Improvement for rcd demosaic, #6054
This commit is contained in:
parent
1fc3f036c1
commit
f94cf78696
@ -21,7 +21,6 @@
|
|||||||
#include "rawimagesource.h"
|
#include "rawimagesource.h"
|
||||||
#include "rt_math.h"
|
#include "rt_math.h"
|
||||||
#include "../rtgui/multilangmgr.h"
|
#include "../rtgui/multilangmgr.h"
|
||||||
#include "opthelper.h"
|
|
||||||
#include "StopWatch.h"
|
#include "StopWatch.h"
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
@ -75,9 +74,10 @@ void RawImageSource::rcd_demosaic(size_t chunkSize, bool measure)
|
|||||||
}
|
}
|
||||||
|
|
||||||
const unsigned int cfarray[2][2] = {{FC(0,0), FC(0,1)}, {FC(1,0), FC(1,1)}};
|
const unsigned int cfarray[2][2] = {{FC(0,0), FC(0,1)}, {FC(1,0), FC(1,1)}};
|
||||||
constexpr int rcdBorder = 9;
|
constexpr int rcdBorder = 6;
|
||||||
constexpr int tileSize = 214;
|
constexpr int tileBorder = 9;
|
||||||
constexpr int tileSizeN = tileSize - 2 * rcdBorder;
|
constexpr int tileSize = 140;
|
||||||
|
constexpr int tileSizeN = tileSize - 2 * tileBorder;
|
||||||
const int numTh = H / (tileSizeN) + ((H % (tileSizeN)) ? 1 : 0);
|
const int numTh = H / (tileSizeN) + ((H % (tileSizeN)) ? 1 : 0);
|
||||||
const int numTw = W / (tileSizeN) + ((W % (tileSizeN)) ? 1 : 0);
|
const int numTw = W / (tileSizeN) + ((W % (tileSizeN)) ? 1 : 0);
|
||||||
constexpr int w1 = tileSize, w2 = 2 * tileSize, w3 = 3 * tileSize, w4 = 4 * tileSize;
|
constexpr int w1 = tileSize, w2 = 2 * tileSize, w3 = 3 * tileSize, w4 = 4 * tileSize;
|
||||||
@ -96,6 +96,8 @@ void RawImageSource::rcd_demosaic(size_t chunkSize, bool measure)
|
|||||||
float *const VH_Dir = (float*) calloc(tileSize * tileSize, sizeof *VH_Dir);
|
float *const VH_Dir = (float*) calloc(tileSize * tileSize, sizeof *VH_Dir);
|
||||||
float *const PQ_Dir = (float*) calloc(tileSize * tileSize / 2, sizeof *PQ_Dir);
|
float *const PQ_Dir = (float*) calloc(tileSize * tileSize / 2, sizeof *PQ_Dir);
|
||||||
float *const lpf = PQ_Dir; // reuse buffer, they don't overlap in usage
|
float *const lpf = PQ_Dir; // reuse buffer, they don't overlap in usage
|
||||||
|
float *const P_CDiff_Hpf = (float*) calloc(tileSize * tileSize / 2, sizeof *P_CDiff_Hpf);
|
||||||
|
float *const Q_CDiff_Hpf = (float*) calloc(tileSize * tileSize / 2, sizeof *Q_CDiff_Hpf);
|
||||||
|
|
||||||
#ifdef _OPENMP
|
#ifdef _OPENMP
|
||||||
#pragma omp for schedule(dynamic, chunkSize) collapse(2) nowait
|
#pragma omp for schedule(dynamic, chunkSize) collapse(2) nowait
|
||||||
@ -104,12 +106,12 @@ void RawImageSource::rcd_demosaic(size_t chunkSize, bool measure)
|
|||||||
for (int tc = 0; tc < numTw; ++tc) {
|
for (int tc = 0; tc < numTw; ++tc) {
|
||||||
const int rowStart = tr * tileSizeN;
|
const int rowStart = tr * tileSizeN;
|
||||||
const int rowEnd = std::min(rowStart + tileSize, H);
|
const int rowEnd = std::min(rowStart + tileSize, H);
|
||||||
if (rowStart + rcdBorder == rowEnd - rcdBorder) {
|
if (rowStart + tileBorder == rowEnd - tileBorder) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
const int colStart = tc * tileSizeN;
|
const int colStart = tc * tileSizeN;
|
||||||
const int colEnd = std::min(colStart + tileSize, W);
|
const int colEnd = std::min(colStart + tileSize, W);
|
||||||
if (colStart + rcdBorder == colEnd - rcdBorder) {
|
if (colStart + tileBorder == colEnd - tileBorder) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -134,15 +136,38 @@ void RawImageSource::rcd_demosaic(size_t chunkSize, bool measure)
|
|||||||
* STEP 1: Find cardinal and diagonal interpolation directions
|
* STEP 1: Find cardinal and diagonal interpolation directions
|
||||||
*/
|
*/
|
||||||
|
|
||||||
for (int row = 4; row < tileRows - 4; row++) {
|
float bufferV[3][tileSize - 8];
|
||||||
for (int col = 4, indx = row * tileSize + col; col < tilecols - 4; col++, indx++) {
|
|
||||||
const float cfai = cfa[indx];
|
// Step 1.1: Calculate the square of the vertical and horizontal color difference high pass filter
|
||||||
//Calculate h/v local discrimination
|
for (int row = 3; row < std::min(tileRows - 3, 5); ++row) {
|
||||||
float V_Stat = std::max(epssq, -18.f * cfai * (cfa[indx - w1] + cfa[indx + w1] + 2.f * (cfa[indx - w2] + cfa[indx + w2]) - cfa[indx - w3] - cfa[indx + w3]) - 2.f * cfai * (cfa[indx - w4] + cfa[indx + w4] - 19.f * cfai) - cfa[indx - w1] * (70.f * cfa[indx + w1] + 12.f * cfa[indx - w2] - 24.f * cfa[indx + w2] + 38.f * cfa[indx - w3] - 16.f * cfa[indx + w3] - 12.f * cfa[indx - w4] + 6.f * cfa[indx + w4] - 46.f * cfa[indx - w1]) + cfa[indx + w1] * (24.f * cfa[indx - w2] - 12.f * cfa[indx + w2] + 16.f * cfa[indx - w3] - 38.f * cfa[indx + w3] - 6.f * cfa[indx - w4] + 12.f * cfa[indx + w4] + 46.f * cfa[indx + w1]) + cfa[indx - w2] * (14.f * cfa[indx + w2] - 12.f * cfa[indx + w3] - 2.f * cfa[indx - w4] + 2.f * cfa[indx + w4] + 11.f * cfa[indx - w2]) + cfa[indx + w2] * (-12.f * cfa[indx - w3] + 2.f * (cfa[indx - w4] - cfa[indx + w4]) + 11.f * cfa[indx + w2]) + cfa[indx - w3] * (2.f * cfa[indx + w3] - 6.f * cfa[indx - w4] + 10.f * cfa[indx - w3]) + cfa[indx + w3] * (-6.f * cfa[indx + w4] + 10.f * cfa[indx + w3]) + cfa[indx - w4] * cfa[indx - w4] + cfa[indx + w4] * cfa[indx + w4]);
|
for (int col = 4, indx = row * tileSize + col; col < tilecols - 4; ++col, ++indx) {
|
||||||
float H_Stat = std::max(epssq, -18.f * cfai * (cfa[indx - 1] + cfa[indx + 1] + 2.f * (cfa[indx - 2] + cfa[indx + 2]) - cfa[indx - 3] - cfa[indx + 3]) - 2.f * cfai * (cfa[indx - 4] + cfa[indx + 4] - 19.f * cfai) - cfa[indx - 1] * (70.f * cfa[indx + 1] + 12.f * cfa[indx - 2] - 24.f * cfa[indx + 2] + 38.f * cfa[indx - 3] - 16.f * cfa[indx + 3] - 12.f * cfa[indx - 4] + 6.f * cfa[indx + 4] - 46.f * cfa[indx - 1]) + cfa[indx + 1] * (24.f * cfa[indx - 2] - 12.f * cfa[indx + 2] + 16.f * cfa[indx - 3] - 38.f * cfa[indx + 3] - 6.f * cfa[indx - 4] + 12.f * cfa[indx + 4] + 46.f * cfa[indx + 1]) + cfa[indx - 2] * (14.f * cfa[indx + 2] - 12.f * cfa[indx + 3] - 2.f * cfa[indx - 4] + 2.f * cfa[indx + 4] + 11.f * cfa[indx - 2]) + cfa[indx + 2] * (-12.f * cfa[indx - 3] + 2.f * (cfa[indx - 4] - cfa[indx + 4]) + 11.f * cfa[indx + 2]) + cfa[indx - 3] * (2.f * cfa[indx + 3] - 6.f * cfa[indx - 4] + 10.f * cfa[indx - 3]) + cfa[indx + 3] * (-6.f * cfa[indx + 4] + 10.f * cfa[indx + 3]) + cfa[indx - 4] * cfa[indx - 4] + cfa[indx + 4] * cfa[indx + 4]);
|
bufferV[row - 3][col - 4] = SQR((cfa[indx - w3] - cfa[indx - w1] - cfa[indx + w1] + cfa[indx + w3]) - 3.f * (cfa[indx - w2] + cfa[indx + w2]) + 6.f * cfa[indx]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Step 1.2: Obtain the vertical and horizontal directional discrimination strength
|
||||||
|
|
||||||
|
float bufferH[tileSize - 6] ALIGNED16;
|
||||||
|
float* V0 = bufferV[0];
|
||||||
|
float* V1 = bufferV[1];
|
||||||
|
float* V2 = bufferV[2];
|
||||||
|
for (int row = 4; row < tileRows - 4; ++row) {
|
||||||
|
for (int col = 3, indx = row * tileSize + col; col < tilecols - 3; ++col, ++indx) {
|
||||||
|
bufferH[col - 3] = SQR((cfa[indx - 3] - cfa[indx - 1] - cfa[indx + 1] + cfa[indx + 3]) - 3.f * (cfa[indx - 2] + cfa[indx + 2]) + 6.f * cfa[indx]);
|
||||||
|
}
|
||||||
|
for (int col = 4, indx = (row + 1) * tileSize + col; col < tilecols - 4; ++col, ++indx) {
|
||||||
|
V2[col - 4] = SQR((cfa[indx - w3] - cfa[indx - w1] - cfa[indx + w1] + cfa[indx + w3]) - 3.f * (cfa[indx - w2] + cfa[indx + w2]) + 6.f * cfa[indx]);
|
||||||
|
}
|
||||||
|
for (int col = 4, indx = row * tileSize + col; col < tilecols - 4; ++col, ++indx) {
|
||||||
|
|
||||||
|
float V_Stat = std::max(epssq, V0[col - 4] + V1[col - 4] + V2[col - 4]);
|
||||||
|
float H_Stat = std::max(epssq, bufferH[col - 4] + bufferH[col - 3] + bufferH[col - 2]);
|
||||||
|
|
||||||
VH_Dir[indx] = V_Stat / (V_Stat + H_Stat);
|
VH_Dir[indx] = V_Stat / (V_Stat + H_Stat);
|
||||||
}
|
}
|
||||||
|
// rotate pointers from row0, row1, row2 to row1, row2, row0
|
||||||
|
std::swap(V0, V2);
|
||||||
|
std::swap(V0, V1);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@ -150,11 +175,11 @@ void RawImageSource::rcd_demosaic(size_t chunkSize, bool measure)
|
|||||||
*/
|
*/
|
||||||
// Step 2.1: Low pass filter incorporating green, red and blue local samples from the raw data
|
// Step 2.1: Low pass filter incorporating green, red and blue local samples from the raw data
|
||||||
|
|
||||||
for (int row = 2; row < tileRows - 2; row++) {
|
for (int row = 2; row < tileRows - 2; ++row) {
|
||||||
for (int col = 2 + (fc(cfarray, row, 0) & 1), indx = row * tileSize + col, lpindx = indx / 2; col < tilecols - 2; col += 2, indx += 2, ++lpindx) {
|
for (int col = 2 + (fc(cfarray, row, 0) & 1), indx = row * tileSize + col, lpindx = indx / 2; col < tilecols - 2; col += 2, indx += 2, ++lpindx) {
|
||||||
lpf[lpindx] = 0.25f * cfa[indx] +
|
lpf[lpindx] = cfa[indx] +
|
||||||
0.125f * (cfa[indx - w1] + cfa[indx + w1] + cfa[indx - 1] + cfa[indx + 1]) +
|
0.5f * (cfa[indx - w1] + cfa[indx + w1] + cfa[indx - 1] + cfa[indx + 1]) +
|
||||||
0.0625f * (cfa[indx - w1 - 1] + cfa[indx - w1 + 1] + cfa[indx + w1 - 1] + cfa[indx + w1 + 1]);
|
0.25f * (cfa[indx - w1 - 1] + cfa[indx - w1 + 1] + cfa[indx + w1 - 1] + cfa[indx + w1 + 1]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -162,48 +187,8 @@ void RawImageSource::rcd_demosaic(size_t chunkSize, bool measure)
|
|||||||
* STEP 3: Populate the green channel
|
* STEP 3: Populate the green channel
|
||||||
*/
|
*/
|
||||||
// Step 3.1: Populate the green channel at blue and red CFA positions
|
// Step 3.1: Populate the green channel at blue and red CFA positions
|
||||||
for (int row = 4; row < tileRows - 4; row++) {
|
for (int row = 4; row < tileRows - 4; ++row) {
|
||||||
int col = 4 + (fc(cfarray, row, 0) & 1);
|
for (int col = 4 + (fc(cfarray, row, 0) & 1), indx = row * tileSize + col, lpindx = indx / 2; col < tilecols - 4; col += 2, indx += 2, ++lpindx) {
|
||||||
int indx = row * tileSize + col;
|
|
||||||
int lpindx = indx / 2;
|
|
||||||
#ifdef __SSE2__
|
|
||||||
const vfloat zd5v = F2V(0.5f);
|
|
||||||
const vfloat zd25v = F2V(0.25f);
|
|
||||||
const vfloat epsv = F2V(eps);
|
|
||||||
for (; col < tilecols - 7; col += 8, indx += 8, lpindx += 4) {
|
|
||||||
// Cardinal gradients
|
|
||||||
const vfloat cfai = LC2VFU(cfa[indx]);
|
|
||||||
const vfloat N_Grad = epsv + (vabsf(LC2VFU(cfa[indx - w1]) - LC2VFU(cfa[indx + w1])) + vabsf(cfai - LC2VFU(cfa[indx - w2]))) + (vabsf(LC2VFU(cfa[indx - w1]) - LC2VFU(cfa[indx - w3])) + vabsf(LC2VFU(cfa[indx - w2]) - LC2VFU(cfa[indx - w4])));
|
|
||||||
const vfloat S_Grad = epsv + (vabsf(LC2VFU(cfa[indx - w1]) - LC2VFU(cfa[indx + w1])) + vabsf(cfai - LC2VFU(cfa[indx + w2]))) + (vabsf(LC2VFU(cfa[indx + w1]) - LC2VFU(cfa[indx + w3])) + vabsf(LC2VFU(cfa[indx + w2]) - LC2VFU(cfa[indx + w4])));
|
|
||||||
const vfloat W_Grad = epsv + (vabsf(LC2VFU(cfa[indx - 1]) - LC2VFU(cfa[indx + 1])) + vabsf(cfai - LC2VFU(cfa[indx - 2]))) + (vabsf(LC2VFU(cfa[indx - 1]) - LC2VFU(cfa[indx - 3])) + vabsf(LC2VFU(cfa[indx - 2]) - LC2VFU(cfa[indx - 4])));
|
|
||||||
const vfloat E_Grad = epsv + (vabsf(LC2VFU(cfa[indx - 1]) - LC2VFU(cfa[indx + 1])) + vabsf(cfai - LC2VFU(cfa[indx + 2]))) + (vabsf(LC2VFU(cfa[indx + 1]) - LC2VFU(cfa[indx + 3])) + vabsf(LC2VFU(cfa[indx + 2]) - LC2VFU(cfa[indx + 4])));
|
|
||||||
|
|
||||||
// Cardinal pixel estimations
|
|
||||||
const vfloat lpfi = LVFU(lpf[lpindx]);
|
|
||||||
const vfloat N_Est = LC2VFU(cfa[indx - w1]) + (LC2VFU(cfa[indx - w1]) * (lpfi - LVFU(lpf[lpindx - w1])) / (epsv + lpfi + LVFU(lpf[lpindx - w1])));
|
|
||||||
const vfloat S_Est = LC2VFU(cfa[indx + w1]) + (LC2VFU(cfa[indx + w1]) * (lpfi - LVFU(lpf[lpindx + w1])) / (epsv + lpfi + LVFU(lpf[lpindx + w1])));
|
|
||||||
const vfloat W_Est = LC2VFU(cfa[indx - 1]) + (LC2VFU(cfa[indx - 1]) * (lpfi - LVFU(lpf[lpindx - 1])) / (epsv + lpfi + LVFU(lpf[lpindx - 1])));
|
|
||||||
const vfloat E_Est = LC2VFU(cfa[indx + 1]) + (LC2VFU(cfa[indx + 1]) * (lpfi - LVFU(lpf[lpindx + 1])) / (epsv + lpfi + LVFU(lpf[lpindx + 1])));
|
|
||||||
|
|
||||||
// Vertical and horizontal estimations
|
|
||||||
const vfloat V_Est = (S_Grad * N_Est + N_Grad * S_Est) / (N_Grad + S_Grad);
|
|
||||||
const vfloat H_Est = (W_Grad * E_Est + E_Grad * W_Est) / (E_Grad + W_Grad);
|
|
||||||
|
|
||||||
// G@B and G@R interpolation
|
|
||||||
// Refined vertical and horizontal local discrimination
|
|
||||||
const vfloat VH_Central_Value = LC2VFU(VH_Dir[indx]);
|
|
||||||
const vfloat VH_Neighbourhood_Value = zd25v * ((LC2VFU(VH_Dir[indx - w1 - 1]) + LC2VFU(VH_Dir[indx - w1 + 1])) + (LC2VFU(VH_Dir[indx + w1 - 1]) + LC2VFU(VH_Dir[indx + w1 + 1])));
|
|
||||||
|
|
||||||
#if defined(__clang__)
|
|
||||||
const vfloat VH_Disc = vself(vmaskf_lt(vabsf(zd5v - VH_Central_Value), vabsf(zd5v - VH_Neighbourhood_Value)), VH_Neighbourhood_Value, VH_Central_Value);
|
|
||||||
#else
|
|
||||||
const vfloat VH_Disc = vabsf(zd5v - VH_Central_Value) < vabsf(zd5v - VH_Neighbourhood_Value) ? VH_Neighbourhood_Value : VH_Central_Value;
|
|
||||||
#endif
|
|
||||||
const vfloat result = vintpf(VH_Disc, H_Est, V_Est);
|
|
||||||
STC2VFU(rgb[1][indx], result);
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
for (; col < tilecols - 4; col += 2, indx += 2, ++lpindx) {
|
|
||||||
// Cardinal gradients
|
// Cardinal gradients
|
||||||
const float cfai = cfa[indx];
|
const float cfai = cfa[indx];
|
||||||
const float N_Grad = eps + (std::fabs(cfa[indx - w1] - cfa[indx + w1]) + std::fabs(cfai - cfa[indx - w2])) + (std::fabs(cfa[indx - w1] - cfa[indx - w3]) + std::fabs(cfa[indx - w2] - cfa[indx - w4]));
|
const float N_Grad = eps + (std::fabs(cfa[indx - w1] - cfa[indx + w1]) + std::fabs(cfai - cfa[indx - w2])) + (std::fabs(cfa[indx - w1] - cfa[indx - w3]) + std::fabs(cfa[indx - w2] - cfa[indx - w4]));
|
||||||
@ -213,10 +198,10 @@ void RawImageSource::rcd_demosaic(size_t chunkSize, bool measure)
|
|||||||
|
|
||||||
// Cardinal pixel estimations
|
// Cardinal pixel estimations
|
||||||
const float lpfi = lpf[lpindx];
|
const float lpfi = lpf[lpindx];
|
||||||
const float N_Est = cfa[indx - w1] * (1.f + (lpfi - lpf[lpindx - w1]) / (eps + lpfi + lpf[lpindx - w1]));
|
const float N_Est = cfa[indx - w1] * (lpfi + lpfi) / (eps + lpfi + lpf[lpindx - w1]);
|
||||||
const float S_Est = cfa[indx + w1] * (1.f + (lpfi - lpf[lpindx + w1]) / (eps + lpfi + lpf[lpindx + w1]));
|
const float S_Est = cfa[indx + w1] * (lpfi + lpfi) / (eps + lpfi + lpf[lpindx + w1]);
|
||||||
const float W_Est = cfa[indx - 1] * (1.f + (lpfi - lpf[lpindx - 1]) / (eps + lpfi + lpf[lpindx - 1]));
|
const float W_Est = cfa[indx - 1] * (lpfi + lpfi) / (eps + lpfi + lpf[lpindx - 1]);
|
||||||
const float E_Est = cfa[indx + 1] * (1.f + (lpfi - lpf[lpindx + 1]) / (eps + lpfi + lpf[lpindx + 1]));
|
const float E_Est = cfa[indx + 1] * (lpfi + lpfi) / (eps + lpfi + lpf[lpindx + 1]);
|
||||||
|
|
||||||
// Vertical and horizontal estimations
|
// Vertical and horizontal estimations
|
||||||
const float V_Est = (S_Grad * N_Est + N_Grad * S_Est) / (N_Grad + S_Grad);
|
const float V_Est = (S_Grad * N_Est + N_Grad * S_Est) / (N_Grad + S_Grad);
|
||||||
@ -236,21 +221,26 @@ void RawImageSource::rcd_demosaic(size_t chunkSize, bool measure)
|
|||||||
* STEP 4: Populate the red and blue channels
|
* STEP 4: Populate the red and blue channels
|
||||||
*/
|
*/
|
||||||
|
|
||||||
// Step 4.1: Calculate P/Q diagonal local discrimination
|
// Step 4.0: Calculate the square of the P/Q diagonals color difference high pass filter
|
||||||
for (int row = rcdBorder - 4; row < tileRows - rcdBorder + 4; row++) {
|
for (int row = 3; row < tileRows - 3; ++row) {
|
||||||
for (int col = rcdBorder - 4 + (fc(cfarray, row, rcdBorder) & 1), indx = row * tileSize + col, pqindx = indx / 2; col < tilecols - rcdBorder + 4; col += 2, indx += 2, ++pqindx) {
|
for (int col = 3, indx = row * tileSize + col, indx2 = indx / 2; col < tilecols - 3; col+=2, indx+=2, indx2++ ) {
|
||||||
const float cfai = cfa[indx];
|
P_CDiff_Hpf[indx2] = SQR((cfa[indx - w3 - 3] - cfa[indx - w1 - 1] - cfa[indx + w1 + 1] + cfa[indx + w3 + 3]) - 3.f * (cfa[indx - w2 - 2] + cfa[indx + w2 + 2]) + 6.f * cfa[indx]);
|
||||||
|
Q_CDiff_Hpf[indx2] = SQR((cfa[indx - w3 + 3] - cfa[indx - w1 + 1] - cfa[indx + w1 - 1] + cfa[indx + w3 - 3]) - 3.f * (cfa[indx - w2 + 2] + cfa[indx + w2 - 2]) + 6.f * cfa[indx]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
float P_Stat = std::max(epssq, - 18.f * cfai * (cfa[indx - w1 - 1] + cfa[indx + w1 + 1] + 2.f * (cfa[indx - w2 - 2] + cfa[indx + w2 + 2]) - cfa[indx - w3 - 3] - cfa[indx + w3 + 3]) - 2.f * cfai * (cfa[indx - w4 - 4] + cfa[indx + w4 + 4] - 19.f * cfai) - cfa[indx - w1 - 1] * (70.f * cfa[indx + w1 + 1] - 12.f * cfa[indx - w2 - 2] + 24.f * cfa[indx + w2 + 2] - 38.f * cfa[indx - w3 - 3] + 16.f * cfa[indx + w3 + 3] + 12.f * cfa[indx - w4 - 4] - 6.f * cfa[indx + w4 + 4] + 46.f * cfa[indx - w1 - 1]) + cfa[indx + w1 + 1] * (24.f * cfa[indx - w2 - 2] - 12.f * cfa[indx + w2 + 2] + 16.f * cfa[indx - w3 - 3] - 38.f * cfa[indx + w3 + 3] - 6.f * cfa[indx - w4 - 4] + 12.f * cfa[indx + w4 + 4] + 46.f * cfa[indx + w1 + 1]) + cfa[indx - w2 - 2] * (14.f * cfa[indx + w2 + 2] - 12.f * cfa[indx + w3 + 3] - 2.f * (cfa[indx - w4 - 4] - cfa[indx + w4 + 4]) + 11.f * cfa[indx - w2 - 2]) - cfa[indx + w2 + 2] * (12.f * cfa[indx - w3 - 3] + 2.f * (cfa[indx - w4 - 4] - cfa[indx + w4 + 4]) + 11.f * cfa[indx + w2 + 2]) + cfa[indx - w3 - 3] * (2.f * cfa[indx + w3 + 3] - 6.f * cfa[indx - w4 - 4] + 10.f * cfa[indx - w3 - 3]) - cfa[indx + w3 + 3] * (6.f * cfa[indx + w4 + 4] + 10.f * cfa[indx + w3 + 3]) + cfa[indx - w4 - 4] * cfa[indx - w4 - 4] + cfa[indx + w4 + 4] * cfa[indx + w4 + 4]);
|
// Step 4.1: Obtain the P/Q diagonals directional discrimination strength
|
||||||
float Q_Stat = std::max(epssq, - 18.f * cfai * (cfa[indx + w1 - 1] + cfa[indx - w1 + 1] + 2.f * (cfa[indx + w2 - 2] + cfa[indx - w2 + 2]) - cfa[indx + w3 - 3] - cfa[indx - w3 + 3]) - 2.f * cfai * (cfa[indx + w4 - 4] + cfa[indx - w4 + 4] - 19.f * cfai) - cfa[indx + w1 - 1] * (70.f * cfa[indx - w1 + 1] - 12.f * cfa[indx + w2 - 2] + 24.f * cfa[indx - w2 + 2] - 38.f * cfa[indx + w3 - 3] + 16.f * cfa[indx - w3 + 3] + 12.f * cfa[indx + w4 - 4] - 6.f * cfa[indx - w4 + 4] + 46.f * cfa[indx + w1 - 1]) + cfa[indx - w1 + 1] * (24.f * cfa[indx + w2 - 2] - 12.f * cfa[indx - w2 + 2] + 16.f * cfa[indx + w3 - 3] - 38.f * cfa[indx - w3 + 3] - 6.f * cfa[indx + w4 - 4] + 12.f * cfa[indx - w4 + 4] + 46.f * cfa[indx - w1 + 1]) + cfa[indx + w2 - 2] * (14.f * cfa[indx - w2 + 2] - 12.f * cfa[indx - w3 + 3] - 2.f * (cfa[indx + w4 - 4] - cfa[indx - w4 + 4]) + 11.f * cfa[indx + w2 - 2]) - cfa[indx - w2 + 2] * (12.f * cfa[indx + w3 - 3] + 2.f * (cfa[indx + w4 - 4] - cfa[indx - w4 + 4]) + 11.f * cfa[indx - w2 + 2]) + cfa[indx + w3 - 3] * (2.f * cfa[indx - w3 + 3] - 6.f * cfa[indx + w4 - 4] + 10.f * cfa[indx + w3 - 3]) - cfa[indx - w3 + 3] * (6.f * cfa[indx - w4 + 4] + 10.f * cfa[indx - w3 + 3]) + cfa[indx + w4 - 4] * cfa[indx + w4 - 4] + cfa[indx - w4 + 4] * cfa[indx - w4 + 4]);
|
for (int row = 4; row < tileRows - 4; ++row) {
|
||||||
|
for (int col = 4 + FC(row, 0) & 1, indx = row * tileSize + col, indx2 = indx / 2, indx3 = (indx - w1 - 1) / 2, indx4 = (indx + w1 - 1) / 2; col < tilecols - 4; col += 2, indx += 2, indx2++, indx3++, indx4++ ) {
|
||||||
PQ_Dir[pqindx] = P_Stat / (P_Stat + Q_Stat);
|
float P_Stat = std::max(epssq, P_CDiff_Hpf[indx3] + P_CDiff_Hpf[indx2] + P_CDiff_Hpf[indx4 + 1]);
|
||||||
|
float Q_Stat = std::max(epssq, Q_CDiff_Hpf[indx3 + 1] + Q_CDiff_Hpf[indx2] + Q_CDiff_Hpf[indx4]);
|
||||||
|
PQ_Dir[indx2] = P_Stat / (P_Stat + Q_Stat);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Step 4.2: Populate the red and blue channels at blue and red CFA positions
|
// Step 4.2: Populate the red and blue channels at blue and red CFA positions
|
||||||
for (int row = rcdBorder - 3; row < tileRows - rcdBorder + 3; row++) {
|
for (int row = 4; row < tileRows - 4; ++row) {
|
||||||
for (int col = rcdBorder - 3 + (fc(cfarray, row, rcdBorder - 1) & 1), indx = row * tileSize + col, c = 2 - fc(cfarray, row, col), pqindx = indx / 2, pqindx2 = (indx - w1 - 1) / 2, pqindx3 = (indx + w1 - 1) / 2; col < tilecols - rcdBorder + 3; col += 2, indx += 2, ++pqindx, ++pqindx2, ++pqindx3) {
|
for (int col = 4 + (fc(cfarray, row, 0) & 1), indx = row * tileSize + col, c = 2 - fc(cfarray, row, col), pqindx = indx / 2, pqindx2 = (indx - w1 - 1) / 2, pqindx3 = (indx + w1 - 1) / 2; col < tilecols - 4; col += 2, indx += 2, ++pqindx, ++pqindx2, ++pqindx3) {
|
||||||
|
|
||||||
// Refined P/Q diagonal local discrimination
|
// Refined P/Q diagonal local discrimination
|
||||||
float PQ_Central_Value = PQ_Dir[pqindx];
|
float PQ_Central_Value = PQ_Dir[pqindx];
|
||||||
@ -280,8 +270,8 @@ void RawImageSource::rcd_demosaic(size_t chunkSize, bool measure)
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Step 4.3: Populate the red and blue channels at green CFA positions
|
// Step 4.3: Populate the red and blue channels at green CFA positions
|
||||||
for (int row = rcdBorder; row < tileRows - rcdBorder; row++) {
|
for (int row = 4; row < tileRows - 4; ++row) {
|
||||||
for (int col = rcdBorder + (fc(cfarray, row, rcdBorder - 1) & 1), indx = row * tileSize + col; col < tilecols - rcdBorder; col += 2, indx += 2) {
|
for (int col = 4 + (fc(cfarray, row, 1) & 1), indx = row * tileSize + col; col < tilecols - 4; col += 2, indx += 2) {
|
||||||
|
|
||||||
// Refined vertical and horizontal local discrimination
|
// Refined vertical and horizontal local discrimination
|
||||||
float VH_Central_Value = VH_Dir[indx];
|
float VH_Central_Value = VH_Dir[indx];
|
||||||
@ -323,8 +313,13 @@ void RawImageSource::rcd_demosaic(size_t chunkSize, bool measure)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int row = rowStart + rcdBorder; row < rowEnd - rcdBorder; ++row) {
|
// For the outermost tiles in all directions we can use a smaller border margin
|
||||||
for (int col = colStart + rcdBorder; col < colEnd - rcdBorder; ++col) {
|
const int last_vertical = rowEnd - ((tr == numTh - 1) ? rcdBorder : tileBorder);
|
||||||
|
const int first_horizontal = colStart + ((tc == 0) ? rcdBorder : tileBorder);
|
||||||
|
const int last_horizontal = colEnd - ((tc == numTw - 1) ? rcdBorder : tileBorder);
|
||||||
|
for(int row = rowStart + ((tr == 0) ? rcdBorder : tileBorder); row < last_vertical; row++) {
|
||||||
|
// for (int row = rowStart + tileBorder; row < rowEnd - tileBorder; ++row) {
|
||||||
|
for (int col = first_horizontal; col < last_horizontal; ++col) {
|
||||||
int idx = (row - rowStart) * tileSize + col - colStart ;
|
int idx = (row - rowStart) * tileSize + col - colStart ;
|
||||||
red[row][col] = std::max(0.f, rgb[0][idx] * scale);
|
red[row][col] = std::max(0.f, rgb[0][idx] * scale);
|
||||||
green[row][col] = std::max(0.f, rgb[1][idx] * scale);
|
green[row][col] = std::max(0.f, rgb[1][idx] * scale);
|
||||||
@ -352,6 +347,8 @@ void RawImageSource::rcd_demosaic(size_t chunkSize, bool measure)
|
|||||||
free(rgb);
|
free(rgb);
|
||||||
free(VH_Dir);
|
free(VH_Dir);
|
||||||
free(PQ_Dir);
|
free(PQ_Dir);
|
||||||
|
free(P_CDiff_Hpf);
|
||||||
|
free(Q_CDiff_Hpf);
|
||||||
}
|
}
|
||||||
|
|
||||||
border_interpolate(W, H, rcdBorder, rawData, red, green, blue);
|
border_interpolate(W, H, rcdBorder, rawData, red, green, blue);
|
||||||
|
Loading…
x
Reference in New Issue
Block a user