run tmo_fattal02.cc through astyle
This commit is contained in:
@@ -73,7 +73,8 @@
|
||||
#include "StopWatch.h"
|
||||
#include "sleef.c"
|
||||
#include "opthelper.h"
|
||||
namespace rtengine {
|
||||
namespace rtengine
|
||||
{
|
||||
|
||||
/******************************************************************************
|
||||
* RT code
|
||||
@@ -84,9 +85,11 @@ extern MyMutex *fftwMutex;
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace {
|
||||
namespace
|
||||
{
|
||||
|
||||
class Array2Df: public array2D<float> {
|
||||
class Array2Df: public array2D<float>
|
||||
{
|
||||
typedef array2D<float> Super;
|
||||
public:
|
||||
Array2Df(): Super() {}
|
||||
@@ -153,10 +156,8 @@ void downSample(const Array2Df& A, Array2Df& B)
|
||||
// speed improvements. The main issue is the pde solver and in case of the
|
||||
// fft solver uses optimised threaded fftw routines.
|
||||
//#pragma omp parallel for
|
||||
for ( int y=0 ; y<height ; y++ )
|
||||
{
|
||||
for ( int x=0 ; x<width ; x++ )
|
||||
{
|
||||
for ( int y = 0 ; y < height ; y++ ) {
|
||||
for ( int x = 0 ; x < width ; x++ ) {
|
||||
float p = A (2 * x, 2 * y);
|
||||
p += A (2 * x + 1, 2 * y);
|
||||
p += A (2 * x, 2 * y + 1);
|
||||
@@ -177,6 +178,7 @@ void gaussianBlur(const Array2Df& I, Array2Df& L)
|
||||
L (i) = I (i);
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -184,25 +186,24 @@ void gaussianBlur(const Array2Df& I, Array2Df& L)
|
||||
|
||||
//--- X blur
|
||||
#pragma omp parallel for shared(I, T)
|
||||
for ( int y=0 ; y<height ; y++ )
|
||||
{
|
||||
for ( int x=1 ; x<width-1 ; x++ )
|
||||
{
|
||||
|
||||
for ( int y = 0 ; y < height ; y++ ) {
|
||||
for ( int x = 1 ; x < width - 1 ; x++ ) {
|
||||
float t = 2.f * I (x, y);
|
||||
t += I (x - 1, y);
|
||||
t += I (x + 1, y);
|
||||
T (x, y) = t * 0.25f; // t / 4.f;
|
||||
}
|
||||
|
||||
T (0, y) = ( 3.f * I (0, y) + I (1, y) ) * 0.25f; // / 4.f;
|
||||
T (width - 1, y) = ( 3.f * I (width - 1, y) + I (width - 2, y) ) * 0.25f; // / 4.f;
|
||||
}
|
||||
|
||||
//--- Y blur
|
||||
#pragma omp parallel for
|
||||
for ( int x=0 ; x<width-7 ; x+=8 )
|
||||
{
|
||||
for ( int y=1 ; y<height-1 ; y++ )
|
||||
{
|
||||
|
||||
for ( int x = 0 ; x < width - 7 ; x += 8 ) {
|
||||
for ( int y = 1 ; y < height - 1 ; y++ ) {
|
||||
for (int xx = 0; xx < 8; ++xx) {
|
||||
float t = 2.f * T (x + xx, y);
|
||||
t += T (x + xx, y - 1);
|
||||
@@ -210,20 +211,21 @@ void gaussianBlur(const Array2Df& I, Array2Df& L)
|
||||
L (x + xx, y) = t * 0.25f; // t/4.0f;
|
||||
}
|
||||
}
|
||||
|
||||
for (int xx = 0; xx < 8; ++xx) {
|
||||
L (x + xx, 0) = ( 3.f * T (x + xx, 0) + T (x + xx, 1) ) * 0.25f; // / 4.0f;
|
||||
L (x + xx, height - 1) = ( 3.f * T (x + xx, height - 1) + T (x + xx, height - 2) ) * 0.25f; // / 4.0f;
|
||||
}
|
||||
}
|
||||
for ( int x = width - (width % 8) ; x<width ; x++ )
|
||||
{
|
||||
for ( int y=1 ; y<height-1 ; y++ )
|
||||
{
|
||||
|
||||
for ( int x = width - (width % 8) ; x < width ; x++ ) {
|
||||
for ( int y = 1 ; y < height - 1 ; y++ ) {
|
||||
float t = 2.f * T (x, y);
|
||||
t += T (x, y - 1);
|
||||
t += T (x, y + 1);
|
||||
L (x, y) = t * 0.25f; // t/4.0f;
|
||||
}
|
||||
|
||||
L (x, 0) = ( 3.f * T (x, 0) + T (x, 1) ) * 0.25f; // / 4.0f;
|
||||
L (x, height - 1) = ( 3.f * T (x, height - 1) + T (x, height - 2) ) * 0.25f; // / 4.0f;
|
||||
}
|
||||
@@ -236,15 +238,16 @@ void createGaussianPyramids( Array2Df* H, Array2Df** pyramids, int nlevels)
|
||||
const int size = width * height;
|
||||
|
||||
pyramids[0] = new Array2Df (width, height);
|
||||
|
||||
//#pragma omp parallel for shared(pyramids, H)
|
||||
for( int i=0 ; i<size ; i++ )
|
||||
for ( int i = 0 ; i < size ; i++ ) {
|
||||
(*pyramids[0]) (i) = (*H) (i);
|
||||
}
|
||||
|
||||
Array2Df* L = new Array2Df (width, height);
|
||||
gaussianBlur ( *pyramids[0], *L );
|
||||
|
||||
for ( int k=1 ; k<nlevels ; k++ )
|
||||
{
|
||||
for ( int k = 1 ; k < nlevels ; k++ ) {
|
||||
if (width > 2 && height > 2) {
|
||||
width /= 2;
|
||||
height /= 2;
|
||||
@@ -255,6 +258,7 @@ void createGaussianPyramids( Array2Df* H, Array2Df** pyramids, int nlevels)
|
||||
// there), so it might happen that we have to add some padding to
|
||||
// the gaussian pyramids
|
||||
pyramids[k] = new Array2Df (width, height);
|
||||
|
||||
for (int j = 0, n = width * height; j < n; ++j) {
|
||||
(*pyramids[k]) (j) = (*L) (j);
|
||||
}
|
||||
@@ -280,12 +284,12 @@ float calculateGradients(Array2Df* H, Array2Df* G, int k)
|
||||
float avgGrad = 0.0f;
|
||||
|
||||
#pragma omp parallel for reduction(+:avgGrad)
|
||||
for( int y=0 ; y<height ; y++ )
|
||||
{
|
||||
|
||||
for ( int y = 0 ; y < height ; y++ ) {
|
||||
int n = (y == 0 ? 0 : y - 1);
|
||||
int s = (y + 1 == height ? y : y + 1);
|
||||
for( int x=0 ; x<width ; x++ )
|
||||
{
|
||||
|
||||
for ( int x = 0 ; x < width ; x++ ) {
|
||||
float gx, gy;
|
||||
int w, e;
|
||||
w = (x == 0 ? 0 : x - 1);
|
||||
@@ -317,10 +321,8 @@ void upSample(const Array2Df& A, Array2Df& B)
|
||||
const int aheight = A.getRows();
|
||||
|
||||
//#pragma omp parallel for shared(A, B)
|
||||
for ( int y=0 ; y<height ; y++ )
|
||||
{
|
||||
for ( int x=0 ; x<width ; x++ )
|
||||
{
|
||||
for ( int y = 0 ; y < height ; y++ ) {
|
||||
for ( int x = 0 ; x < width ; x++ ) {
|
||||
int ax = static_cast<int> (x * 0.5f); //x / 2.f;
|
||||
int ay = static_cast<int> (y * 0.5f); //y / 2.f;
|
||||
ax = (ax < awidth) ? ax : awidth - 1;
|
||||
@@ -329,6 +331,7 @@ void upSample(const Array2Df& A, Array2Df& B)
|
||||
B (x, y) = A (ax, ay);
|
||||
}
|
||||
}
|
||||
|
||||
//--- this code below produces 'use of uninitialized value error'
|
||||
// int width = A->getCols();
|
||||
// int height = A->getRows();
|
||||
@@ -355,65 +358,59 @@ void calculateFiMatrix(Array2Df* FI, Array2Df* gradients[],
|
||||
Array2Df** fi = new Array2Df*[nlevels];
|
||||
|
||||
fi[nlevels - 1] = new Array2Df (width, height);
|
||||
if (newfattal)
|
||||
{
|
||||
|
||||
if (newfattal) {
|
||||
//#pragma omp parallel for shared(fi)
|
||||
for ( int k = 0 ; k < width*height ; k++ )
|
||||
{
|
||||
for ( int k = 0 ; k < width * height ; k++ ) {
|
||||
(*fi[nlevels - 1]) (k) = 1.0f;
|
||||
}
|
||||
}
|
||||
|
||||
for ( int k = nlevels-1; k >= 0 ; k-- )
|
||||
{
|
||||
for ( int k = nlevels - 1; k >= 0 ; k-- ) {
|
||||
width = gradients[k]->getCols();
|
||||
height = gradients[k]->getRows();
|
||||
|
||||
// only apply gradients to levels>=detail_level but at least to the coarsest
|
||||
if ( k >= detail_level
|
||||
|| k == nlevels - 1
|
||||
|| newfattal == false)
|
||||
{
|
||||
|| newfattal == false) {
|
||||
//DEBUG_STR << "calculateFiMatrix: apply gradient to level " << k << endl;
|
||||
#pragma omp parallel for shared(fi,avgGrad)
|
||||
for ( int y = 0; y < height; y++ )
|
||||
{
|
||||
for ( int x = 0; x < width; x++ )
|
||||
{
|
||||
for ( int y = 0; y < height; y++ ) {
|
||||
for ( int x = 0; x < width; x++ ) {
|
||||
float grad = ((*gradients[k]) (x, y) < 1e-4f) ? 1e-4 : (*gradients[k]) (x, y);
|
||||
float a = alfa * avgGrad[k];
|
||||
|
||||
float value = pow ((grad + noise) / a, beta - 1.0f);
|
||||
|
||||
if (newfattal)
|
||||
if (newfattal) {
|
||||
(*fi[k]) (x, y) *= value;
|
||||
else
|
||||
} else {
|
||||
(*fi[k]) (x, y) = value;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// create next level
|
||||
if ( k>1 )
|
||||
{
|
||||
if ( k > 1 ) {
|
||||
width = gradients[k - 1]->getCols();
|
||||
height = gradients[k - 1]->getRows();
|
||||
fi[k - 1] = new Array2Df (width, height);
|
||||
}
|
||||
else
|
||||
} else {
|
||||
fi[0] = FI; // highest level -> result
|
||||
}
|
||||
|
||||
if ( k>0 && newfattal )
|
||||
{
|
||||
if ( k > 0 && newfattal ) {
|
||||
upSample (*fi[k], *fi[k - 1]); // upsample to next level
|
||||
gaussianBlur (*fi[k - 1], *fi[k - 1]);
|
||||
}
|
||||
}
|
||||
|
||||
for ( int k=1 ; k<nlevels ; k++ )
|
||||
{
|
||||
for ( int k = 1 ; k < nlevels ; k++ ) {
|
||||
delete fi[k];
|
||||
}
|
||||
|
||||
delete[] fi;
|
||||
}
|
||||
|
||||
@@ -445,6 +442,7 @@ void findMaxMinPercentile(const Array2Df& I,
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for nowait
|
||||
#endif
|
||||
|
||||
for (int i = 0; i < size; ++i) {
|
||||
// values are in [0;1] range, so we have to multiply with 65535 to get the histogram index
|
||||
histothr[ (unsigned int) (65535.f * data[i])]++;
|
||||
@@ -464,6 +462,7 @@ void findMaxMinPercentile(const Array2Df& I,
|
||||
while (count < minPrct * size) {
|
||||
count += histo[k++];
|
||||
}
|
||||
|
||||
if (k > 0) { // interpolate
|
||||
int count_ = count - histo[k - 1];
|
||||
float c0 = count - minPrct * size;
|
||||
@@ -477,6 +476,7 @@ void findMaxMinPercentile(const Array2Df& I,
|
||||
while (count < maxPrct * size) {
|
||||
count += histo[k++];
|
||||
}
|
||||
|
||||
if (k > 0) { // interpolate
|
||||
int count_ = count - histo[k - 1];
|
||||
float c0 = count - maxPrct * size;
|
||||
@@ -507,9 +507,15 @@ void tmo_fattal02(size_t width,
|
||||
static const float black_point = 0.1f;
|
||||
static const float white_point = 0.5f;
|
||||
static const float gamma = 1.0f; // 0.8f;
|
||||
|
||||
// static const int detail_level = 3;
|
||||
if ( detail_level < 0 ) detail_level = 0;
|
||||
if ( detail_level > 3 ) detail_level = 3;
|
||||
if ( detail_level < 0 ) {
|
||||
detail_level = 0;
|
||||
}
|
||||
|
||||
if ( detail_level > 3 ) {
|
||||
detail_level = 3;
|
||||
}
|
||||
|
||||
// ph.setValue(2);
|
||||
// if (ph.canceled()) return;
|
||||
@@ -538,8 +544,8 @@ void tmo_fattal02(size_t width,
|
||||
float maxLum = Y (0, 0);
|
||||
|
||||
#pragma omp parallel for reduction(max:maxLum)
|
||||
for ( int i=0 ; i<size ; i++ )
|
||||
{
|
||||
|
||||
for ( int i = 0 ; i < size ; i++ ) {
|
||||
maxLum = std::max (maxLum, Y (i));
|
||||
}
|
||||
|
||||
@@ -553,13 +559,17 @@ void tmo_fattal02(size_t width,
|
||||
vfloat tempv = F2V (temp);
|
||||
#endif
|
||||
#pragma omp for schedule(dynamic,16)
|
||||
|
||||
for (size_t i = 0 ; i < height ; ++i) {
|
||||
size_t j = 0;
|
||||
#ifdef __SSE2__
|
||||
|
||||
for (; j < width - 3; j += 4) {
|
||||
STVFU ((*H)[i][j], xlogf (tempv * LVFU (Y[i][j]) + epsv));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
for (; j < width; ++j) {
|
||||
(*H)[i][j] = xlogf (temp * Y[i][j] + eps);
|
||||
}
|
||||
@@ -590,6 +600,7 @@ void tmo_fattal02(size_t width,
|
||||
int fullheight = height;
|
||||
int dim = std::max (width, height);
|
||||
Array2Df *fullH = nullptr;
|
||||
|
||||
if (dim > RT_dimension_cap) {
|
||||
float s = float (RT_dimension_cap) / float (dim);
|
||||
Array2Df *HH = new Array2Df (width * s, height * s);
|
||||
@@ -599,6 +610,7 @@ void tmo_fattal02(size_t width,
|
||||
width = H->getCols();
|
||||
height = H->getRows();
|
||||
}
|
||||
|
||||
/** RT */
|
||||
|
||||
// create gaussian pyramids
|
||||
@@ -621,23 +633,25 @@ void tmo_fattal02(size_t width,
|
||||
// calculate gradients and its average values on pyramid levels
|
||||
Array2Df** gradients = new Array2Df*[nlevels];
|
||||
float* avgGrad = new float[nlevels];
|
||||
for ( int k=0 ; k<nlevels ; k++ )
|
||||
{
|
||||
|
||||
for ( int k = 0 ; k < nlevels ; k++ ) {
|
||||
gradients[k] = new Array2Df (pyramids[k]->getCols(), pyramids[k]->getRows());
|
||||
avgGrad[k] = calculateGradients (pyramids[k], gradients[k], k);
|
||||
delete pyramids[k];
|
||||
}
|
||||
|
||||
delete[] pyramids;
|
||||
// ph.setValue(12);
|
||||
|
||||
// calculate fi matrix
|
||||
Array2Df* FI = new Array2Df (width, height);
|
||||
calculateFiMatrix (FI, gradients, avgGrad, nlevels, detail_level, alfa, beta, noise);
|
||||
|
||||
// dumpPFS( "FI.pfs", FI, "Y" );
|
||||
for ( int i=0 ; i<nlevels ; i++ )
|
||||
{
|
||||
for ( int i = 0 ; i < nlevels ; i++ ) {
|
||||
delete gradients[i];
|
||||
}
|
||||
|
||||
delete[] gradients;
|
||||
delete[] avgGrad;
|
||||
// ph.setValue(16);
|
||||
@@ -658,6 +672,7 @@ void tmo_fattal02(size_t width,
|
||||
delete H;
|
||||
H = fullH;
|
||||
}
|
||||
|
||||
/** RT */
|
||||
|
||||
// attenuate gradients
|
||||
@@ -670,11 +685,12 @@ void tmo_fattal02(size_t width,
|
||||
// Neumann conditions assume U(-1)=U(0)), see also divergence calculation
|
||||
// if (fftsolver)
|
||||
#pragma omp parallel for
|
||||
|
||||
for ( size_t y = 0 ; y < height ; y++ ) {
|
||||
// sets index+1 based on the boundary assumption H(N+1)=H(N-1)
|
||||
unsigned int yp1 = (y + 1 >= height ? height - 2 : y + 1);
|
||||
for ( size_t x=0 ; x<width ; x++ )
|
||||
{
|
||||
|
||||
for ( size_t x = 0 ; x < width ; x++ ) {
|
||||
// sets index+1 based on the boundary assumption H(N+1)=H(N-1)
|
||||
unsigned int xp1 = (x + 1 >= width ? width - 2 : x + 1);
|
||||
// forward differences in H, so need to use between-points approx of FI
|
||||
@@ -682,26 +698,38 @@ void tmo_fattal02(size_t width,
|
||||
(*Gy) (x, y) = ((*H) (x, yp1) - (*H) (x, y)) * 0.5 * ((*FI) (x, yp1) + (*FI) (x, y));
|
||||
}
|
||||
}
|
||||
|
||||
delete H;
|
||||
|
||||
// calculate divergence
|
||||
#pragma omp parallel for
|
||||
for ( size_t y = 0; y < height; ++y )
|
||||
{
|
||||
for ( size_t x = 0; x < width; ++x )
|
||||
{
|
||||
|
||||
for ( size_t y = 0; y < height; ++y ) {
|
||||
for ( size_t x = 0; x < width; ++x ) {
|
||||
(*FI) (x, y) = (*Gx) (x, y) + (*Gy) (x, y);
|
||||
if ( x > 0 ) (*FI)(x,y) -= (*Gx)(x-1,y);
|
||||
if ( y > 0 ) (*FI)(x,y) -= (*Gy)(x,y-1);
|
||||
|
||||
if ( x > 0 ) {
|
||||
(*FI) (x, y) -= (*Gx) (x - 1, y);
|
||||
}
|
||||
|
||||
if ( y > 0 ) {
|
||||
(*FI) (x, y) -= (*Gy) (x, y - 1);
|
||||
}
|
||||
|
||||
// if (fftsolver)
|
||||
{
|
||||
if (x==0) (*FI)(x,y) += (*Gx)(x,y);
|
||||
if (y==0) (*FI)(x,y) += (*Gy)(x,y);
|
||||
if (x == 0) {
|
||||
(*FI) (x, y) += (*Gx) (x, y);
|
||||
}
|
||||
|
||||
if (y == 0) {
|
||||
(*FI) (x, y) += (*Gy) (x, y);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
//delete Gx; // RT - reused as temp buffer in solve_pde_fft, deleted later
|
||||
delete Gy;
|
||||
|
||||
@@ -732,13 +760,17 @@ void tmo_fattal02(size_t width,
|
||||
vfloat gammav = F2V (gamma);
|
||||
#endif
|
||||
#pragma omp for schedule(dynamic,16)
|
||||
|
||||
for (size_t i = 0 ; i < height ; i++) {
|
||||
size_t j = 0;
|
||||
#ifdef __SSE2__
|
||||
|
||||
for (; j < width - 3; j += 4) {
|
||||
STVFU (L[i][j], xexpf (gammav * LVFU (L[i][j])));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
for (; j < width; j++) {
|
||||
L[i][j] = xexpf ( gamma * L[i][j]);
|
||||
}
|
||||
@@ -755,6 +787,7 @@ void tmo_fattal02(size_t width,
|
||||
float dividor = (maxLum - minLum);
|
||||
|
||||
#pragma omp parallel for
|
||||
|
||||
for (size_t i = 0; i < height; ++i) {
|
||||
for (size_t j = 0; j < width; ++j) {
|
||||
L[i][j] = std::max ((L[i][j] - minLum) / dividor, 0.f);
|
||||
@@ -845,17 +878,18 @@ void transform_ev2normal(Array2Df *A, Array2Df *T)
|
||||
// the discrete cosine transform is not exactly the transform needed
|
||||
// need to scale input values to get the right transformation
|
||||
#pragma omp parallel for
|
||||
for(int y=1 ; y<height-1 ; y++ )
|
||||
for(int x=1 ; x<width-1 ; x++ )
|
||||
(*A)(x,y)*=0.25f;
|
||||
|
||||
for(int x=1 ; x<width-1 ; x++ )
|
||||
{
|
||||
for (int y = 1 ; y < height - 1 ; y++ )
|
||||
for (int x = 1 ; x < width - 1 ; x++ ) {
|
||||
(*A) (x, y) *= 0.25f;
|
||||
}
|
||||
|
||||
for (int x = 1 ; x < width - 1 ; x++ ) {
|
||||
(*A) (x, 0) *= 0.5f;
|
||||
(*A) (x, height - 1) *= 0.5f;
|
||||
}
|
||||
for(int y=1 ; y<height-1 ; y++ )
|
||||
{
|
||||
|
||||
for (int y = 1 ; y < height - 1 ; y++ ) {
|
||||
(*A) (0, y) *= 0.5;
|
||||
(*A) (width - 1, y) *= 0.5f;
|
||||
}
|
||||
@@ -895,16 +929,18 @@ void transform_normal2ev(Array2Df *A, Array2Df *T)
|
||||
// need to scale the output matrix to get the right transform
|
||||
float factor = (1.0f / ((height - 1) * (width - 1)));
|
||||
#pragma omp parallel for
|
||||
|
||||
for (int y = 0 ; y < height ; y++ )
|
||||
for(int x=0 ; x<width ; x++ )
|
||||
for (int x = 0 ; x < width ; x++ ) {
|
||||
(*T) (x, y) *= factor;
|
||||
for(int x=0 ; x<width ; x++ )
|
||||
{
|
||||
}
|
||||
|
||||
for (int x = 0 ; x < width ; x++ ) {
|
||||
(*T) (x, 0) *= 0.5f;
|
||||
(*T) (x, height - 1) *= 0.5f;
|
||||
}
|
||||
for(int y=0 ; y<height ; y++ )
|
||||
{
|
||||
|
||||
for (int y = 0 ; y < height ; y++ ) {
|
||||
(*T) (0, y) *= 0.5f;
|
||||
(*T) (width - 1, y) *= 0.5f;
|
||||
}
|
||||
@@ -915,8 +951,8 @@ std::vector<double> get_lambda(int n)
|
||||
{
|
||||
assert (n > 1);
|
||||
std::vector<double> v (n);
|
||||
for (int i=0; i<n; i++)
|
||||
{
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
v[i] = -4.0 * SQR (sin ((double)i / (2 * (n - 1)) * RT_PI));
|
||||
}
|
||||
|
||||
@@ -979,10 +1015,12 @@ void solve_pde_fft(Array2Df *F, Array2Df *U, Array2Df *buf, bool multithread)/*,
|
||||
|
||||
// activate parallel execution of fft routines
|
||||
#ifdef RT_FFTW3F_OMP
|
||||
|
||||
if (multithread) {
|
||||
fftwf_init_threads();
|
||||
fftwf_plan_with_nthreads ( omp_get_max_threads() );
|
||||
}
|
||||
|
||||
// #else
|
||||
// fftwf_plan_with_nthreads( 2 );
|
||||
#endif
|
||||
@@ -1020,13 +1058,13 @@ void solve_pde_fft(Array2Df *F, Array2Df *U, Array2Df *buf, bool multithread)/*,
|
||||
std::vector<double> l2 = get_lambda (width);
|
||||
|
||||
#pragma omp parallel for
|
||||
for(int y=0 ; y<height ; y++ )
|
||||
{
|
||||
for(int x=0 ; x<width ; x++ )
|
||||
{
|
||||
|
||||
for (int y = 0 ; y < height ; y++ ) {
|
||||
for (int x = 0 ; x < width ; x++ ) {
|
||||
(*F_tr) (x, y) = (*F_tr) (x, y) / (l1[y] + l2[x]);
|
||||
}
|
||||
}
|
||||
|
||||
(*F_tr) (0, 0) = 0.f; // any value ok, only adds a const to the solution
|
||||
|
||||
// transforms U_tr back to the normal space
|
||||
@@ -1042,20 +1080,24 @@ void solve_pde_fft(Array2Df *F, Array2Df *U, Array2Df *buf, bool multithread)/*,
|
||||
//DEBUG_STR << "solve_pde_fft: removing constant from solution" << std::endl;
|
||||
float max = 0.f;
|
||||
#pragma omp parallel for reduction(max:max)
|
||||
|
||||
for (int i = 0; i < width * height; i++) {
|
||||
max = std::max (max, (*U) (i));
|
||||
}
|
||||
|
||||
#pragma omp parallel for
|
||||
|
||||
for (int i = 0; i < width * height; i++) {
|
||||
(*U) (i) -= max;
|
||||
}
|
||||
|
||||
// fft parallel threads cleanup, better handled outside this function?
|
||||
#ifdef RT_FFTW3F_OMP
|
||||
|
||||
if (multithread) {
|
||||
fftwf_cleanup_threads();
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
// ph.setValue(90);
|
||||
@@ -1123,8 +1165,10 @@ void rescale_bilinear(const Array2Df &src, Array2Df &dst, bool multithread)
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for if (multithread)
|
||||
#endif
|
||||
|
||||
for (int y = 0; y < dst.getRows(); ++y) {
|
||||
float ymrs = y * row_scale;
|
||||
|
||||
for (int x = 0; x < dst.getCols(); ++x) {
|
||||
dst (x, y) = get_bilinear_value (src, x * col_scale, ymrs);
|
||||
}
|
||||
@@ -1141,8 +1185,10 @@ void rescale_nearest(const Array2Df &src, Array2Df &dst, bool multithread)
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for if (multithread)
|
||||
#endif
|
||||
|
||||
for (int y = 0; y < nh; ++y) {
|
||||
int sy = y * height / nh;
|
||||
|
||||
for (int x = 0; x < nw; ++x) {
|
||||
int sx = x * width / nw;
|
||||
dst (x, y) = src (sx, sy);
|
||||
@@ -1198,11 +1244,13 @@ inline int find_fast_dim(int dim)
|
||||
d1 / 8 * 7,
|
||||
d1
|
||||
};
|
||||
|
||||
for (size_t i = 0; i < d.size(); ++i) {
|
||||
if (d[i] >= dim) {
|
||||
return d[i];
|
||||
}
|
||||
}
|
||||
|
||||
assert (false);
|
||||
return dim;
|
||||
}
|
||||
@@ -1216,6 +1264,7 @@ void ImProcFunctions::ToneMapFattal02(Imagefloat *rgb)
|
||||
const int detail_level = 3;
|
||||
|
||||
float alpha = 1.f;
|
||||
|
||||
if (params->fattal.threshold < 0) {
|
||||
alpha += (params->fattal.threshold * 0.9f) / 100.f;
|
||||
} else if (params->fattal.threshold > 0) {
|
||||
@@ -1242,11 +1291,13 @@ void ImProcFunctions::ToneMapFattal02(Imagefloat *rgb)
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for if (multiThread)
|
||||
#endif
|
||||
|
||||
for (int y = 0; y < h; y++) {
|
||||
for (int x = 0; x < w; x++) {
|
||||
Yr (x, y) = std::max (luminance (rgb->r (y, x), rgb->g (y, x), rgb->b (y, x), ws), min_luminance); // clip really black pixels
|
||||
}
|
||||
}
|
||||
|
||||
// median filter on the deep shadows, to avoid boosting noise
|
||||
// because w2 >= w and h2 >= h, we can use the L buffer as temporary buffer for Median_Denoise()
|
||||
int w2 = find_fast_dim (w) + 1;
|
||||
@@ -1260,6 +1311,7 @@ void ImProcFunctions::ToneMapFattal02(Imagefloat *rgb)
|
||||
#endif
|
||||
float r = float (std::max (w, h)) / float (RT_dimension_cap);
|
||||
Median med;
|
||||
|
||||
if (r >= 3) {
|
||||
med = Median::TYPE_7X7;
|
||||
} else if (r >= 2) {
|
||||
@@ -1269,6 +1321,7 @@ void ImProcFunctions::ToneMapFattal02(Imagefloat *rgb)
|
||||
} else {
|
||||
med = Median::TYPE_3X3_STRONG;
|
||||
}
|
||||
|
||||
Median_Denoise (Yr, Yr, luminance_noise_floor, w, h, med, 1, num_threads, L);
|
||||
}
|
||||
|
||||
@@ -1287,8 +1340,10 @@ void ImProcFunctions::ToneMapFattal02(Imagefloat *rgb)
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for if(multiThread)
|
||||
#endif
|
||||
|
||||
for (int y = 0; y < h; y++) {
|
||||
int yy = y * h2 / h;
|
||||
|
||||
for (int x = 0; x < w; x++) {
|
||||
int xx = x * w2 / w;
|
||||
float Y = Yr (x, y);
|
||||
|
Reference in New Issue
Block a user