/*
* This file is part of RawTherapee.
*
* Copyright (c) 2024 Rawtherapee developers
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see .
*/
#include
#include
#include "lensmetadata.h"
namespace rtengine
{
namespace
{
/* interpolateLinearSpline does a simple linear spline interpolation. Values
* outside the external knots will return the value of the nearest knot without
* any additional interpolation. */
double interpolateLinearSpline(const std::vector &xi, const std::vector &yi, double x)
{
if (x < xi[0]) {
return yi[0];
}
for (size_t i = 1; i < xi.size(); i++) {
if (x >= xi[i - 1] && x <= xi[i]) {
double dydx = (yi[i] - yi[i - 1]) / (xi[i] - xi[i - 1]);
return yi[i - 1] + (x - xi[i - 1]) * dydx;
}
}
return yi[yi.size() - 1];
}
} // namespace
CenterRadiusMetadataLensCorrection::CenterRadiusMetadataLensCorrection(const FramesMetaData *meta) :
swap_xy(false)
{
metadata = Exiv2Metadata(meta->getFileName());
metadata.load();
}
void CenterRadiusMetadataLensCorrection::initCorrections(int width, int height, const procparams::CoarseTransformParams &coarse, int rawRotationDeg)
{
if (rawRotationDeg >= 0) {
int rot = (coarse.rotate + rawRotationDeg) % 360;
swap_xy = (rot == 90 || rot == 270);
if (swap_xy) {
std::swap(width, height);
}
}
w2 = width * 0.5f;
h2 = height * 0.5f;
rf = 1 / std::sqrt(SQR(w2) + SQR(h2));
}
void CenterRadiusMetadataLensCorrection::process(double &x, double &y, int cx, int cy, int channel, bool dist, bool ca) const
{
double xx = x + cx;
double yy = y + cy;
if (swap_xy) {
std::swap(xx, yy);
}
double xc = xx - w2;
double yc = yy - h2;
double rout = rf * std::sqrt(SQR(xc) + SQR(yc));
double cf = 1;
if (dist && ca) {
cf = distortionAndCACorrectionFactor(rout, channel);
} else if (dist) {
cf = distortionCorrectionFactor(rout);
} else if (ca) {
cf = caCorrectionFactor(rout, channel);
}
x = cf * xc + w2;
y = cf * yc + h2;
if (swap_xy) {
std::swap(x, y);
}
x -= cx;
y -= cy;
}
void CenterRadiusMetadataLensCorrection::correctDistortionAndCA(double &x, double &y, int cx, int cy, int channel) const
{
if (!hasDistortionCorrection() || !hasCACorrection()) {
return;
}
process(x, y, cx, cy, channel, true, true);
}
void CenterRadiusMetadataLensCorrection::correctDistortion(double &x, double &y, int cx, int cy) const
{
if (!hasDistortionCorrection()) {
return;
}
process(x, y, cx, cy, 1, true, false);
}
void CenterRadiusMetadataLensCorrection::correctCA(double &x, double &y, int cx, int cy, int channel) const
{
if (!hasCACorrection()) {
return;
}
process(x, y, cx, cy, channel, false, true);
}
void CenterRadiusMetadataLensCorrection::processVignetteNChannels(int width, int height, float **rawData, int channels) const
{
if (!hasVignettingCorrection()) {
return;
}
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
double xc = x - w2;
double yc = y - h2;
double sf = vignettingCorrectionFactor(rf * std::sqrt(SQR(xc) + SQR(yc)));
for (int c = 0; c < channels; c++) {
rawData[y][x + c] *= sf;
}
}
}
}
void CenterRadiusMetadataLensCorrection::processVignette(int width, int height, float **rawData) const
{
return processVignetteNChannels(width, height, rawData, 1);
}
void CenterRadiusMetadataLensCorrection::processVignette3Channels(int width, int height, float **rawData) const
{
return processVignetteNChannels(width, height, rawData, 3);
}
/* Fuji, Sony, Olympus metadata handling and algorithms adapted from
* - src/iop/lens.cc
* - src/common/exif.cc
* in darktable 4.6 */
/*
This file is part of darktable,
Copyright (C) 2019-2024 darktable developers.
darktable is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
darktable is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with darktable. If not, see .
*/
class SonyMetadataLensCorrection : public CenterRadiusMetadataLensCorrection
{
public:
SonyMetadataLensCorrection(const FramesMetaData *meta) :
CenterRadiusMetadataLensCorrection(meta)
{
parse();
setup();
}
private:
int nc;
std::array distortion;
std::array ca_r;
std::array ca_b;
std::array vignetting;
std::vector knots;
std::vector dist;
std::array, 3> ca;
std::vector vig;
void parse()
{
if (Exiv2::versionNumber() < EXIV2_MAKE_VERSION(0, 27, 4)) {
throw std::runtime_error("cannot get Sony correction data, too old exiv2 version " + Exiv2::versionString());
}
auto &exif = metadata.exifData();
auto posd = exif.findKey(Exiv2::ExifKey("Exif.SubImage1.DistortionCorrParams"));
auto posc = exif.findKey(Exiv2::ExifKey("Exif.SubImage1.ChromaticAberrationCorrParams"));
auto posv = exif.findKey(Exiv2::ExifKey("Exif.SubImage1.VignettingCorrParams"));
/* Sony metadata corrections parameters define some splines with N knots */
if (posd == exif.end() || posc == exif.end() || posv == exif.end()) {
throw std::runtime_error("cannot get Sony correction data");
}
const int nc = to_long(posd);
if (nc <= 16 && 2 * nc == to_long(posc) && nc == to_long(posv)) {
this->nc = nc;
for (int i = 0; i < nc; i++) {
distortion[i] = to_long(posd, i + 1);
ca_r[i] = to_long(posc, i + 1);
ca_b[i] = to_long(posc, nc + i + 1);
vignetting[i] = to_long(posv, i + 1);
}
} else {
throw std::runtime_error("cannot get Sony correction data");
}
}
void setup()
{
knots.resize(nc);
dist.resize(nc);
vig.resize(nc);
for (int i = 0; i < 3; ++i) {
ca[i].resize(nc);
}
for (int i = 0; i < this->nc; i++) {
knots[i] = (i + 0.5) / (nc - 1);
dist[i] = distortion[i] * powf(2, -14) + 1;
ca[0][i] = ca[1][i] = ca[2][i] = 1.f;
ca[0][i] *= ca_r[i] * powf(2, -21) + 1;
ca[2][i] *= ca_b[i] * powf(2, -21) + 1;
vig[i] = 1 / powf(2, 0.5f - powf(2, vignetting[i] * powf(2, -13) - 1));
}
}
double distortionCorrectionFactor(double rout) const override
{
return interpolateLinearSpline(knots, dist, rout);
}
double caCorrectionFactor(double rout, int channel) const override
{
return interpolateLinearSpline(knots, ca[channel], rout);
}
double distortionAndCACorrectionFactor(double rout, int channel) const override
{
return distortionCorrectionFactor(rout) * caCorrectionFactor(rout, channel);
}
double vignettingCorrectionFactor(double r) const override
{
return interpolateLinearSpline(knots, vig, r);
}
bool hasDistortionCorrection() const override { return true; }
bool hasVignettingCorrection() const override { return true; }
bool hasCACorrection() const override { return true; }
};
class FujiMetadataLensCorrection : public CenterRadiusMetadataLensCorrection
{
public:
FujiMetadataLensCorrection(const FramesMetaData *meta) :
CenterRadiusMetadataLensCorrection(meta)
{
parse();
setup();
}
private:
const static int MAXKNOTS = 16;
int nc;
double cropf;
std::array fuji_knots;
std::array fuji_distortion;
std::array fuji_ca_r;
std::array fuji_ca_b;
std::array fuji_vignetting;
std::vector knots_dist;
std::vector dist;
std::array, 3> ca;
std::vector knots_vig;
std::vector vig;
void parse()
{
if (Exiv2::versionNumber() < EXIV2_MAKE_VERSION(0, 27, 4)) {
throw std::runtime_error("cannot get Fuji correction data, too old exiv2 version " + Exiv2::versionString());
}
auto &exif = metadata.exifData();
/* FujiFilm metadata corrections parameters define some splines with N knots */
auto posd = exif.findKey(Exiv2::ExifKey("Exif.Fujifilm.GeometricDistortionParams"));
auto posc = exif.findKey(Exiv2::ExifKey("Exif.Fujifilm.ChromaticAberrationParams"));
auto posv = exif.findKey(Exiv2::ExifKey("Exif.Fujifilm.VignettingParams"));
// X-Trans IV/V
if (posd != exif.end() && posc != exif.end() && posv != exif.end() &&
posd->count() == 19 && posc->count() == 29 && posv->count() == 19) {
const int nc = 9;
this->nc = nc;
for (int i = 0; i < nc; i++) {
const float kd = posd->toFloat(i + 1);
const float kc = posc->toFloat(i + 1);
const float kv = posv->toFloat(i + 1);
// Check that the knots position is the same for distortion, ca and vignetting,
if (kd != kc || kd != kv) {
throw std::runtime_error("cannot get Fuji correction data: unexpected data");
}
fuji_knots[i] = kd;
fuji_distortion[i] = posd->toFloat(i + 10);
fuji_ca_r[i] = posc->toFloat(i + 10);
fuji_ca_b[i] = posc->toFloat(i + 19);
fuji_vignetting[i] = posv->toFloat(i + 10);
}
// Account for the 1.25x crop modes in some Fuji cameras
auto it = exif.findKey(Exiv2::ExifKey("Exif.Fujifilm.CropMode"));
if (it != exif.end() && (to_long(it) == 2 || to_long(it) == 4)) {
cropf = 1.25f;
} else {
cropf = 1;
}
}
// X-Trans I/II/III
else if (posd != exif.end() && posc != exif.end() && posv != exif.end() &&
posd->count() == 23 && posc->count() == 31 && posv->count() == 23) {
const int nc = 11;
this->nc = nc;
for (int i = 0; i < nc; i++) {
const float kd = posd->toFloat(i + 1);
float kc = 0;
// ca data doesn't provide first knot (0)
if (i != 0) kc = posc->toFloat(i);
const float kv = posv->toFloat(i + 1);
// check that the knots position is the same for distortion, ca and vignetting,
if (kd != kc || kd != kv) {
throw std::runtime_error("cannot get Fuji correction data: unexpected data");
}
fuji_knots[i] = kd;
fuji_distortion[i] = posd->toFloat(i + 12);
// ca data doesn't provide first knot (0)
if (i == 0) {
fuji_ca_r[i] = 0;
fuji_ca_b[i] = 0;
} else {
fuji_ca_r[i] = posc->toFloat(i + 10);
fuji_ca_b[i] = posc->toFloat(i + 20);
}
fuji_vignetting[i] = posv->toFloat(i + 12);
}
// Account for the 1.25x crop modes in some Fuji cameras
auto it = exif.findKey(Exiv2::ExifKey("Exif.Fujifilm.CropMode"));
if (it != exif.end() && (to_long(it) == 2 || to_long(it) == 4)) {
cropf = 1.25f;
} else {
cropf = 1;
}
} else {
throw std::runtime_error("cannot get Fuji correction data");
}
}
void setup()
{
std::vector knots_in;
std::vector distortion_in;
std::vector ca_r_in;
std::vector ca_b_in;
// add a knot with no corrections at 0 value if not existing
int size = nc;
if (fuji_knots[0] > 0.f) {
knots_in.push_back(0);
distortion_in.push_back(1);
ca_r_in.push_back(0);
ca_b_in.push_back(0);
knots_vig.push_back(0);
vig.push_back(1);
size++;
}
knots_in.reserve(size);
vig.reserve(size);
for (int i = 0; i < nc; i++) {
knots_in.push_back(cropf * fuji_knots[i]);
distortion_in.push_back(fuji_distortion[i] / 100 + 1);
ca_r_in.push_back(fuji_ca_r[i]);
ca_b_in.push_back(fuji_ca_b[i]);
// vignetting correction is applied before distortion correction. So the
// spline is related to the source image before distortion.
knots_vig.push_back(cropf * fuji_knots[i]);
vig.push_back(100 / fuji_vignetting[i]);
}
knots_dist.resize(MAXKNOTS);
dist.resize(MAXKNOTS);
for (int i = 0; i < 3; ++i) {
ca[i].resize(MAXKNOTS);
}
// convert from spline related to source image (input is source image
// radius) to spline related to dest image (input is dest image radius)
for (int i = 0; i < MAXKNOTS; i++) {
const double rin = static_cast(i) / static_cast(nc - 1);
const double m = interpolateLinearSpline(knots_in, distortion_in, rin);
const double r = rin / m;
knots_dist[i] = r;
dist[i] = m;
const double mcar = interpolateLinearSpline(knots_in, ca_r_in, rin);
const double mcab = interpolateLinearSpline(knots_in, ca_b_in, rin);
ca[0][i] = ca[1][i] = ca[2][i] = 1.f;
ca[0][i] *= mcar + 1;
ca[2][i] *= mcab + 1;
}
}
double distortionCorrectionFactor(double rout) const override
{
return interpolateLinearSpline(knots_dist, dist, rout);
}
double caCorrectionFactor(double rout, int channel) const override
{
return interpolateLinearSpline(knots_dist, ca[channel], rout);
}
double distortionAndCACorrectionFactor(double rout, int channel) const override
{
return distortionCorrectionFactor(rout) * caCorrectionFactor(rout, channel);
}
double vignettingCorrectionFactor(double r) const override
{
return interpolateLinearSpline(knots_vig, vig, r);
}
bool hasDistortionCorrection() const override { return true; }
bool hasVignettingCorrection() const override { return true; }
bool hasCACorrection() const override { return true; }
};
class OlympusMetadataLensCorrection : public CenterRadiusMetadataLensCorrection
{
public:
OlympusMetadataLensCorrection(const FramesMetaData *meta) :
CenterRadiusMetadataLensCorrection(meta), has_dist(false), has_ca(false)
{
parse();
}
private:
bool has_dist, has_ca;
double drs;
double dk2;
double dk4;
double dk6;
double car0;
double car2;
double car4;
double cab0;
double cab2;
double cab4;
void parse()
{
if (Exiv2::versionNumber() < EXIV2_MAKE_VERSION(0, 27, 4)) {
throw std::runtime_error("cannot get Olympus correction data, too old exiv2 version " + Exiv2::versionString());
}
auto &exif = metadata.exifData();
std::array distortion;
std::array cacorr;
auto it = exif.findKey(Exiv2::ExifKey("Exif.OlympusIp.0x150a"));
if (it != exif.end() && it->count() == 4) {
for (int i = 0; i < 4; ++i) {
distortion[i] = it->toFloat(i);
}
has_dist = true;
}
it = exif.findKey(Exiv2::ExifKey("Exif.OlympusIp.0x150c"));
if (it != exif.end() && it->count() == 6) {
for (int i = 0; i < 6; ++i) {
cacorr[i] = it->toFloat(i);
}
has_ca = true;
}
if (has_dist) {
drs = distortion[3];
dk2 = distortion[0];
dk4 = distortion[1];
dk6 = distortion[2];
}
if (has_ca) {
car0 = cacorr[0];
car2 = cacorr[1];
car4 = cacorr[2];
cab0 = cacorr[3];
cab2 = cacorr[4];
cab4 = cacorr[5];
}
if (!has_dist && !has_ca) {
throw std::runtime_error("no Olympus correction data");
}
}
double distortionCorrectionFactor(double rout) const override
{
// The distortion polynomial maps a radius Rout in the output
// (undistorted) image, where the corner is defined as Rout=1, to a
// radius in the input (distorted) image, where the corner is defined
// as Rin=1.
// Rin = Rout*drs * (1 + dk2 * (Rout*drs)^2 + dk4 * (Rout*drs)^4 + dk6 * (Rout*drs)^6)
//
// cf is Rin / Rout.
const double rs2 = std::pow(rout * drs, 2);
const double cf = drs * (1 + rs2 * (dk2 + rs2 * (dk4 + rs2 * dk6)));
return cf;
}
double caCorrectionFactor(double rout, int channel) const override
{
// ca corrects only red and blue channel
if (channel != 0 && channel != 2) return 1;
// CA correction is applied as:
// Rin = Rout * ((1 + car0) + car2 * Rout^2 + car4 * Rout^4)
//
// cf is Rin / Rout.
const double r2 = powf(rout, 2);
if (channel == 0) {
return 1 + (car0 + r2 * (car2 + r2 * car4));
} else if (channel == 2) {
return 1 + (cab0 + r2 * (cab2 + r2 * cab4));
}
return 1;
}
double distortionAndCACorrectionFactor(double rout, int channel) const override
{
return distortionCorrectionFactor(rout) * caCorrectionFactor(rout, channel);
}
double vignettingCorrectionFactor(double r) const override
{
return 1;
}
bool hasDistortionCorrection() const override { return has_dist; }
// Olympus cameras have a shading correction option that fixes vignetting
// already in the raw file. Looks like they don't report vignetting
// correction parameters inside metadata even if shading correction is
// disabled.
bool hasVignettingCorrection() const override { return false; }
bool hasCACorrection() const override { return has_ca; }
};
/* Panasonic metadata lens correction
* Currently disabled since the algorithm is not stable and works well with only some lenses.
*
* Data extraction and distortion correction formula from:
* https://web.archive.org/web/20120701131817/https://syscall.eu/#pana
*
* TODO(sgotti)
* * CA corrections not yet reverse engineered.
* * From a post on the exiftool forum:
* https://exiftool.org/forum/index.php?topic=9366.0
* looks like there's another additional tag that provides similar data and it's
* used by newer cameras.
*/
class PanasonicMetadataLensCorrection : public CenterRadiusMetadataLensCorrection
{
public:
PanasonicMetadataLensCorrection(const FramesMetaData *meta) :
CenterRadiusMetadataLensCorrection(meta), has_dist(false), a(0), b(0), c(0)
{
// Currently disabled since the algorithm is not stable and works well with only some lenses.
throw std::runtime_error("panasonic correction disabled as it's not yet working properly");
// parse();
}
private:
bool has_dist;
double scale, a, b, c;
void parse()
{
if (Exiv2::versionNumber() < EXIV2_MAKE_VERSION(0, 27, 4)) {
throw std::runtime_error("cannot get Panasonic correction data, too old exiv2 version " + Exiv2::versionString());
}
auto &exif = metadata.exifData();
auto it = exif.findKey(Exiv2::ExifKey("Exif.PanasonicRaw.0x0119"));
if (it != exif.end()) {
std::vector buf;
buf.resize(it->value().size());
it->value().copy(buf.data(), Exiv2::littleEndian);
const Exiv2::byte *data = buf.data();
// n is currently unused
// uint32_t n = Exiv2::getShort(data + 24, Exiv2::littleEndian);
scale = 1.0f / (1.0f + Exiv2::getShort(data + 10, Exiv2::littleEndian) / 32768.0f);
a = Exiv2::getShort(data + 16, Exiv2::littleEndian) / 32768.0f;
b = Exiv2::getShort(data + 8, Exiv2::littleEndian) / 32768.0f;
c = Exiv2::getShort(data + 22, Exiv2::littleEndian) / 32768.0f;
has_dist = true;
}
}
double distortionCorrectionFactor(double rout) const override
{
const double rs2 = std::pow(rout, 2);
const double rin = scale * rout * (1 + rs2 * (a + rs2 * (b + rs2 * c)));
const double cf = rout / rin;
return cf;
}
double caCorrectionFactor(double rout, int channel) const override
{
return 1;
}
double distortionAndCACorrectionFactor(double rout, int channel) const override
{
return distortionCorrectionFactor(rout);
}
double vignettingCorrectionFactor(double r) const override
{
return 1;
}
bool hasDistortionCorrection() const override { return has_dist; }
// Panasonic cameras have a shading correction option that fixes vignetting
// already in the raw file. Looks like they don't report vignetting
// correction parameters inside metadata even if shading correction is
// disabled.
bool hasVignettingCorrection() const override { return false; }
bool hasCACorrection() const override { return false; }
};
// Class DNGMetadatalensCorrection handles OpcodeList3 operations: operations to
// be done after demosaicing.
// OpcodeList1 is already handled by rawimagesource.cc. OpcodeList2 is not yet
// handled by rawtherapee.
// TODO(sgotti): dng spec provides clear rules on how and when to process the
// various opcodeList1/2/3 and the order of the various operations that should
// be done.
// Currently we only handle a subset of all the available opcodes and only one
// WarpRectilinar for distortion and FixVignetteRadial for vignetting (that's
// usually the case with Leica DNGs and ADC generated DNGs).
// This should be extended to support more exotic operations lists (i.e.
// multiple WarpRectilinear)
class DNGMetadataLensCorrection : public MetadataLensCorrection
{
public:
DNGMetadataLensCorrection(const FramesMetaData *meta) :
MetadataLensCorrection(), swap_xy(false)
{
metadata = Exiv2Metadata(meta->getFileName());
metadata.load();
parse();
}
private:
Exiv2Metadata metadata;
bool swap_xy;
int width, height;
double crx_d;
double cry_d;
double crx_v;
double cry_v;
double cx_d;
double cy_d;
double m_v;
double cx_v;
double cy_v;
double m_d;
int planes;
bool has_dist, has_ca, has_vign;
std::array, 3> warp_rectilinear;
std::array vignette_radial;
void initCorrections(int width, int height, const procparams::CoarseTransformParams &coarse, int rawRotationDeg) override
{
if (rawRotationDeg >= 0) {
int rot = (coarse.rotate + rawRotationDeg) % 360;
swap_xy = (rot == 90 || rot == 270);
if (swap_xy) {
std::swap(width, height);
}
}
this->width = width;
this->height = height;
setup();
}
void parse()
{
std::set processed_opcodes;
has_dist = has_ca = has_vign = false;
auto &exif = metadata.exifData();
auto it = exif.findKey(Exiv2::ExifKey("Exif.SubImage1.OpcodeList3"));
if (it != exif.end()) {
std::vector buf;
buf.resize(it->value().size());
it->value().copy(buf.data(), Exiv2::invalidByteOrder);
const Exiv2::byte *data = buf.data();
uint32_t num_entries = Exiv2::getULong(data, Exiv2::bigEndian);
size_t idx = 4;
for (size_t i = 0; i < num_entries && idx < buf.size(); ++i) {
uint32_t opcodeID = Exiv2::getULong(data + idx, Exiv2::bigEndian);
idx += 4;
idx += 4; // version
uint32_t flags = Exiv2::getULong(data + idx, Exiv2::bigEndian);
idx += 4;
size_t paramSize = Exiv2::getULong(data + idx, Exiv2::bigEndian);
idx += 4;
if (idx + paramSize > buf.size()) {
throw std::runtime_error("error parsing DNG OpcodeList3");
}
if (processed_opcodes.find(opcodeID) != processed_opcodes.end()) {
// we currently handle only one opcode per type and ignore next ones if provided.
if (settings->verbose) {
std::printf("DNG OpcodeList3 %s opcode %d already processed\n", flags & 1 ? "optional" : "mandatory", opcodeID);
}
idx += paramSize;
continue;
}
processed_opcodes.insert(opcodeID);
// we currently handle only one dist correction
if (opcodeID == 1 && !has_dist) { // WarpRectilinear
planes = Exiv2::getULong(data + idx, Exiv2::bigEndian);
if ((planes != 1) && (planes != 3)) {
throw std::runtime_error("cannot parse DNG WarpRectilinear");
}
for (int p = 0; p < planes; p++) {
for (int i = 0; i < 6; i++) {
warp_rectilinear[p][i] = Exiv2::getDouble(data + idx + 4 + 8 * (i + p * 6), Exiv2::bigEndian);
}
}
crx_d = Exiv2::getDouble(data + idx + 4 + 8 * (0 + planes * 6), Exiv2::bigEndian);
cry_d = Exiv2::getDouble(data + idx + 4 + 8 * (1 + planes * 6), Exiv2::bigEndian);
has_dist = true;
if (planes == 3) {
has_ca = true;
}
// we currently handle only one vignetting correction
} else if (opcodeID == 3 && !has_vign) { // FixVignetteRadial
size_t start = idx;
size_t end = idx + 7 * 8;
if (end > buf.size()) {
throw std::runtime_error("cannot parse DNG FixVignetteRadial");
}
for (int j = 0; j < 5; j++) {
vignette_radial[j] = Exiv2::getDouble(data + start, Exiv2::bigEndian);
start += 8;
}
crx_v = Exiv2::getDouble(data + start, Exiv2::bigEndian);
start += 8;
cry_v = Exiv2::getDouble(data + start, Exiv2::bigEndian);
has_vign = true;
} else {
if (settings->verbose) {
std::printf("DNG OpcodeList3 has unsupported %s opcode %d\n", flags & 1 ? "optional" : "mandatory", opcodeID);
}
}
idx += paramSize;
}
}
if (!has_dist && !has_vign) {
throw std::runtime_error("no known DNG correction data");
}
}
void setup()
{
cx_d = crx_d * width;
cy_d = cry_d * height;
cx_v = crx_v * width;
cy_v = cry_v * height;
double mx_d = std::max(cx_d, width - cx_d);
double my_d = std::max(cy_d, height - cy_d);
m_d = std::sqrt(SQR(mx_d) + SQR(my_d));
double mx_v = std::max(cx_v, width - cx_v);
double my_v = std::max(cy_v, height - cy_v);
m_v = std::sqrt(SQR(mx_v) + SQR(my_v));
}
void correctPlaneDistortion(double &x, double &y, int cx, int cy, int plane) const
{
if (plane < 0 || plane > 2 || plane > planes) {
return;
}
double xx = x + cx;
double yy = y + cy;
if (swap_xy) {
std::swap(xx, yy);
}
const double cx1 = cx_d;
const double cy1 = cy_d;
const double m = m_d;
const double dx = (xx - cx1) / m;
const double dy = (yy - cy1) / m;
const double dx2 = SQR(dx);
const double dy2 = SQR(dy);
const double r2 = dx2 + dy2;
const double f = warp_rectilinear[plane][0] + r2 * (warp_rectilinear[plane][1] + r2 * (warp_rectilinear[plane][2] + r2 * warp_rectilinear[plane][3]));
const double dx_r = f * dx;
const double dy_r = f * dy;
const double dxdy2 = 2 * dx * dy;
const double dx_t = warp_rectilinear[plane][4] * dxdy2 + warp_rectilinear[plane][5] * (r2 + 2 * dx2);
const double dy_t = warp_rectilinear[plane][5] * dxdy2 + warp_rectilinear[plane][4] * (r2 + 2 * dy2);
x = cx1 + m * (dx_r + dx_t);
y = cy1 + m * (dy_r + dy_t);
if (swap_xy) {
std::swap(x, y);
}
x -= cx;
y -= cy;
}
void correctDistortionAndCA(double &x, double &y, int cx, int cy, int channel) const override
{
if (!hasDistortionCorrection() || !hasCACorrection()) {
return;
}
correctPlaneDistortion(x, y, cx, cy, channel);
}
void correctDistortion(double &x, double &y, int cx, int cy) const override
{
if (!hasDistortionCorrection()) {
return;
}
int plane = 1; // 3 planes correction, use plane 1 (green)
if (planes == 1) {
plane = 0; // 1 single plane correction
}
correctPlaneDistortion(x, y, cx, cy, plane);
}
void correctCA(double &x, double &y, int cx, int cy, int channel) const override
{
if (!hasCACorrection()) {
return;
}
// we use plane 0 (red) and plane 2 (blue) for ca correction
if (channel != 0 && channel != 2) return;
if (planes != 3) return;
double xgreen = x, ygreen = y;
correctPlaneDistortion(xgreen, ygreen, cx, cy, 1);
double xch = x, ych = y;
correctPlaneDistortion(xch, ych, cx, cy, channel);
// Calculate diff from green plane
x += xch - xgreen;
y += ych - ygreen;
}
void processVignetteNChannels(int width, int height, float **rawData, int channels) const
{
if (!hasVignettingCorrection()) {
return;
}
const double cx = cx_v;
const double cy = cy_v;
const double m2 = 1.f / SQR(m_v);
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
const double r2 = m2 * (SQR(x - cx) + SQR(y - cy));
const double g = 1.f + r2 * (vignette_radial[0] + r2 * (vignette_radial[1] + r2 * (vignette_radial[2] + r2 * (vignette_radial[3] + r2 * vignette_radial[4]))));
for (int c = 0; c < channels; ++c) {
rawData[y][x*channels + c] *= g;
}
}
}
}
void processVignette(int width, int height, float **rawData) const override
{
return processVignetteNChannels(width, height, rawData, 1);
}
void processVignette3Channels(int width, int height, float **rawData) const override
{
return processVignetteNChannels(width, height, rawData, 3);
}
bool isCACorrectionAvailable() const
{
return hasCACorrection();
}
bool hasDistortionCorrection() const override { return has_dist; }
bool hasVignettingCorrection() const override { return has_vign; }
bool hasCACorrection() const override { return has_ca; }
};
std::unique_ptr MetadataLensCorrectionFinder::findCorrection(const FramesMetaData *meta)
{
static const std::unordered_set makers = {
"SONY",
"FUJIFILM",
"OLYMPUS",
"OM DIGITAL SOLUTIONS",
"PANASONIC",
};
std::string make = Glib::ustring(meta->getMake()).uppercase();
if (!meta->getDNG() && makers.find(make) == makers.end()) {
return nullptr;
}
std::unique_ptr correction;
try {
if (meta->getDNG()) {
correction.reset(new DNGMetadataLensCorrection(meta));
} else if (make == "SONY") {
correction.reset(new SonyMetadataLensCorrection(meta));
} else if (make == "FUJIFILM") {
correction.reset(new FujiMetadataLensCorrection(meta));
} else if (make == "OLYMPUS" || make == "OM DIGITAL SOLUTIONS") {
correction.reset(new OlympusMetadataLensCorrection(meta));
} else if (make == "PANASONIC") {
correction.reset(new PanasonicMetadataLensCorrection(meta));
}
} catch (std::exception &exc) {
if (settings->verbose) {
std::cerr << "error parsing lens metadata: " << exc.what() << std::endl;
}
correction.reset(nullptr);
}
return correction;
}
} // namespace rtengine