/* * This file is part of RawTherapee. * * Copyright (c) 2004-2020 Gabor Horvath * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ #include #include "improcfun.h" #include "labimage.h" #include "procparams.h" #include "rt_math.h" namespace { #ifdef __SSE2__ bool inintervalLoRo(float a, float b, float c) { return a < std::max(b, c) && a > std::min(b, c); } float selectweight(float a, float b, float low, float high) { const float minVal = std::min(a,b); const float maxVal = std::max(a,b); const float res = (minVal < 0.45f * maxVal) ? low : high; return (minVal > 0.05f * maxVal) ? res : high; } #else bool inintervalLoRo(float a, float b, float c) { return (a < b && a > c) || (a < c && a > b); } float selectweight(float a, float b, float low, float high) { if ((a < 0.45f * b && a > 0.05f * b) || (b < 0.45f * a && b > 0.05f * a)) { return low; } else { return high; } } #endif } namespace rtengine { // To the extent possible under law, Manuel Llorens // has waived all copyright and related or neighboring rights to this work. // This work is published from: Spain. // Thanks to Manuel for this excellent job (Jacques Desmis JDC or frej83) void ImProcFunctions::MLsharpen (LabImage* lab) { // JD: this algorithm maximize clarity of images; it does not play on accutance. It can remove (partially) the effects of the AA filter) // I think we can use this algorithm alone in most cases, or first to clarify image and if you want a very little USM (unsharp mask sharpening) after... if (!params->sharpenEdge.enabled || params->sharpenEdge.amount == 0) { return; } const int width = lab->W, height = lab->H; constexpr float chmax[3] = {1.f / 8.f, 1.f / 3.f, 1.f / 3.f}; const int width2 = 2 * width; constexpr float eps2 = 0.001f; //prevent divide by zero const float amount = params->sharpenEdge.amount / 100.0; const float amountby3 = params->sharpenEdge.amount / 300.0; std::unique_ptr L(new float[width * height]); const int channels = params->sharpenEdge.threechannels ? 1 : 3; const int passes = params->sharpenEdge.passes; for (int c = 0; c < channels; ++c) { // c=0 Luminance only float** channel = c == 0 ? lab->L : c == 1 ? lab->a : lab->b; for (int p = 0; p < passes; ++p) { #ifdef _OPENMP #pragma omp parallel for #endif for (int i = 0; i < height; ++i) { for (int j = 0; j < width; ++j) { L[i * width + j] = channel[i][j] / 327.68f; } } #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for (int j = 2; j < height - 2; j++) { for (int i = 2, offset = j * width + i; i < width - 2; i++, offset++) { // weight functions const float wH = eps2 + std::fabs(L[offset + 1] - L[offset - 1]); const float wV = eps2 + std::fabs(L[offset + width] - L[offset - width]); float s = 2.f / (2.f + std::fabs(wH - wV)); float wD1 = eps2 + std::fabs(L[offset + width + 1] - L[offset - width - 1]) * s; float wD2 = eps2 + std::fabs(L[offset + width - 1] - L[offset - width + 1]) * s; s = wD1; wD1 /= wD2; wD2 /= s; const float v = L[offset]; float lumH, lumV, lumD1, lumD2; lumH = lumV = lumD1 = lumD2 = v; // contrast detection const float contrast = std::min(std::sqrt(SQR(L[offset + 1] - L[offset - 1]) + SQR(L[offset + width] - L[offset - width])) * chmax[c], 1.f); // new possible values if (inintervalLoRo(v, L[offset - 1], L[offset + 1])) { float f1 = std::fabs(L[offset - 2] - L[offset - 1]); float f2 = L[offset - 1] - v; float f3 = (L[offset - 1] - L[offset - width]) * (L[offset - 1] - L[offset + width]); float f4 = std::sqrt(std::fabs((L[offset - 1] - L[offset - width2]) * (L[offset - 1] - L[offset + width2]))); const float difL = f1 * SQR(f2 * f3) * f4; if (difL > 0.f) { f1 = std::fabs(L[offset + 2] - L[offset + 1]); f2 = L[offset + 1] - v; f3 = (L[offset + 1] - L[offset - width]) * (L[offset + 1] - L[offset + width]); f4 = std::sqrt(std::fabs((L[offset + 1] - L[offset - width2]) * (L[offset + 1] - L[offset + width2]))); const float difR = f1 * SQR(f2 * f3) * f4; if (difR > 0.f) { lumH = (L[offset - 1] * difR + L[offset + 1] * difL) / (difL + difR); lumH = intp(contrast, lumH, v); } } } if (inintervalLoRo(v, L[offset - width], L[offset + width])) { float f1 = std::fabs(L[offset - width2] - L[offset - width]); float f2 = L[offset - width] - v; float f3 = (L[offset - width] - L[offset - 1]) * (L[offset - width] - L[offset + 1]); float f4 = std::sqrt(std::fabs((L[offset - width] - L[offset - 2]) * (L[offset - width] - L[offset + 2]))); const float difT = f1 * SQR(f2 * f3) * f4; if (difT > 0.f) { f1 = std::fabs(L[offset + width2] - L[offset + width]); f2 = L[offset + width] - v; f3 = (L[offset + width] - L[offset - 1]) * (L[offset + width] - L[offset + 1]); f4 = std::sqrt(std::fabs((L[offset + width] - L[offset - 2]) * (L[offset + width] - L[offset + 2]))); const float difB = f1 * SQR(f2 * f3) * f4; if (difB > 0.f) { lumV = (L[offset - width] * difB + L[offset + width] * difT) / (difT + difB); lumV = intp(contrast, lumV, v); } } } if (inintervalLoRo(v, L[offset - 1 - width], L[offset + 1 + width])) { float f1 = std::fabs(L[offset - 2 - width2] - L[offset - 1 - width]); float f2 = L[offset - 1 - width] - v; float f3 = (L[offset - 1 - width] - L[offset - width + 1]) * (L[offset - 1 - width] - L[offset + width - 1]); float f4 = std::sqrt(std::fabs((L[offset - 1 - width] - L[offset - width2 + 2]) * (L[offset - 1 - width] - L[offset + width2 - 2]))); const float difLT = f1 * SQR(f2 * f3) * f4; if (difLT > 0.f) { f1 = std::fabs(L[offset + 2 + width2] - L[offset + 1 + width]); f2 = L[offset + 1 + width] - v; f3 = (L[offset + 1 + width] - L[offset - width + 1]) * (L[offset + 1 + width] - L[offset + width - 1]); f4 = std::sqrt(std::fabs((L[offset + 1 + width] - L[offset - width2 + 2]) * (L[offset + 1 + width] - L[offset + width2 - 2]))); const float difRB = f1 * SQR(f2 * f3) * f4; if (difRB > 0.f) { lumD1 = (L[offset - 1 - width] * difRB + L[offset + 1 + width] * difLT) / (difLT + difRB); lumD1 = intp(contrast, lumD1, v); } } } if (inintervalLoRo(v, L[offset + 1 - width], L[offset - 1 + width])) { float f1 = std::fabs(L[offset - 2 + width2] - L[offset - 1 + width]); float f2 = L[offset - 1 + width] - v; float f3 = (L[offset - 1 + width] - L[offset - width - 1]) * (L[offset - 1 + width] - L[offset + width + 1]); float f4 = std::sqrt(std::fabs((L[offset - 1 + width] - L[offset - width2 - 2]) * (L[offset - 1 + width] - L[offset + width2 + 2]))); const float difLB = f1 * SQR(f2 * f3) * f4; if (difLB > 0.f) { f1 = std::fabs(L[offset + 2 - width2] - L[offset + 1 - width]); f2 = L[offset + 1 - width] - v; f3 = (L[offset + 1 - width] - L[offset + width + 1]) * (L[offset + 1 - width] - L[offset - width - 1]); f4 = std::sqrt(std::fabs((L[offset + 1 - width] - L[offset + width2 + 2]) * (L[offset + 1 - width] - L[offset - width2 - 2]))); const float difRT = f1 * SQR(f2 * f3) * f4; if (difRT > 0.f) { lumD2 = (L[offset + 1 - width] * difLB + L[offset - 1 + width] * difRT) / (difLB + difRT); lumD2 = intp(contrast, lumD2, v); } } } // final mix // avoid sharpening diagonals too much const float weight = selectweight(wH, wV, amountby3, amount); if (c == 0) { if (v < 92.f) { channel[j][i] = std::fabs(327.68f * intp(weight, (lumH * wH + lumV * wV + lumD1 * wD1 + lumD2 * wD2) / (wH + wV + wD1 + wD2), v)); // fabs because lab->L always > 0 } } else { channel[j][i] = 327.68f * intp(weight, (lumH * wH + lumV * wV + lumD1 * wD1 + lumD2 * wD2) / (wH + wV + wD1 + wD2), v); } } } } } } }