Merge branch 'dev' into reduce-include-dependencies

This commit is contained in:
Ingo Weyrich 2019-11-03 21:40:27 +01:00
commit e7cbca7d4f
6 changed files with 555 additions and 572 deletions

View File

@ -1667,7 +1667,7 @@ TP_FLATFIELD_BT_HORIZONTAL;Horizontal
TP_FLATFIELD_BT_VERTHORIZ;Vertical + Horizontal
TP_FLATFIELD_BT_VERTICAL;Vertical
TP_FLATFIELD_CLIPCONTROL;Clip control
TP_FLATFIELD_CLIPCONTROL_TOOLTIP;Clip control avoids clipped highlights caused by applying the flat field. If there are already clipped highlights before applying the flat field, clip control can lead to color cast.
TP_FLATFIELD_CLIPCONTROL_TOOLTIP;Clip control avoids clipped highlights caused by applying the flat field. If there are already clipped highlights before applying the flat field, value 0 is used.
TP_FLATFIELD_LABEL;Flat-Field
TP_GENERAL_11SCALE_TOOLTIP;The effects of this tool are only visible or only accurate at a preview scale of 1:1.
TP_GRADIENT_CENTER;Center

View File

@ -112,6 +112,7 @@ set(RTENGINESOURCEFILES
processingjob.cc
procparams.cc
profilestore.cc
rawflatfield.cc
rawimage.cc
rawimagesource.cc
rcd_demosaic.cc

537
rtengine/rawflatfield.cc Normal file
View File

@ -0,0 +1,537 @@
/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2019 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
*/
#include <cstring>
#include <memory>
#include <new>
#include "rawimagesource.h"
#include "procparams.h"
#include "rawimage.h"
//#define BENCHMARK
//#include "StopWatch.h"
#include "opthelper.h"
namespace {
void cfaboxblur(const float* const * riFlatFile, float* cfablur, int boxH, int boxW, int H, int W)
{
if (boxW < 0 || boxH < 0 || (boxW == 0 && boxH == 0)) { // nothing to blur or negative values
memcpy(cfablur, riFlatFile[0], W * H * sizeof(float));
return;
}
std::unique_ptr<float []> tmpBuffer;
float *cfatmp = cfablur;
if (boxH > 0 && boxW > 0) {
// we need a temporary buffer if we have to blur both directions
tmpBuffer.reset(new float [H * W]);
cfatmp = tmpBuffer.get();
}
// if boxW == 0 we can skip the horizontal blur and process the vertical blur from riFlatFile to cfablur without using a temporary buffer
const float* srcVertical = boxW == 0 ? riFlatFile[0] : cfatmp;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
if (boxW > 0) {
//box blur cfa image; box size = BS
//horizontal blur
#ifdef _OPENMP
#pragma omp for
#endif
for (int row = 0; row < H; ++row) {
int len = boxW / 2 + 1;
cfatmp[row * W] = riFlatFile[row][0] / len;
cfatmp[row * W + 1] = riFlatFile[row][1] / len;
for (int j = 2; j <= boxW; j += 2) {
cfatmp[row * W] += riFlatFile[row][j] / len;
cfatmp[row * W + 1] += riFlatFile[row][j + 1] / len;
}
for (int col = 2; col <= boxW; col += 2) {
cfatmp[row * W + col] = (cfatmp[row * W + col - 2] * len + riFlatFile[row][boxW + col]) / (len + 1);
cfatmp[row * W + col + 1] = (cfatmp[row * W + col - 1] * len + riFlatFile[row][boxW + col + 1]) / (len + 1);
len ++;
}
const float rlen = 1.f / len;
for (int col = boxW + 2; col < W - boxW; col++) {
cfatmp[row * W + col] = cfatmp[row * W + col - 2] + (riFlatFile[row][boxW + col] - cfatmp[row * W + col - boxW - 2]) * rlen;
}
for (int col = W - boxW; col < W; col += 2) {
cfatmp[row * W + col] = (cfatmp[row * W + col - 2] * len - cfatmp[row * W + col - boxW - 2]) / (len - 1);
if (col + 1 < W) {
cfatmp[row * W + col + 1] = (cfatmp[row * W + col - 1] * len - cfatmp[row * W + col - boxW - 1]) / (len - 1);
}
len --;
}
}
}
if (boxH > 0) {
//vertical blur
#ifdef __SSE2__
const vfloat leninitv = F2V(boxH / 2 + 1);
const vfloat onev = F2V(1.f);
#ifdef _OPENMP
#pragma omp for nowait
#endif
for (int col = 0; col < W - 7; col += 8) {
vfloat lenv = leninitv;
vfloat temp1v = LVFU(srcVertical[col]) / lenv;
vfloat temp2v = LVFU(srcVertical[W + col]) / lenv;
vfloat temp3v = LVFU(srcVertical[col + 4]) / lenv;
vfloat temp4v = LVFU(srcVertical[W + col + 4]) / lenv;
for (int i = 2; i < boxH + 2; i += 2) {
temp1v += LVFU(srcVertical[i * W + col]) / lenv;
temp2v += LVFU(srcVertical[(i + 1) * W + col]) / lenv;
temp3v += LVFU(srcVertical[i * W + col + 4]) / lenv;
temp4v += LVFU(srcVertical[(i + 1) * W + col + 4]) / lenv;
}
STVFU(cfablur[col], temp1v);
STVFU(cfablur[W + col], temp2v);
STVFU(cfablur[col + 4], temp3v);
STVFU(cfablur[W + col + 4], temp4v);
int row;
for (row = 2; row < boxH + 2; row += 2) {
const vfloat lenp1v = lenv + onev;
temp1v = (temp1v * lenv + LVFU(srcVertical[(row + boxH) * W + col])) / lenp1v;
temp2v = (temp2v * lenv + LVFU(srcVertical[(row + boxH + 1) * W + col])) / lenp1v;
temp3v = (temp3v * lenv + LVFU(srcVertical[(row + boxH) * W + col + 4])) / lenp1v;
temp4v = (temp4v * lenv + LVFU(srcVertical[(row + boxH + 1) * W + col + 4])) / lenp1v;
STVFU(cfablur[row * W + col], temp1v);
STVFU(cfablur[(row + 1) * W + col], temp2v);
STVFU(cfablur[row * W + col + 4], temp3v);
STVFU(cfablur[(row + 1) * W + col + 4], temp4v);
lenv = lenp1v;
}
for (; row < H - boxH - 1; row += 2) {
temp1v = temp1v + (LVFU(srcVertical[(row + boxH) * W + col]) - LVFU(srcVertical[(row - boxH - 2) * W + col])) / lenv;
temp2v = temp2v + (LVFU(srcVertical[(row + 1 + boxH) * W + col]) - LVFU(srcVertical[(row + 1 - boxH - 2) * W + col])) / lenv;
temp3v = temp3v + (LVFU(srcVertical[(row + boxH) * W + col + 4]) - LVFU(srcVertical[(row - boxH - 2) * W + col + 4])) / lenv;
temp4v = temp4v + (LVFU(srcVertical[(row + 1 + boxH) * W + col + 4]) - LVFU(srcVertical[(row + 1 - boxH - 2) * W + col + 4])) / lenv;
STVFU(cfablur[row * W + col], temp1v);
STVFU(cfablur[(row + 1) * W + col], temp2v);
STVFU(cfablur[row * W + col + 4], temp3v);
STVFU(cfablur[(row + 1) * W + col + 4], temp4v);
}
if (row < H - boxH) {
temp1v = temp1v + (LVFU(srcVertical[(row + boxH) * W + col]) - LVFU(srcVertical[(row - boxH - 2) * W + col])) / lenv;
temp3v = temp3v + (LVFU(srcVertical[(row + boxH) * W + col + 4]) - LVFU(srcVertical[(row - boxH - 2) * W + col + 4])) / lenv;
STVFU(cfablur[row * W + col], temp1v);
STVFU(cfablur[row * W + col + 4], temp3v);
vfloat swapv = temp1v;
temp1v = temp2v;
temp2v = swapv;
swapv = temp3v;
temp3v = temp4v;
temp4v = swapv;
++row;
}
for (; row < H - 1; row += 2) {
const vfloat lenm1v = lenv - onev;
temp1v = (temp1v * lenv - LVFU(srcVertical[(row - boxH - 2) * W + col])) / lenm1v;
temp2v = (temp2v * lenv - LVFU(srcVertical[(row - boxH - 1) * W + col])) / lenm1v;
temp3v = (temp3v * lenv - LVFU(srcVertical[(row - boxH - 2) * W + col + 4])) / lenm1v;
temp4v = (temp4v * lenv - LVFU(srcVertical[(row - boxH - 1) * W + col + 4])) / lenm1v;
STVFU(cfablur[row * W + col], temp1v);
STVFU(cfablur[(row + 1) * W + col], temp2v);
STVFU(cfablur[row * W + col + 4], temp3v);
STVFU(cfablur[(row + 1) * W + col + 4], temp4v);
lenv = lenm1v;
}
if (row < H) {
vfloat lenm1v = lenv - onev;
temp1v = (temp1v * lenv - LVFU(srcVertical[(row - boxH - 2) * W + col])) / lenm1v;
temp3v = (temp3v * lenv - LVFU(srcVertical[(row - boxH - 2) * W + col + 4])) / lenm1v;
STVFU(cfablur[row * W + col], temp1v);
STVFU(cfablur[row * W + col + 4], temp3v);
}
}
#ifdef _OPENMP
#pragma omp single
#endif
for (int col = W - (W % 8); col < W; ++col) {
int len = boxH / 2 + 1;
cfablur[col] = srcVertical[col] / len;
cfablur[W + col] = srcVertical[W + col] / len;
for (int i = 2; i < boxH + 2; i += 2) {
cfablur[col] += srcVertical[i * W + col] / len;
cfablur[W + col] += srcVertical[(i + 1) * W + col] / len;
}
for (int row = 2; row < boxH + 2; row += 2) {
cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len + srcVertical[(row + boxH) * W + col]) / (len + 1);
cfablur[(row + 1) * W + col] = (cfablur[(row - 1) * W + col] * len + srcVertical[(row + boxH + 1) * W + col]) / (len + 1);
++len;
}
for (int row = boxH + 2; row < H - boxH; ++row) {
cfablur[row * W + col] = cfablur[(row - 2) * W + col] + (srcVertical[(row + boxH) * W + col] - srcVertical[(row - boxH - 2) * W + col]) / len;
}
for (int row = H - boxH; row < H; row += 2) {
cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len - srcVertical[(row - boxH - 2) * W + col]) / (len - 1);
if (row + 1 < H) {
cfablur[(row + 1) * W + col] = (cfablur[(row - 1) * W + col] * len - srcVertical[(row - boxH - 1) * W + col]) / (len - 1);
}
--len;
}
}
#else
#ifdef _OPENMP
#pragma omp for
#endif
for (int col = 0; col < W; ++col) {
int len = boxH / 2 + 1;
cfablur[col] = srcVertical[col] / len;
cfablur[W + col] = srcVertical[W + col] / len;
for (int i = 2; i < boxH + 2; i += 2) {
cfablur[col] += srcVertical[i * W + col] / len;
cfablur[W + col] += srcVertical[(i + 1) * W + col] / len;
}
for (int row = 2; row < boxH + 2; row += 2) {
cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len + srcVertical[(row + boxH) * W + col]) / (len + 1);
cfablur[(row + 1) * W + col] = (cfablur[(row - 1) * W + col] * len + srcVertical[(row + boxH + 1) * W + col]) / (len + 1);
++len;
}
for (int row = boxH + 2; row < H - boxH; ++row) {
cfablur[row * W + col] = cfablur[(row - 2) * W + col] + (srcVertical[(row + boxH) * W + col] - srcVertical[(row - boxH - 2) * W + col]) / len;
}
for (int row = H - boxH; row < H; row += 2) {
cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len - srcVertical[(row - boxH - 2) * W + col]) / (len - 1);
if (row + 1 < H) {
cfablur[(row + 1) * W + col] = (cfablur[(row - 1) * W + col] * len - srcVertical[(row - boxH - 1) * W + col]) / (len - 1);
}
--len;
}
}
#endif
}
}
}
}
namespace rtengine
{
void RawImageSource::processFlatField(const procparams::RAWParams &raw, const RawImage *riFlatFile, const unsigned short black[4])
{
// BENCHFUN
const float fblack[4] = {static_cast<float>(black[0]), static_cast<float>(black[1]), static_cast<float>(black[2]), static_cast<float>(black[3])};
std::unique_ptr<float[]> cfablur(new float[H * W]);
const int BS = raw.ff_BlurRadius + (raw.ff_BlurRadius & 1);
if (raw.ff_BlurType == procparams::RAWParams::getFlatFieldBlurTypeString(procparams::RAWParams::FlatFieldBlurType::V)) {
cfaboxblur(riFlatFile->data, cfablur.get(), 2 * BS, 0, H, W);
} else if (raw.ff_BlurType == procparams::RAWParams::getFlatFieldBlurTypeString(procparams::RAWParams::FlatFieldBlurType::H)) {
cfaboxblur(riFlatFile->data, cfablur.get(), 0, 2 * BS, H, W);
} else if (raw.ff_BlurType == procparams::RAWParams::getFlatFieldBlurTypeString(procparams::RAWParams::FlatFieldBlurType::VH)) {
//slightly more complicated blur if trying to correct both vertical and horizontal anomalies
cfaboxblur(riFlatFile->data, cfablur.get(), BS, BS, H, W); //first do area blur to correct vignette
} else { //(raw.ff_BlurType == RAWParams::getFlatFieldBlurTypeString(RAWParams::area_ff))
cfaboxblur(riFlatFile->data, cfablur.get(), BS, BS, H, W);
}
if (ri->getSensorType() == ST_BAYER || ri->get_colors() == 1) {
float refcolor[2][2];
// find center values by channel
for (int m = 0; m < 2; ++m)
for (int n = 0; n < 2; ++n) {
const int row = 2 * (H >> 2) + m;
const int col = 2 * (W >> 2) + n;
const int c = ri->get_colors() != 1 ? FC(row, col) : 0;
const int c4 = ri->get_colors() != 1 ? ((c == 1 && !(row & 1)) ? 3 : c) : 0;
refcolor[m][n] = std::max(0.0f, cfablur[row * W + col] - fblack[c4]);
}
float limitFactor = 1.f;
if (raw.ff_AutoClipControl) {
bool clippedBefore = false;
for (int m = 0; m < 2 && !clippedBefore; ++m) {
for (int n = 0; n < 2 && !clippedBefore; ++n) {
float maxval = 0.f;
const int c = ri->get_colors() != 1 ? FC(m, n) : 0;
const int c4 = ri->get_colors() != 1 ? ((c == 1 && !(m & 1)) ? 3 : c) : 0;
const float clipVal = ri->get_white(c4);
#ifdef _OPENMP
#pragma omp parallel for reduction(max:maxval) schedule(dynamic, 16)
#endif
for (int row = 0; row < H - m; row += 2) {
for (int col = 0; col < W - n && !clippedBefore; col += 2) {
const float rawVal = rawData[row + m][col + n];
if (rawVal >= clipVal) {
clippedBefore = true;
break;
}
const float tempval = (rawVal - fblack[c4]) * (refcolor[m][n] / std::max(1e-5f, cfablur[(row + m) * W + col + n] - fblack[c4]));
maxval = std::max(maxval, tempval);
}
}
// now we have the max value for the channel
// if it clips, calculate factor to avoid clipping
if (maxval + fblack[c4] >= ri->get_white(c4)) {
if (!clippedBefore) {
limitFactor = std::min(limitFactor, ri->get_white(c4) / (maxval + fblack[c4]));
} else {
limitFactor = 1.f;
}
}
}
}
flatFieldAutoClipValue = (1.f - limitFactor) * 100.f; // this value can be used to set the clip control slider in gui
} else {
limitFactor = std::max((100 - raw.ff_clipControl) / 100.f, 0.01f);
}
for (int m = 0; m < 2; ++m)
for (int n = 0; n < 2; ++n) {
refcolor[m][n] *= limitFactor;
}
unsigned int c[2][2] {};
unsigned int c4[2][2] {};
if (ri->get_colors() != 1) {
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
c[i][j] = FC(i, j);
}
}
c4[0][0] = (c[0][0] == 1) ? 3 : c[0][0];
c4[0][1] = (c[0][1] == 1) ? 3 : c[0][1];
c4[1][0] = c[1][0];
c4[1][1] = c[1][1];
}
constexpr float minValue = 1.f; // if the pixel value in the flat field is less or equal this value, no correction will be applied.
#ifdef __SSE2__
const vfloat refcolorv[2] = {_mm_set_ps(refcolor[0][1], refcolor[0][0], refcolor[0][1], refcolor[0][0]),
_mm_set_ps(refcolor[1][1], refcolor[1][0], refcolor[1][1], refcolor[1][0])
};
const vfloat blackv[2] = {_mm_set_ps(fblack[c4[0][1]], fblack[c4[0][0]], fblack[c4[0][1]], fblack[c4[0][0]]),
_mm_set_ps(fblack[c4[1][1]], fblack[c4[1][0]], fblack[c4[1][1]], fblack[c4[1][0]])
};
const vfloat onev = F2V(1.f);
const vfloat minValuev = F2V(minValue);
#endif
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int row = 0; row < H; ++row) {
int col = 0;
#ifdef __SSE2__
const vfloat rowBlackv = blackv[row & 1];
const vfloat rowRefcolorv = refcolorv[row & 1];
for (; col < W - 3; col += 4) {
const vfloat blurv = LVFU(cfablur[row * W + col]) - rowBlackv;
vfloat vignettecorrv = rowRefcolorv / blurv;
vignettecorrv = vself(vmaskf_le(blurv, minValuev), onev, vignettecorrv);
const vfloat valv = LVFU(rawData[row][col]) - rowBlackv;
STVFU(rawData[row][col], valv * vignettecorrv + rowBlackv);
}
#endif
for (; col < W; ++col) {
const float blur = cfablur[row * W + col] - fblack[c4[row & 1][col & 1]];
const float vignettecorr = blur <= minValue ? 1.f : refcolor[row & 1][col & 1] / blur;
rawData[row][col] = (rawData[row][col] - fblack[c4[row & 1][col & 1]]) * vignettecorr + fblack[c4[row & 1][col & 1]];
}
}
} else if (ri->getSensorType() == ST_FUJI_XTRANS) {
float refcolor[3] = {0.f};
int cCount[3] = {0};
// find center average values by channel
for (int m = -3; m < 3; ++m)
for (int n = -3; n < 3; ++n) {
const int row = 2 * (H >> 2) + m;
const int col = 2 * (W >> 2) + n;
const int c = riFlatFile->XTRANSFC(row, col);
refcolor[c] += std::max(0.0f, cfablur[row * W + col] - fblack[c]);
cCount[c] ++;
}
for (int c = 0; c < 3; ++c) {
refcolor[c] = refcolor[c] / cCount[c];
}
float limitFactor = 1.f;
if (raw.ff_AutoClipControl) {
// determine maximum calculated value to avoid clipping
bool clippedBefore = false;
const float clipVal = ri->get_white(0);
float maxval = 0.f;
// xtrans files have only one black level actually, so we can simplify the code a bit
#ifdef _OPENMP
#pragma omp parallel for reduction(max:maxval) schedule(dynamic,16)
#endif
for (int row = 0; row < H; ++row) {
for (int col = 0; col < W && !clippedBefore; ++col) {
const float rawVal = rawData[row][col];
if (rawVal >= clipVal) {
clippedBefore = true;
break;
}
const float tempval = (rawVal - fblack[0]) * (refcolor[ri->XTRANSFC(row, col)] / std::max(1e-5f, cfablur[(row) * W + col] - fblack[0]));
maxval = std::max(maxval, tempval);
}
}
// there's only one white level for xtrans
if (!clippedBefore && maxval + fblack[0] > ri->get_white(0)) {
limitFactor = ri->get_white(0) / (maxval + fblack[0]);
flatFieldAutoClipValue = (1.f - limitFactor) * 100.f; // this value can be used to set the clip control slider in gui
}
} else {
limitFactor = std::max((float)(100 - raw.ff_clipControl) / 100.f, 0.01f);
}
for (int c = 0; c < 3; ++c) {
refcolor[c] *= limitFactor;
}
constexpr float minValue = 1.f; // if the pixel value in the flat field is less or equal this value, no correction will be applied.
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int row = 0; row < H; ++row) {
for (int col = 0; col < W; ++col) {
const int c = ri->XTRANSFC(row, col);
const float blur = cfablur[(row) * W + col] - fblack[c];
const float vignettecorr = blur <= minValue ? 1.f : refcolor[c] / blur;
rawData[row][col] = (rawData[row][col] - fblack[c]) * vignettecorr + fblack[c];
}
}
}
if (raw.ff_BlurType == procparams::RAWParams::getFlatFieldBlurTypeString(procparams::RAWParams::FlatFieldBlurType::VH)) {
std::unique_ptr<float []> cfablur1(new float[H * W]);
std::unique_ptr<float []> cfablur2(new float[H * W]);
//slightly more complicated blur if trying to correct both vertical and horizontal anomalies
cfaboxblur(riFlatFile->data, cfablur1.get(), 0, 2 * BS, H, W); //now do horizontal blur
cfaboxblur(riFlatFile->data, cfablur2.get(), 2 * BS, 0, H, W); //now do vertical blur
if (ri->getSensorType() == ST_BAYER || ri->get_colors() == 1) {
unsigned int c[2][2] {};
unsigned int c4[2][2] {};
if (ri->get_colors() != 1) {
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
c[i][j] = FC(i, j);
}
}
c4[0][0] = (c[0][0] == 1) ? 3 : c[0][0];
c4[0][1] = (c[0][1] == 1) ? 3 : c[0][1];
c4[1][0] = c[1][0];
c4[1][1] = c[1][1];
}
#ifdef __SSE2__
const vfloat blackv[2] = {_mm_set_ps(fblack[c4[0][1]], fblack[c4[0][0]], fblack[c4[0][1]], fblack[c4[0][0]]),
_mm_set_ps(fblack[c4[1][1]], fblack[c4[1][0]], fblack[c4[1][1]], fblack[c4[1][0]])
};
const vfloat epsv = F2V(1e-5f);
#endif
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int row = 0; row < H; ++row) {
int col = 0;
#ifdef __SSE2__
const vfloat rowBlackv = blackv[row & 1];
for (; col < W - 3; col += 4) {
const vfloat linecorrv = SQRV(vmaxf(LVFU(cfablur[row * W + col]) - rowBlackv, epsv)) /
(vmaxf(LVFU(cfablur1[row * W + col]) - rowBlackv, epsv) * vmaxf(LVFU(cfablur2[row * W + col]) - rowBlackv, epsv));
const vfloat valv = LVFU(rawData[row][col]) - rowBlackv;
STVFU(rawData[row][col], valv * linecorrv + rowBlackv);
}
#endif
for (; col < W; ++col) {
const float linecorr = SQR(std::max(1e-5f, cfablur[row * W + col] - fblack[c4[row & 1][col & 1]])) /
(std::max(1e-5f, cfablur1[row * W + col] - fblack[c4[row & 1][col & 1]]) * std::max(1e-5f, cfablur2[row * W + col] - fblack[c4[row & 1][col & 1]]));
rawData[row][col] = (rawData[row][col] - fblack[c4[row & 1][col & 1]]) * linecorr + fblack[c4[row & 1][col & 1]];
}
}
} else if (ri->getSensorType() == ST_FUJI_XTRANS) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int row = 0; row < H; ++row) {
for (int col = 0; col < W; ++col) {
const int c = ri->XTRANSFC(row, col);
const float hlinecorr = std::max(1e-5f, cfablur[(row) * W + col] - fblack[c]) / std::max(1e-5f, cfablur1[(row) * W + col] - fblack[c]);
const float vlinecorr = std::max(1e-5f, cfablur[(row) * W + col] - fblack[c]) / std::max(1e-5f, cfablur2[(row) * W + col] - fblack[c]);
rawData[row][col] = (rawData[row][col] - fblack[c]) * hlinecorr * vlinecorr + fblack[c];
}
}
}
}
}
} /* namespace */

View File

@ -2411,311 +2411,6 @@ void RawImageSource::HLRecovery_Global(const ToneCurveParams &hrp)
}
void RawImageSource::processFlatField(const RAWParams &raw, RawImage *riFlatFile, unsigned short black[4])
{
// BENCHFUN
float *cfablur = (float (*)) malloc (H * W * sizeof * cfablur);
int BS = raw.ff_BlurRadius;
BS += BS & 1;
//function call to cfabloxblur
if (raw.ff_BlurType == RAWParams::getFlatFieldBlurTypeString(RAWParams::FlatFieldBlurType::V)) {
cfaboxblur(riFlatFile, cfablur, 2 * BS, 0);
} else if (raw.ff_BlurType == RAWParams::getFlatFieldBlurTypeString(RAWParams::FlatFieldBlurType::H)) {
cfaboxblur(riFlatFile, cfablur, 0, 2 * BS);
} else if (raw.ff_BlurType == RAWParams::getFlatFieldBlurTypeString(RAWParams::FlatFieldBlurType::VH)) {
//slightly more complicated blur if trying to correct both vertical and horizontal anomalies
cfaboxblur(riFlatFile, cfablur, BS, BS); //first do area blur to correct vignette
} else { //(raw.ff_BlurType == RAWParams::getFlatFieldBlurTypeString(RAWParams::area_ff))
cfaboxblur(riFlatFile, cfablur, BS, BS);
}
if(ri->getSensorType() == ST_BAYER || ri->get_colors() == 1) {
float refcolor[2][2];
//find centre average values by channel
for (int m = 0; m < 2; m++)
for (int n = 0; n < 2; n++) {
int row = 2 * (H >> 2) + m;
int col = 2 * (W >> 2) + n;
int c = ri->get_colors() != 1 ? FC(row, col) : 0;
int c4 = ri->get_colors() != 1 ? (( c == 1 && !(row & 1) ) ? 3 : c) : 0;
refcolor[m][n] = max(0.0f, cfablur[row * W + col] - black[c4]);
}
float limitFactor = 1.f;
if(raw.ff_AutoClipControl) {
for (int m = 0; m < 2; m++)
for (int n = 0; n < 2; n++) {
float maxval = 0.f;
int c = ri->get_colors() != 1 ? FC(m, n) : 0;
int c4 = ri->get_colors() != 1 ? (( c == 1 && !(m & 1) ) ? 3 : c) : 0;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float maxvalthr = 0.f;
#ifdef _OPENMP
#pragma omp for
#endif
for (int row = 0; row < H - m; row += 2) {
for (int col = 0; col < W - n; col += 2) {
float tempval = (rawData[row + m][col + n] - black[c4]) * ( refcolor[m][n] / max(1e-5f, cfablur[(row + m) * W + col + n] - black[c4]) );
if(tempval > maxvalthr) {
maxvalthr = tempval;
}
}
}
#ifdef _OPENMP
#pragma omp critical
#endif
{
if(maxvalthr > maxval) {
maxval = maxvalthr;
}
}
}
// now we have the max value for the channel
// if it clips, calculate factor to avoid clipping
if(maxval + black[c4] >= ri->get_white(c4)) {
limitFactor = min(limitFactor, ri->get_white(c4) / (maxval + black[c4]));
}
}
flatFieldAutoClipValue = (1.f - limitFactor) * 100.f; // this value can be used to set the clip control slider in gui
} else {
limitFactor = max((float)(100 - raw.ff_clipControl) / 100.f, 0.01f);
}
for (int m = 0; m < 2; m++)
for (int n = 0; n < 2; n++) {
refcolor[m][n] *= limitFactor;
}
unsigned int c[2][2] {};
unsigned int c4[2][2] {};
if(ri->get_colors() != 1) {
for (int i = 0; i < 2; ++i) {
for(int j = 0; j < 2; ++j) {
c[i][j] = FC(i, j);
}
}
c4[0][0] = ( c[0][0] == 1) ? 3 : c[0][0];
c4[0][1] = ( c[0][1] == 1) ? 3 : c[0][1];
c4[1][0] = c[1][0];
c4[1][1] = c[1][1];
}
constexpr float minValue = 1.f; // if the pixel value in the flat field is less or equal this value, no correction will be applied.
#ifdef __SSE2__
vfloat refcolorv[2] = {_mm_set_ps(refcolor[0][1], refcolor[0][0], refcolor[0][1], refcolor[0][0]),
_mm_set_ps(refcolor[1][1], refcolor[1][0], refcolor[1][1], refcolor[1][0])
};
vfloat blackv[2] = {_mm_set_ps(black[c4[0][1]], black[c4[0][0]], black[c4[0][1]], black[c4[0][0]]),
_mm_set_ps(black[c4[1][1]], black[c4[1][0]], black[c4[1][1]], black[c4[1][0]])
};
vfloat onev = F2V(1.f);
vfloat minValuev = F2V(minValue);
#endif
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int row = 0; row < H; row ++) {
int col = 0;
#ifdef __SSE2__
vfloat rowBlackv = blackv[row & 1];
vfloat rowRefcolorv = refcolorv[row & 1];
for (; col < W - 3; col += 4) {
vfloat blurv = LVFU(cfablur[(row) * W + col]) - rowBlackv;
vfloat vignettecorrv = rowRefcolorv / blurv;
vignettecorrv = vself(vmaskf_le(blurv, minValuev), onev, vignettecorrv);
vfloat valv = LVFU(rawData[row][col]);
valv -= rowBlackv;
STVFU(rawData[row][col], valv * vignettecorrv + rowBlackv);
}
#endif
for (; col < W; col ++) {
float blur = cfablur[(row) * W + col] - black[c4[row & 1][col & 1]];
float vignettecorr = blur <= minValue ? 1.f : refcolor[row & 1][col & 1] / blur;
rawData[row][col] = (rawData[row][col] - black[c4[row & 1][col & 1]]) * vignettecorr + black[c4[row & 1][col & 1]];
}
}
} else if(ri->getSensorType() == ST_FUJI_XTRANS) {
float refcolor[3] = {0.f};
int cCount[3] = {0};
//find center ave values by channel
for (int m = -3; m < 3; m++)
for (int n = -3; n < 3; n++) {
int row = 2 * (H >> 2) + m;
int col = 2 * (W >> 2) + n;
int c = riFlatFile->XTRANSFC(row, col);
refcolor[c] += max(0.0f, cfablur[row * W + col] - black[c]);
cCount[c] ++;
}
for(int c = 0; c < 3; c++) {
refcolor[c] = refcolor[c] / cCount[c];
}
float limitFactor = 1.f;
if(raw.ff_AutoClipControl) {
// determine maximum calculated value to avoid clipping
float maxval = 0.f;
// xtrans files have only one black level actually, so we can simplify the code a bit
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float maxvalthr = 0.f;
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16) nowait
#endif
for (int row = 0; row < H; row++) {
for (int col = 0; col < W; col++) {
float tempval = (rawData[row][col] - black[0]) * ( refcolor[ri->XTRANSFC(row, col)] / max(1e-5f, cfablur[(row) * W + col] - black[0]) );
if(tempval > maxvalthr) {
maxvalthr = tempval;
}
}
}
#ifdef _OPENMP
#pragma omp critical
#endif
{
if(maxvalthr > maxval) {
maxval = maxvalthr;
}
}
}
// there's only one white level for xtrans
if(maxval + black[0] > ri->get_white(0)) {
limitFactor = ri->get_white(0) / (maxval + black[0]);
flatFieldAutoClipValue = (1.f - limitFactor) * 100.f; // this value can be used to set the clip control slider in gui
}
} else {
limitFactor = max((float)(100 - raw.ff_clipControl) / 100.f, 0.01f);
}
for(int c = 0; c < 3; c++) {
refcolor[c] *= limitFactor;
}
constexpr float minValue = 1.f; // if the pixel value in the flat field is less or equal this value, no correction will be applied.
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int row = 0; row < H; row++) {
for (int col = 0; col < W; col++) {
int c = ri->XTRANSFC(row, col);
float blur = cfablur[(row) * W + col] - black[c];
float vignettecorr = blur <= minValue ? 1.f : refcolor[c] / blur;
rawData[row][col] = (rawData[row][col] - black[c]) * vignettecorr + black[c];
}
}
}
if (raw.ff_BlurType == RAWParams::getFlatFieldBlurTypeString(RAWParams::FlatFieldBlurType::VH)) {
float *cfablur1 = (float (*)) malloc (H * W * sizeof * cfablur1);
float *cfablur2 = (float (*)) malloc (H * W * sizeof * cfablur2);
//slightly more complicated blur if trying to correct both vertical and horizontal anomalies
cfaboxblur(riFlatFile, cfablur1, 0, 2 * BS); //now do horizontal blur
cfaboxblur(riFlatFile, cfablur2, 2 * BS, 0); //now do vertical blur
if(ri->getSensorType() == ST_BAYER || ri->get_colors() == 1) {
unsigned int c[2][2] {};
unsigned int c4[2][2] {};
if(ri->get_colors() != 1) {
for (int i = 0; i < 2; ++i) {
for(int j = 0; j < 2; ++j) {
c[i][j] = FC(i, j);
}
}
c4[0][0] = ( c[0][0] == 1) ? 3 : c[0][0];
c4[0][1] = ( c[0][1] == 1) ? 3 : c[0][1];
c4[1][0] = c[1][0];
c4[1][1] = c[1][1];
}
#ifdef __SSE2__
vfloat blackv[2] = {_mm_set_ps(black[c4[0][1]], black[c4[0][0]], black[c4[0][1]], black[c4[0][0]]),
_mm_set_ps(black[c4[1][1]], black[c4[1][0]], black[c4[1][1]], black[c4[1][0]])
};
vfloat epsv = F2V(1e-5f);
#endif
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int row = 0; row < H; row ++) {
int col = 0;
#ifdef __SSE2__
vfloat rowBlackv = blackv[row & 1];
for (; col < W - 3; col += 4) {
vfloat linecorrv = SQRV(vmaxf(LVFU(cfablur[row * W + col]) - rowBlackv, epsv)) /
(vmaxf(LVFU(cfablur1[row * W + col]) - rowBlackv, epsv) * vmaxf(LVFU(cfablur2[row * W + col]) - rowBlackv, epsv));
vfloat valv = LVFU(rawData[row][col]);
valv -= rowBlackv;
STVFU(rawData[row][col], valv * linecorrv + rowBlackv);
}
#endif
for (; col < W; col ++) {
float linecorr = SQR(max(1e-5f, cfablur[row * W + col] - black[c4[row & 1][col & 1]])) /
(max(1e-5f, cfablur1[row * W + col] - black[c4[row & 1][col & 1]]) * max(1e-5f, cfablur2[row * W + col] - black[c4[row & 1][col & 1]])) ;
rawData[row][col] = (rawData[row][col] - black[c4[row & 1][col & 1]]) * linecorr + black[c4[row & 1][col & 1]];
}
}
} else if(ri->getSensorType() == ST_FUJI_XTRANS) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int row = 0; row < H; row++) {
for (int col = 0; col < W; col++) {
int c = ri->XTRANSFC(row, col);
float hlinecorr = (max(1e-5f, cfablur[(row) * W + col] - black[c]) / max(1e-5f, cfablur1[(row) * W + col] - black[c]) );
float vlinecorr = (max(1e-5f, cfablur[(row) * W + col] - black[c]) / max(1e-5f, cfablur2[(row) * W + col] - black[c]) );
rawData[row][col] = ((rawData[row][col] - black[c]) * hlinecorr * vlinecorr + black[c]);
}
}
}
free (cfablur1);
free (cfablur2);
}
free (cfablur);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/* Copy original pixel data and
* subtract dark frame (if present) from current image and apply flat field correction (if present)
*/
@ -2807,253 +2502,6 @@ void RawImageSource::copyOriginalPixels(const RAWParams &raw, RawImage *src, Raw
}
}
void RawImageSource::cfaboxblur(RawImage *riFlatFile, float* cfablur, int boxH, int boxW)
{
if (boxW < 0 || boxH < 0 || (boxW == 0 && boxH == 0)) { // nothing to blur or negative values
memcpy(cfablur, riFlatFile->data[0], W * H * sizeof(float));
return;
}
float *tmpBuffer = nullptr;
float *cfatmp = nullptr;
float *srcVertical = nullptr;
if(boxH > 0 && boxW > 0) {
// we need a temporary buffer if we have to blur both directions
tmpBuffer = (float (*)) calloc (H * W, sizeof * tmpBuffer);
}
if(boxH == 0) {
// if boxH == 0 we can skip the vertical blur and process the horizontal blur from riFlatFile to cfablur without using a temporary buffer
cfatmp = cfablur;
} else {
cfatmp = tmpBuffer;
}
if(boxW == 0) {
// if boxW == 0 we can skip the horizontal blur and process the vertical blur from riFlatFile to cfablur without using a temporary buffer
srcVertical = riFlatFile->data[0];
} else {
srcVertical = cfatmp;
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
if(boxW > 0) {
//box blur cfa image; box size = BS
//horizontal blur
#ifdef _OPENMP
#pragma omp for
#endif
for (int row = 0; row < H; row++) {
int len = boxW / 2 + 1;
cfatmp[row * W + 0] = riFlatFile->data[row][0] / len;
cfatmp[row * W + 1] = riFlatFile->data[row][1] / len;
for (int j = 2; j <= boxW; j += 2) {
cfatmp[row * W + 0] += riFlatFile->data[row][j] / len;
cfatmp[row * W + 1] += riFlatFile->data[row][j + 1] / len;
}
for (int col = 2; col <= boxW; col += 2) {
cfatmp[row * W + col] = (cfatmp[row * W + col - 2] * len + riFlatFile->data[row][boxW + col]) / (len + 1);
cfatmp[row * W + col + 1] = (cfatmp[row * W + col - 1] * len + riFlatFile->data[row][boxW + col + 1]) / (len + 1);
len ++;
}
for (int col = boxW + 2; col < W - boxW; col++) {
cfatmp[row * W + col] = cfatmp[row * W + col - 2] + (riFlatFile->data[row][boxW + col] - cfatmp[row * W + col - boxW - 2]) / len;
}
for (int col = W - boxW; col < W; col += 2) {
cfatmp[row * W + col] = (cfatmp[row * W + col - 2] * len - cfatmp[row * W + col - boxW - 2]) / (len - 1);
if (col + 1 < W) {
cfatmp[row * W + col + 1] = (cfatmp[row * W + col - 1] * len - cfatmp[row * W + col - boxW - 1]) / (len - 1);
}
len --;
}
}
}
if(boxH > 0) {
//vertical blur
#ifdef __SSE2__
vfloat leninitv = F2V(boxH / 2 + 1);
vfloat onev = F2V( 1.0f );
vfloat temp1v, temp2v, temp3v, temp4v, lenv, lenp1v, lenm1v;
int row;
#ifdef _OPENMP
#pragma omp for nowait
#endif
for (int col = 0; col < W - 7; col += 8) {
lenv = leninitv;
temp1v = LVFU(srcVertical[0 * W + col]) / lenv;
temp2v = LVFU(srcVertical[1 * W + col]) / lenv;
temp3v = LVFU(srcVertical[0 * W + col + 4]) / lenv;
temp4v = LVFU(srcVertical[1 * W + col + 4]) / lenv;
for (int i = 2; i < boxH + 2; i += 2) {
temp1v += LVFU(srcVertical[i * W + col]) / lenv;
temp2v += LVFU(srcVertical[(i + 1) * W + col]) / lenv;
temp3v += LVFU(srcVertical[i * W + col + 4]) / lenv;
temp4v += LVFU(srcVertical[(i + 1) * W + col + 4]) / lenv;
}
STVFU(cfablur[0 * W + col], temp1v);
STVFU(cfablur[1 * W + col], temp2v);
STVFU(cfablur[0 * W + col + 4], temp3v);
STVFU(cfablur[1 * W + col + 4], temp4v);
for (row = 2; row < boxH + 2; row += 2) {
lenp1v = lenv + onev;
temp1v = (temp1v * lenv + LVFU(srcVertical[(row + boxH) * W + col])) / lenp1v;
temp2v = (temp2v * lenv + LVFU(srcVertical[(row + boxH + 1) * W + col])) / lenp1v;
temp3v = (temp3v * lenv + LVFU(srcVertical[(row + boxH) * W + col + 4])) / lenp1v;
temp4v = (temp4v * lenv + LVFU(srcVertical[(row + boxH + 1) * W + col + 4])) / lenp1v;
STVFU(cfablur[row * W + col], temp1v);
STVFU(cfablur[(row + 1)*W + col], temp2v);
STVFU(cfablur[row * W + col + 4], temp3v);
STVFU(cfablur[(row + 1)*W + col + 4], temp4v);
lenv = lenp1v;
}
for (; row < H - boxH - 1; row += 2) {
temp1v = temp1v + (LVFU(srcVertical[(row + boxH) * W + col]) - LVFU(srcVertical[(row - boxH - 2) * W + col])) / lenv;
temp2v = temp2v + (LVFU(srcVertical[(row + 1 + boxH) * W + col]) - LVFU(srcVertical[(row + 1 - boxH - 2) * W + col])) / lenv;
temp3v = temp3v + (LVFU(srcVertical[(row + boxH) * W + col + 4]) - LVFU(srcVertical[(row - boxH - 2) * W + col + 4])) / lenv;
temp4v = temp4v + (LVFU(srcVertical[(row + 1 + boxH) * W + col + 4]) - LVFU(srcVertical[(row + 1 - boxH - 2) * W + col + 4])) / lenv;
STVFU(cfablur[row * W + col], temp1v);
STVFU(cfablur[(row + 1)*W + col], temp2v);
STVFU(cfablur[row * W + col + 4], temp3v);
STVFU(cfablur[(row + 1)*W + col + 4], temp4v);
}
for(; row < H - boxH; row++) {
temp1v = temp1v + (LVFU(srcVertical[(row + boxH) * W + col]) - LVFU(srcVertical[(row - boxH - 2) * W + col])) / lenv;
temp3v = temp3v + (LVFU(srcVertical[(row + boxH) * W + col + 4]) - LVFU(srcVertical[(row - boxH - 2) * W + col + 4])) / lenv;
STVFU(cfablur[row * W + col], temp1v);
STVFU(cfablur[row * W + col + 4], temp3v);
vfloat swapv = temp1v;
temp1v = temp2v;
temp2v = swapv;
swapv = temp3v;
temp3v = temp4v;
temp4v = swapv;
}
for (; row < H - 1; row += 2) {
lenm1v = lenv - onev;
temp1v = (temp1v * lenv - LVFU(srcVertical[(row - boxH - 2) * W + col])) / lenm1v;
temp2v = (temp2v * lenv - LVFU(srcVertical[(row - boxH - 1) * W + col])) / lenm1v;
temp3v = (temp3v * lenv - LVFU(srcVertical[(row - boxH - 2) * W + col + 4])) / lenm1v;
temp4v = (temp4v * lenv - LVFU(srcVertical[(row - boxH - 1) * W + col + 4])) / lenm1v;
STVFU(cfablur[row * W + col], temp1v);
STVFU(cfablur[(row + 1)*W + col], temp2v);
STVFU(cfablur[row * W + col + 4], temp3v);
STVFU(cfablur[(row + 1)*W + col + 4], temp4v);
lenv = lenm1v;
}
for(; row < H; row++) {
lenm1v = lenv - onev;
temp1v = (temp1v * lenv - LVFU(srcVertical[(row - boxH - 2) * W + col])) / lenm1v;
temp3v = (temp3v * lenv - LVFU(srcVertical[(row - boxH - 2) * W + col + 4])) / lenm1v;
STVFU(cfablur[(row)*W + col], temp1v);
STVFU(cfablur[(row)*W + col + 4], temp3v);
}
}
#ifdef _OPENMP
#pragma omp single
#endif
for (int col = W - (W % 8); col < W; col++) {
int len = boxH / 2 + 1;
cfablur[0 * W + col] = srcVertical[0 * W + col] / len;
cfablur[1 * W + col] = srcVertical[1 * W + col] / len;
for (int i = 2; i < boxH + 2; i += 2) {
cfablur[0 * W + col] += srcVertical[i * W + col] / len;
cfablur[1 * W + col] += srcVertical[(i + 1) * W + col] / len;
}
for (int row = 2; row < boxH + 2; row += 2) {
cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len + srcVertical[(row + boxH) * W + col]) / (len + 1);
cfablur[(row + 1)*W + col] = (cfablur[(row - 1) * W + col] * len + srcVertical[(row + boxH + 1) * W + col]) / (len + 1);
len ++;
}
for (int row = boxH + 2; row < H - boxH; row++) {
cfablur[row * W + col] = cfablur[(row - 2) * W + col] + (srcVertical[(row + boxH) * W + col] - srcVertical[(row - boxH - 2) * W + col]) / len;
}
for (int row = H - boxH; row < H; row += 2) {
cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len - srcVertical[(row - boxH - 2) * W + col]) / (len - 1);
if (row + 1 < H) {
cfablur[(row + 1)*W + col] = (cfablur[(row - 1) * W + col] * len - srcVertical[(row - boxH - 1) * W + col]) / (len - 1);
}
len --;
}
}
#else
#ifdef _OPENMP
#pragma omp for
#endif
for (int col = 0; col < W; col++) {
int len = boxH / 2 + 1;
cfablur[0 * W + col] = srcVertical[0 * W + col] / len;
cfablur[1 * W + col] = srcVertical[1 * W + col] / len;
for (int i = 2; i < boxH + 2; i += 2) {
cfablur[0 * W + col] += srcVertical[i * W + col] / len;
cfablur[1 * W + col] += srcVertical[(i + 1) * W + col] / len;
}
for (int row = 2; row < boxH + 2; row += 2) {
cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len + srcVertical[(row + boxH) * W + col]) / (len + 1);
cfablur[(row + 1)*W + col] = (cfablur[(row - 1) * W + col] * len + srcVertical[(row + boxH + 1) * W + col]) / (len + 1);
len ++;
}
for (int row = boxH + 2; row < H - boxH; row++) {
cfablur[row * W + col] = cfablur[(row - 2) * W + col] + (srcVertical[(row + boxH) * W + col] - srcVertical[(row - boxH - 2) * W + col]) / len;
}
for (int row = H - boxH; row < H; row += 2) {
cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len - srcVertical[(row - boxH - 2) * W + col]) / (len - 1);
if (row + 1 < H) {
cfablur[(row + 1)*W + col] = (cfablur[(row - 1) * W + col] * len - srcVertical[(row - boxH - 1) * W + col]) / (len - 1);
}
len --;
}
}
#endif
}
}
if(tmpBuffer) {
free (tmpBuffer);
}
}
// Scale original pixels into the range 0 65535 using black offsets and multipliers
void RawImageSource::scaleColors(int winx, int winy, int winw, int winh, const RAWParams &raw, array2D<float> &rawData)
{

View File

@ -137,9 +137,8 @@ public:
return rgbSourceModified; // tracks whether cached rgb output of demosaic has been modified
}
void processFlatField(const procparams::RAWParams &raw, RawImage *riFlatFile, unsigned short black[4]);
void processFlatField(const procparams::RAWParams &raw, const RawImage *riFlatFile, const unsigned short black[4]);
void copyOriginalPixels(const procparams::RAWParams &raw, RawImage *ri, RawImage *riDark, RawImage *riFlatFile, array2D<float> &rawData );
void cfaboxblur (RawImage *riFlatFile, float* cfablur, int boxH, int boxW);
void scaleColors (int winx, int winy, int winw, int winh, const procparams::RAWParams &raw, array2D<float> &rawData); // raw for cblack
void getImage (const ColorTemp &ctemp, int tran, Imagefloat* image, const PreviewProps &pp, const procparams::ToneCurveParams &hrp, const procparams::RAWParams &raw) override;

View File

@ -33,18 +33,17 @@ using namespace rtengine::procparams;
FlatField::FlatField () : FoldableToolPanel(this, "flatfield", M("TP_FLATFIELD_LABEL"))
{
hbff = Gtk::manage(new Gtk::HBox());
hbff->set_spacing(2);
flatFieldFile = Gtk::manage(new MyFileChooserButton(M("TP_FLATFIELD_LABEL"), Gtk::FILE_CHOOSER_ACTION_OPEN));
bindCurrentFolder (*flatFieldFile, options.lastFlatfieldDir);
ffLabel = Gtk::manage(new Gtk::Label(M("GENERAL_FILE")));
flatFieldFileReset = Gtk::manage(new Gtk::Button());
flatFieldFileReset->set_image (*Gtk::manage(new RTImage ("cancel-small.png")));
hbff->pack_start(*ffLabel, Gtk::PACK_SHRINK, 0);
hbff->pack_start(*ffLabel, Gtk::PACK_SHRINK);
hbff->pack_start(*flatFieldFile);
hbff->pack_start(*flatFieldFileReset, Gtk::PACK_SHRINK, 0);
hbff->pack_start(*flatFieldFileReset, Gtk::PACK_SHRINK);
flatFieldAutoSelect = Gtk::manage(new Gtk::CheckButton((M("TP_FLATFIELD_AUTOSELECT"))));
ffInfo = Gtk::manage(new Gtk::Label(""));
ffInfo->set_alignment(0, 0); //left align
ffInfo = Gtk::manage(new Gtk::Label("-"));
setExpandAlignProperties(ffInfo, true, false, Gtk::ALIGN_CENTER, Gtk::ALIGN_CENTER);
flatFieldBlurRadius = Gtk::manage(new Adjuster (M("TP_FLATFIELD_BLURRADIUS"), 0, 200, 2, 32));
flatFieldBlurRadius->setAdjusterListener (this);
@ -55,15 +54,14 @@ FlatField::FlatField () : FoldableToolPanel(this, "flatfield", M("TP_FLATFIELD_L
flatFieldBlurRadius->show();
Gtk::HBox* hbffbt = Gtk::manage (new Gtk::HBox ());
hbffbt->pack_start (*Gtk::manage (new Gtk::Label ( M("TP_FLATFIELD_BLURTYPE") + ":")));
hbffbt->set_spacing(4);
hbffbt->pack_start (*Gtk::manage (new Gtk::Label ( M("TP_FLATFIELD_BLURTYPE") + ":")), Gtk::PACK_SHRINK);
flatFieldBlurType = Gtk::manage (new MyComboBoxText ());
flatFieldBlurType->append(M("TP_FLATFIELD_BT_AREA"));
flatFieldBlurType->append(M("TP_FLATFIELD_BT_VERTICAL"));
flatFieldBlurType->append(M("TP_FLATFIELD_BT_HORIZONTAL"));
flatFieldBlurType->append(M("TP_FLATFIELD_BT_VERTHORIZ"));
flatFieldBlurType->set_active(0);
hbffbt->pack_end (*flatFieldBlurType);
hbffbt->pack_end (*flatFieldBlurType, Gtk::PACK_EXPAND_WIDGET);
flatFieldClipControl = Gtk::manage (new Adjuster(M("TP_FLATFIELD_CLIPCONTROL"), 0., 100., 1., 0.));
flatFieldClipControl->setAdjusterListener(this);
@ -76,12 +74,12 @@ FlatField::FlatField () : FoldableToolPanel(this, "flatfield", M("TP_FLATFIELD_L
flatFieldClipControl->show();
flatFieldClipControl->set_tooltip_markup (M("TP_FLATFIELD_CLIPCONTROL_TOOLTIP"));
pack_start( *hbff, Gtk::PACK_SHRINK, 0);
pack_start( *flatFieldAutoSelect, Gtk::PACK_SHRINK, 0);
pack_start( *ffInfo, Gtk::PACK_SHRINK, 0);
pack_start( *hbffbt, Gtk::PACK_SHRINK, 0);
pack_start( *flatFieldBlurRadius, Gtk::PACK_SHRINK, 0);
pack_start( *flatFieldClipControl, Gtk::PACK_SHRINK, 0);
pack_start( *hbff, Gtk::PACK_SHRINK);
pack_start( *flatFieldAutoSelect, Gtk::PACK_SHRINK);
pack_start( *ffInfo, Gtk::PACK_SHRINK);
pack_start( *hbffbt, Gtk::PACK_SHRINK);
pack_start( *flatFieldBlurRadius, Gtk::PACK_SHRINK);
pack_start( *flatFieldClipControl, Gtk::PACK_SHRINK);
flatFieldFileconn = flatFieldFile->signal_file_set().connect ( sigc::mem_fun(*this, &FlatField::flatFieldFileChanged)); //, true);
flatFieldFileReset->signal_clicked().connect( sigc::mem_fun(*this, &FlatField::flatFieldFile_Reset), true );
@ -170,7 +168,7 @@ void FlatField::read(const rtengine::procparams::ProcParams* pp, const ParamsEdi
ffInfo->set_text(Glib::ustring(M("TP_PREPROCESS_NO_FOUND")));
}
} else {
ffInfo->set_text("");
ffInfo->set_text("-");
}
ffChanged = false;
@ -335,7 +333,7 @@ void FlatField::flatFieldFile_Reset()
flatFieldFile->set_current_folder(options.lastFlatfieldDir);
}
ffInfo->set_text("");
ffInfo->set_text("-");
if (listener) {
listener->panelChanged (EvFlatFieldFile, M("GENERAL_NONE") );
@ -385,7 +383,7 @@ void FlatField::flatFieldAutoSelectChanged()
ffInfo->set_text(Glib::ustring(M("TP_PREPROCESS_NO_FOUND")));
}
} else {
ffInfo->set_text("");
ffInfo->set_text("-");
}
if (listener) {