - 1, v - 1), y)*diff(p(1 - x, 1 - y), y));
|
||||
Integrate(diff(P(u, v - 1), x)*diff(p(x, 1 - y), x) + diff(P(u, v - 1), y)*diff(p(x, 1 - y), y));
|
||||
So yeah. Use the numeric results of that to fill the matrix A.*/
|
||||
|
||||
memset(a_1, 0, A->DiagonalLength(1)*sizeof(float));
|
||||
memset(a_w1, 0, A->DiagonalLength(w - 1)*sizeof(float));
|
||||
memset(a_w, 0, A->DiagonalLength(w)*sizeof(float));
|
||||
memset(a_w_1, 0, A->DiagonalLength(w + 1)*sizeof(float));
|
||||
|
||||
|
||||
// checked for race condition here
|
||||
// a0[] is read and write but adressed by i only
|
||||
// a[] is read only
|
||||
// a_w_1 is write only
|
||||
// a_w is write only
|
||||
// a_w1 is write only
|
||||
// a_1 is write only
|
||||
// So, there should be no race conditions
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for(int y = 0; y < h; y++){
|
||||
int i = y*w;
|
||||
for(int x = 0; x < w; x++, i++){
|
||||
float ac,a0temp;
|
||||
a0temp = 0.25f;
|
||||
|
||||
//Remember, only fill the lower triangle. Memory for upper is never made. It's symmetric. Trust.
|
||||
if(x > 0 && y > 0) {
|
||||
ac = a[i - w - 1]/6.0f;
|
||||
a_w_1[i - w - 1] -= 2.0f*ac;
|
||||
a_w[i - w] -= ac;
|
||||
a_1[i - 1] -= ac;
|
||||
a0temp += ac;
|
||||
}
|
||||
if(x < w1 && y > 0) {
|
||||
ac = a[i - w]/6.0f;
|
||||
a_w[i - w] -= ac;
|
||||
a_w1[i - w + 1] -= 2.0f*ac;
|
||||
a0temp += ac;
|
||||
}
|
||||
if(x > 0 && y < h1) {
|
||||
ac = a[i - 1]/6.0f;
|
||||
a_1[i - 1] -= ac;
|
||||
a0temp += ac;
|
||||
}
|
||||
if(x < w1 && y < h1)
|
||||
a0temp += a[i]/6.0f;
|
||||
a0[i] = 4.0f*a0temp;
|
||||
}
|
||||
}
|
||||
|
||||
if(UseBlurForEdgeStop) delete[] a;
|
||||
//Solve & return.
|
||||
bool success=A->CreateIncompleteCholeskyFactorization(1); //Fill-in of 1 seems to work really good. More doesn't really help and less hurts (slightly).
|
||||
if(!success) {
|
||||
fprintf(stderr,"Error: Tonemapping has failed.\n");
|
||||
memset(Blur, 0, sizeof(float)*n); // On failure, set the blur to zero. This is subsequently exponentiated in CompressDynamicRange.
|
||||
return Blur;
|
||||
}
|
||||
if(!UseBlurForEdgeStop) memcpy(Blur, Source, n*sizeof(float));
|
||||
SparseConjugateGradient(A->PassThroughVectorProduct, Source, n, false, Blur, 0.0f, (void *)A, Iterates, A->PassThroughCholeskyBackSolve);
|
||||
A->KillIncompleteCholeskyFactorization();
|
||||
return Blur;
|
||||
}
|
||||
|
||||
float *EdgePreservingDecomposition::CreateIteratedBlur(float *Source, float Scale, float EdgeStopping, int Iterates, int Reweightings, float *Blur){
|
||||
//Simpler outcome?
|
||||
if(Reweightings == 0) return CreateBlur(Source, Scale, EdgeStopping, Iterates, Blur);
|
||||
|
||||
//Create a blur here, initialize.
|
||||
if(Blur == NULL) Blur = new float[n];
|
||||
memcpy(Blur, Source, n*sizeof(float));
|
||||
|
||||
//Iteratively improve the blur.
|
||||
Reweightings++;
|
||||
for(int i = 0; i < Reweightings; i++)
|
||||
CreateBlur(Source, Scale, EdgeStopping, Iterates, Blur, true);
|
||||
|
||||
return Blur;
|
||||
}
|
||||
|
||||
SSEFUNCTION float *EdgePreservingDecomposition::CompressDynamicRange(float *Source, float Scale, float EdgeStopping, float CompressionExponent, float DetailBoost, int Iterates, int Reweightings, float *Compressed){
|
||||
if(w<300 && h<300) // set number of Reweightings to zero for small images (thumbnails). We could try to find a better solution here.
|
||||
Reweightings = 0;
|
||||
|
||||
//Small number intended to prevent division by zero. This is different from the eps in CreateBlur.
|
||||
const float eps = 0.0001f;
|
||||
|
||||
//We're working with luminance, which does better logarithmic.
|
||||
#ifdef __SSE2__
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel
|
||||
#endif
|
||||
{
|
||||
__m128 epsv = _mm_set1_ps( eps );
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for(int ii = 0; ii < n-3; ii+=4)
|
||||
_mm_storeu_ps( &Source[ii], xlogf(LVFU(Source[ii]) + epsv));
|
||||
}
|
||||
for(int ii = n-(n%4); ii < n; ii++)
|
||||
Source[ii] = xlogf(Source[ii] + eps);
|
||||
|
||||
#else
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for(int ii = 0; ii < n; ii++)
|
||||
Source[ii] = xlogf(Source[ii] + eps);
|
||||
#endif
|
||||
|
||||
//Blur. Also setup memory for Compressed (we can just use u since each element of u is used in one calculation).
|
||||
float *u = CreateIteratedBlur(Source, Scale, EdgeStopping, Iterates, Reweightings);
|
||||
if(Compressed == NULL) Compressed = u;
|
||||
|
||||
//Apply compression, detail boost, unlogging. Compression is done on the logged data and detail boost on unlogged.
|
||||
// float temp = CompressionExponent - 1.0f;
|
||||
float temp;
|
||||
if(DetailBoost>0.f) {
|
||||
float betemp=expf(-(2.f-DetailBoost+0.694f))-1.f;//0.694 = log(2)
|
||||
temp = 1.2f*xlogf( -betemp);
|
||||
}
|
||||
else temp= CompressionExponent - 1.0f;
|
||||
#ifdef __SSE2__
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel
|
||||
#endif
|
||||
{
|
||||
__m128 cev, uev, sourcev;
|
||||
__m128 epsv = _mm_set1_ps( eps );
|
||||
__m128 DetailBoostv = _mm_set1_ps( DetailBoost );
|
||||
__m128 tempv = _mm_set1_ps( temp );
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for(int i = 0; i < n-3; i+=4){
|
||||
cev = xexpf(LVFU(Source[i]) + LVFU(u[i])*(tempv)) - epsv;
|
||||
uev = xexpf(LVFU(u[i])) - epsv;
|
||||
sourcev = xexpf(LVFU(Source[i])) - epsv;
|
||||
_mm_storeu_ps( &Source[i], sourcev);
|
||||
_mm_storeu_ps( &Compressed[i], cev + DetailBoostv * (sourcev - uev) );
|
||||
}
|
||||
}
|
||||
for(int i=n-(n%4); i < n; i++){
|
||||
float ce = xexpf(Source[i] + u[i]*(temp)) - eps;
|
||||
float ue = xexpf(u[i]) - eps;
|
||||
Source[i] = xexpf(Source[i]) - eps;
|
||||
Compressed[i] = ce + DetailBoost*(Source[i] - ue);
|
||||
}
|
||||
|
||||
#else
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for(int i = 0; i < n; i++){
|
||||
float ce = xexpf(Source[i] + u[i]*(temp)) - eps;
|
||||
float ue = xexpf(u[i]) - eps;
|
||||
Source[i] = xexpf(Source[i]) - eps;
|
||||
Compressed[i] = ce + DetailBoost*(Source[i] - ue);
|
||||
}
|
||||
#endif
|
||||
|
||||
if(Compressed != u) delete[] u;
|
||||
return Compressed;
|
||||
|
||||
}
|
||||
|
Reference in New Issue
Block a user