/* * This file is part of RawTherapee. * * Copyright (c) 2004-2010 Gabor Horvath * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ #include #include #include #include #include #include #include #include #include "cieimage.h" #include "color.h" #include "colortemp.h" #include "curves.h" #include "dcp.h" #include "iccmatrices.h" #include "iccstore.h" #include "image8.h" #include "improcfun.h" #include "jpeg.h" #include "labimage.h" #include "median.h" #include "procparams.h" #include "rawimage.h" #include "rawimagesource.h" #include "rtengine.h" #include "rtthumbnail.h" #include "settings.h" #include "stdimagesource.h" #include "StopWatch.h" #include "utils.h" namespace { /** * Apply the black level adjustments in the processing parameters. * * @param cblack The original black levels that will be modified. * @param sensorType Sensor type. * @param rawParams Subset of processing parameters for raw data. */ void adjustBlackLevels(float cblack[4], rtengine::eSensorType sensorType, const rtengine::RAWParams *rawParams) { if (!rawParams) { return; } std::array black_adjust{0.f, 0.f, 0.f, 0.f}; switch (sensorType) { case rtengine::eSensorType::ST_BAYER: case rtengine::eSensorType::ST_FOVEON: black_adjust[0] = static_cast(rawParams->bayersensor.black1); // R black_adjust[1] = static_cast(rawParams->bayersensor.black0); // G1 black_adjust[2] = static_cast(rawParams->bayersensor.black2); // B black_adjust[3] = static_cast(rawParams->bayersensor.black3); // G2 break; case rtengine::eSensorType::ST_FUJI_XTRANS: black_adjust[0] = static_cast(rawParams->xtranssensor.blackred); black_adjust[1] = static_cast(rawParams->xtranssensor.blackgreen); black_adjust[2] = static_cast(rawParams->xtranssensor.blackblue); black_adjust[3] = static_cast(rawParams->xtranssensor.blackgreen); break; case rtengine::eSensorType::ST_NONE: break; } for (unsigned int i = 0; i < black_adjust.size(); i++) { cblack[i] = std::max(0.f, cblack[i] + black_adjust[i]); } } /** * Calculate the new scale multipliers based on new black levels. * * @param scale_mul The original scale multipliers to be adjusted. * @param pre_mul Pre-multipliers. * @param c_black Updated black levels. * @param isMono Is the image using mono demosaicing? * @param ri Pointer to the raw image. */ void calculate_scale_mul(float scale_mul[4], const float pre_mul_[4], const float c_black[4], bool isMono, const rtengine::RawImage *ri) { std::array c_white; for (unsigned int i = 0; i < c_white.size(); ++i) { c_white[i] = static_cast(ri->get_white(i)); } if (isMono || ri->get_colors() == 1) { for (int c = 0; c < 4; c++) { scale_mul[c] = 65535.f / (c_white[c] - c_black[c]); } } else { std::array pre_mul; for (int c = 0; c < 4; c++) { pre_mul[c] = pre_mul_[c]; } if (pre_mul[3] == 0) { pre_mul[3] = pre_mul[1]; // G2 == G1 } float maxpremul = std::max(std::max(std::max(pre_mul[0], pre_mul[1]), pre_mul[2]), pre_mul[3]); for (int c = 0; c < 4; c++) { scale_mul[c] = (pre_mul[c] / maxpremul) * 65535.f / (c_white[c] - c_black[c]); } } } void scale_colors (rtengine::RawImage *ri, float scale_mul[4], float cblack[4], bool multiThread) { DCraw::dcrawImage_t image = ri->get_image(); const int height = ri->get_iheight(); const int width = ri->get_iwidth(); const int top_margin = ri->get_topmargin(); const int left_margin = ri->get_leftmargin(); const int raw_width = ri->get_rawwidth(); const bool isFloat = ri->isFloat(); const float * const float_raw_image = ri->get_FloatRawImage(); if (ri->isBayer()) { #ifdef _OPENMP #pragma omp parallel for if(multiThread) #endif for (int row = 0; row < height; ++row) { unsigned c0 = ri->FC (row, 0); unsigned c1 = ri->FC (row, 1); int col = 0; for (; col < width - 1; col += 2) { float val0; float val1; if (isFloat) { val0 = float_raw_image[(row + top_margin) * raw_width + col + left_margin]; val1 = float_raw_image[(row + top_margin) * raw_width + col + left_margin + 1]; } else { val0 = image[row * width + col][c0]; val1 = image[row * width + col + 1][c1]; } val0 -= cblack[c0]; val1 -= cblack[c1]; val0 *= scale_mul[c0]; val1 *= scale_mul[c1]; image[row * width + col][c0] = rtengine::CLIP (val0); image[row * width + col + 1][c1] = rtengine::CLIP (val1); } if (col < width) { // in case width is odd float val0; if (isFloat) { val0 = float_raw_image[(row + top_margin) * raw_width + col + left_margin]; } else { val0 = image[row * width + col][c0]; } val0 -= cblack[c0]; val0 *= scale_mul[c0]; image[row * width + col][c0] = rtengine::CLIP (val0); } } } else if (ri->isXtrans()) { #ifdef _OPENMP #pragma omp parallel for if(multiThread) #endif for (int row = 0; row < height; ++row) { unsigned c[6]; for (int i = 0; i < 6; ++i) { c[i] = ri->XTRANSFC (row, i); } int col = 0; for (; col < width - 5; col += 6) { for (int i = 0; i < 6; ++i) { const unsigned ccol = c[i]; float val; if (isFloat) { val = float_raw_image[(row + top_margin) * raw_width + col + i + left_margin]; } else { val = image[row * width + col + i][ccol]; } val -= cblack[ccol]; val *= scale_mul[ccol]; image[row * width + col + i][ccol] = rtengine::CLIP (val); } } for (; col < width; ++col) { // remaining columns const unsigned ccol = ri->XTRANSFC (row, col); float val; if (isFloat) { val = float_raw_image[(row + top_margin) * raw_width + col + left_margin]; } else { val = image[row * width + col][ccol]; } val -= cblack[ccol]; val *= scale_mul[ccol]; image[row * width + col][ccol] = rtengine::CLIP (val); } } } else if (isFloat) { const auto colors = ri->get_colors(); #ifdef _OPENMP #pragma omp parallel for if(multiThread) #endif for (int row = 0; row < height; ++row) { for (int col = 0; col < width; ++col) { for (int i = 0; i < colors; ++i) { float val = float_raw_image[colors * ((row + top_margin) * raw_width + col + left_margin) + i]; val -= cblack[i]; val *= scale_mul[i]; image[row * width + col][i] = val; } } } } else { const int size = ri->get_iheight() * ri->get_iwidth(); #ifdef _OPENMP #pragma omp parallel for if(multiThread) #endif for (int i = 0; i < size; ++i) { for (int j = 0; j < 4; ++j) { float val = image[i][j]; val -= cblack[j]; val *= scale_mul[j]; image[i][j] = rtengine::CLIP (val); } } } } } namespace rtengine { using namespace procparams; Thumbnail* Thumbnail::loadFromImage (const Glib::ustring& fname, int &w, int &h, int fixwh, double wbEq, StandardObserver wbObserver, bool inspectorMode) { StdImageSource imgSrc; if (imgSrc.load (fname)) { return nullptr; } ImageIO* img = imgSrc.getImageIO(); Thumbnail* tpp = new Thumbnail (); unsigned char* data; img->getEmbeddedProfileData (tpp->embProfileLength, data); if (data && tpp->embProfileLength) { tpp->embProfileData = new unsigned char [tpp->embProfileLength]; memcpy (tpp->embProfileData, data, tpp->embProfileLength); } tpp->scaleForSave = 8192; tpp->defGain = 1.0; tpp->gammaCorrected = false; tpp->isRaw = 0; memset (tpp->colorMatrix, 0, sizeof (tpp->colorMatrix)); tpp->colorMatrix[0][0] = 1.0; tpp->colorMatrix[1][1] = 1.0; tpp->colorMatrix[2][2] = 1.0; if (inspectorMode) { // Special case, meaning that we want a full sized thumbnail image (e.g. for the Inspector feature) w = img->getWidth(); h = img->getHeight(); tpp->scale = 1.; } else { if (fixwh < 0 && w > 0 && h > 0) { const int ww = h * img->getWidth() / img->getHeight(); const int hh = w * img->getHeight() / img->getWidth(); if (ww <= w) { w = ww; tpp->scale = static_cast(img->getHeight()) / h; } else { h = hh; tpp->scale = static_cast(img->getWidth()) / w; } } else if (fixwh == 1) { w = h * img->getWidth() / img->getHeight(); tpp->scale = static_cast(img->getHeight()) / h; } else { h = w * img->getHeight() / img->getWidth(); tpp->scale = static_cast(img->getWidth()) / w; } } // Precaution to prevent division by zero later on if (h < 1) h = 1; if (w < 1) w = 1; // bilinear interpolation if (tpp->thumbImg) { delete tpp->thumbImg; tpp->thumbImg = nullptr; } if (inspectorMode) { // we want an Image8 if (img->getType() == rtengine::sImage8) { // copy the image Image8 *srcImg = static_cast (img); Image8 *thImg = new Image8 (w, h); srcImg->copyData (thImg); tpp->thumbImg = thImg; } else { // copy the image with a conversion tpp->thumbImg = resizeTo (w, h, TI_Bilinear, img); } } else { // we want the same image type than the source file tpp->thumbImg = resizeToSameType (w, h, TI_Bilinear, img); // histogram computation tpp->aeHistCompression = 3; tpp->aeHistogram (65536 >> tpp->aeHistCompression); double avg_r = 0; double avg_g = 0; double avg_b = 0; int n = 0; if (img->getType() == rtengine::sImage8) { Image8 *image = static_cast (img); image->computeHistogramAutoWB (avg_r, avg_g, avg_b, n, tpp->aeHistogram, tpp->aeHistCompression); } else if (img->getType() == sImage16) { Image16 *image = static_cast (img); image->computeHistogramAutoWB (avg_r, avg_g, avg_b, n, tpp->aeHistogram, tpp->aeHistCompression); } else if (img->getType() == sImagefloat) { Imagefloat *image = static_cast (img); image->computeHistogramAutoWB (avg_r, avg_g, avg_b, n, tpp->aeHistogram, tpp->aeHistCompression); } else { printf ("loadFromImage: Unsupported image type \"%s\"!\n", img->getType()); } ProcParams paramsForAutoExp; // Dummy for constructor ImProcFunctions ipf (¶msForAutoExp, false); ipf.getAutoExp (tpp->aeHistogram, tpp->aeHistCompression, 0.02, tpp->aeExposureCompensation, tpp->aeLightness, tpp->aeContrast, tpp->aeBlack, tpp->aeHighlightCompression, tpp->aeHighlightCompressionThreshold); tpp->aeValid = true; if (n > 0) { ColorTemp cTemp; tpp->redAWBMul = avg_r / double (n); tpp->greenAWBMul = avg_g / double (n); tpp->blueAWBMul = avg_b / double (n); tpp->wbEqual = wbEq; tpp->wbTempBias = 0.0; tpp->wbObserver = wbObserver; cTemp.mul2temp (tpp->redAWBMul, tpp->greenAWBMul, tpp->blueAWBMul, tpp->wbEqual, tpp->wbObserver, tpp->autoWBTemp, tpp->autoWBGreen); } tpp->init (); } return tpp; } namespace { Image8 *load_inspector_mode(const Glib::ustring &fname, eSensorType &sensorType, int &w, int &h) { BENCHFUN RawImageSource src; int err = src.load(fname, true); if (err) { return nullptr; } src.getFullSize(w, h); sensorType = src.getSensorType(); ProcParams neutral; neutral.raw.bayersensor.method = RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::FAST); neutral.raw.xtranssensor.method = RAWParams::XTransSensor::getMethodString(RAWParams::XTransSensor::Method::FAST); neutral.icm.inputProfile = "(camera)"; neutral.icm.workingProfile = settings->srgb; float reddeha = 0.f; float greendeha = 0.f; float bluedeha = 0.f; src.preprocess(neutral.raw, neutral.lensProf, neutral.coarse, reddeha, greendeha, bluedeha, false); double thresholdDummy = 0.f; src.demosaic(neutral.raw, false, thresholdDummy); PreviewProps pp(0, 0, w, h, 1); Imagefloat tmp(w, h); src.getImage(src.getWB(), TR_NONE, &tmp, pp, neutral.toneCurve, neutral.raw); src.convertColorSpace(&tmp, neutral.icm, src.getWB()); Image8 *img = new Image8(w, h); const float f = 255.f/65535.f; #ifdef _OPENMP #pragma omp parallel for #endif for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { float r = tmp.r(y, x); float g = tmp.g(y, x); float b = tmp.b(y, x); // avoid magenta highlights if (r > MAXVALF && b > MAXVALF) { float v = CLIP((r + g + b) / 3.f) * f; img->r(y, x) = img->g(y, x) = img->b(y, x) = v; } else { img->r(y, x) = Color::gamma_srgbclipped(r) * f; img->g(y, x) = Color::gamma_srgbclipped(g) * f; img->b(y, x) = Color::gamma_srgbclipped(b) * f; } } } return img; } } // namespace Thumbnail* Thumbnail::loadQuickFromRaw (const Glib::ustring& fname, eSensorType &sensorType, int &w, int &h, int fixwh, bool rotate, bool inspectorMode, bool forHistogramMatching) { Thumbnail* tpp = new Thumbnail (); tpp->isRaw = 1; memset (tpp->colorMatrix, 0, sizeof (tpp->colorMatrix)); tpp->colorMatrix[0][0] = 1.0; tpp->colorMatrix[1][1] = 1.0; tpp->colorMatrix[2][2] = 1.0; if (inspectorMode && !forHistogramMatching && settings->thumbnail_inspector_mode == Settings::ThumbnailInspectorMode::RAW) { Image8 *img = load_inspector_mode(fname, sensorType, w, h); if (!img) { delete tpp; return nullptr; } tpp->scale = 1.; tpp->thumbImg = img; return tpp; } RawImage *ri = new RawImage (fname); unsigned int imageNum = 0; int r = ri->loadRaw (false, imageNum, false); if ( r ) { delete tpp; delete ri; sensorType = ST_NONE; return nullptr; } sensorType = ri->getSensorType(); Image8 *img = ri->getThumbnail(); // did we succeed? if (!img) { if (settings->verbose) { std::cout << "Could not extract thumb from " << fname.c_str() << std::endl; } delete tpp; delete ri; return nullptr; } if (inspectorMode) { // Special case, meaning that we want a full sized thumbnail image (e.g. for the Inspector feature) w = img->getWidth(); h = img->getHeight(); tpp->scale = 1.; if (!forHistogramMatching && settings->thumbnail_inspector_mode == Settings::ThumbnailInspectorMode::RAW_IF_NOT_JPEG_FULLSIZE && float(std::max(w, h))/float(std::max(ri->get_width(), ri->get_height())) < 0.9f) { delete img; delete ri; img = load_inspector_mode(fname, sensorType, w, h); if (!img) { delete tpp; return nullptr; } tpp->scale = 1.; tpp->thumbImg = img; return tpp; } } else { if (fixwh == 1) { w = h * img->getWidth() / img->getHeight(); tpp->scale = (double)img->getHeight() / h; } else { h = w * img->getHeight() / img->getWidth(); tpp->scale = (double)img->getWidth() / w; } } if (tpp->thumbImg) { delete tpp->thumbImg; tpp->thumbImg = nullptr; } if (inspectorMode) { tpp->thumbImg = img; } else { tpp->thumbImg = resizeTo (w, h, TI_Nearest, img); delete img; } if (rotate && ri->get_rotateDegree() > 0) { std::string fname = ri->get_filename(); std::string suffix = fname.length() > 4 ? fname.substr (fname.length() - 3) : ""; for (unsigned int i = 0; i < suffix.length(); i++) { suffix[i] = std::tolower (suffix[i]); } // Leaf .mos, Mamiya .mef and Phase One .iiq files have thumbnails already rotated. if (suffix != "mos" && suffix != "mef" && suffix != "iiq") { tpp->thumbImg->rotate (ri->get_rotateDegree()); // width/height may have changed after rotating w = tpp->thumbImg->getWidth(); h = tpp->thumbImg->getHeight(); } } if (!inspectorMode) { tpp->init (); } delete ri; return tpp; } #define FISRED(filter,row,col) \ ((filter >> ((((row) << 1 & 14) + ((col) & 1)) << 1) & 3)==0 || !filter) #define FISGREEN(filter,row,col) \ ((filter >> ((((row) << 1 & 14) + ((col) & 1)) << 1) & 3)==1 || !filter) Thumbnail* Thumbnail::loadFromRaw (const Glib::ustring& fname, eSensorType &sensorType, int &w, int &h, int fixwh, double wbEq, StandardObserver wbObserver, bool rotate, const RAWParams *rawParams, bool forHistogramMatching) { RawImage *ri = new RawImage (fname); unsigned int tempImageNum = 0; int r = ri->loadRaw (1, tempImageNum, 0); if ( r ) { delete ri; sensorType = ST_NONE; return nullptr; } if (ri->getFrameCount() == 7) { // special case for Hasselblad H6D-100cMS pixelshift files // first frame is not bayer, load second frame int r = ri->loadRaw (1, 1, 0); if ( r ) { delete ri; sensorType = ST_NONE; return nullptr; } } sensorType = ri->getSensorType(); int width = ri->get_width(); int height = ri->get_height(); int iwidth = ri->get_iwidth(); int iheight = ri->get_iheight(); int left_margin = ri->get_leftmargin(); int top_margin = ri->get_topmargin(); rtengine::Thumbnail* tpp = new rtengine::Thumbnail; tpp->isRaw = true; tpp->embProfile = nullptr; tpp->embProfileData = nullptr; tpp->embProfileLength = ri->get_profileLen(); if (ri->get_profileLen()) tpp->embProfile = cmsOpenProfileFromMem (ri->get_profile(), ri->get_profileLen()); //\ TODO check if mutex is needed tpp->redMultiplier = ri->get_pre_mul (0); tpp->greenMultiplier = ri->get_pre_mul (1); tpp->blueMultiplier = ri->get_pre_mul (2); bool isMono = rawParams && ((ri->getSensorType() == ST_FUJI_XTRANS && rawParams->xtranssensor.method == RAWParams::XTransSensor::getMethodString(RAWParams::XTransSensor::Method::MONO)) || (ri->getSensorType() == ST_BAYER && rawParams->bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::MONO))); float pre_mul[4], scale_mul[4], cblack[4]; ri->get_colorsCoeff (pre_mul, scale_mul, cblack, false); adjustBlackLevels(cblack, sensorType, rawParams); calculate_scale_mul(scale_mul, pre_mul, cblack, isMono, ri); scale_colors (ri, scale_mul, cblack, forHistogramMatching); // enable multithreading when forHistogramMatching is true ri->pre_interpolate(); tpp->camwbRed = tpp->redMultiplier / pre_mul[0]; //ri->get_pre_mul(0); tpp->camwbGreen = tpp->greenMultiplier / pre_mul[1]; //ri->get_pre_mul(1); tpp->camwbBlue = tpp->blueMultiplier / pre_mul[2]; //ri->get_pre_mul(2); //tpp->defGain = 1.0 / min(ri->get_pre_mul(0), ri->get_pre_mul(1), ri->get_pre_mul(2)); tpp->defGain = max (scale_mul[0], scale_mul[1], scale_mul[2], scale_mul[3]) / min (scale_mul[0], scale_mul[1], scale_mul[2], scale_mul[3]); tpp->defGain *= std::pow(2, ri->getBaselineExposure()); tpp->scaleGain = scale_mul[0] / pre_mul[0]; // can be used to reconstruct scale_mul later in processing tpp->gammaCorrected = true; unsigned filter = ri->get_filters(); int firstgreen = 1; // locate first green location in the first row if (ri->getSensorType() == ST_BAYER) while (!FISGREEN (filter, 1, firstgreen) && firstgreen < 3) { firstgreen++; } int skip = 1; if (ri->get_FujiWidth() != 0) { if (fixwh == 1) { // fix height, scale width skip = ((ri->get_height() - ri->get_FujiWidth()) / sqrt (0.5) - firstgreen - 1) / h; } else { skip = (ri->get_FujiWidth() / sqrt (0.5) - firstgreen - 1) / w; } } else { if (fixwh == 1) { // fix height, scale width skip = (ri->get_height() - firstgreen - 1) / h; } else { skip = (ri->get_width() - firstgreen - 1) / w; } } if (skip % 2) { skip--; } if (skip < 2) { skip = 2; } int hskip = skip, vskip = skip; if (!ri->get_model().compare ("D1X")) { hskip *= 2; } int rofs = 0; int tmpw = (width - 2) / hskip; int tmph = (height - 2) / vskip; DCraw::dcrawImage_t image = ri->get_image(); Imagefloat* tmpImg = new Imagefloat (tmpw, tmph); if (ri->getSensorType() == ST_BAYER) { // demosaicing! (sort of) for (int row = 1, y = 0; row < height - 1 && y < tmph; row += vskip, y++) { rofs = (row + top_margin) * iwidth; for (int col = firstgreen, x = 0; col < width - 1 && x < tmpw; col += hskip, x++) { int ofs = rofs + col + left_margin; int g = image[ofs][1]; int r, b; if (FISRED (filter, row, col + 1)) { r = (image[ofs + 1 ][0] + image[ofs - 1 ][0]) >> 1; b = (image[ofs + iwidth][2] + image[ofs - iwidth][2]) >> 1; } else { b = (image[ofs + 1 ][2] + image[ofs - 1 ][2]) >> 1; r = (image[ofs + iwidth][0] + image[ofs - iwidth][0]) >> 1; } tmpImg->r (y, x) = r; tmpImg->g (y, x) = g; tmpImg->b (y, x) = b; } } } else if (ri->get_colors() == 1) { for (int row = 1, y = 0; row < height - 1 && y < tmph; row += vskip, y++) { rofs = (row + top_margin) * iwidth; for (int col = firstgreen, x = 0; col < width - 1 && x < tmpw; col += hskip, x++) { int ofs = rofs + col + left_margin; tmpImg->r (y, x) = tmpImg->g (y, x) = tmpImg->b (y, x) = image[ofs][0]; } } } else { if (ri->getSensorType() == ST_FUJI_XTRANS) { for ( int row = 1, y = 0; row < height - 1 && y < tmph; row += vskip, y++) { rofs = (row + top_margin) * iwidth; for ( int col = 1, x = 0; col < width - 1 && x < tmpw; col += hskip, x++ ) { int ofs = rofs + col + left_margin; float sum[3] = {}; int c; for (int v = -1; v <= 1; v++) { for (int h = -1; h <= 1; h++) { c = ri->XTRANSFC (row + v, col + h); sum[c] += image[ofs + v * iwidth + h][c]; } } c = ri->XTRANSFC (row, col); switch (c) { case 0: tmpImg->r (y, x) = image[ofs][0]; tmpImg->g (y, x) = sum[1] / 5.f; tmpImg->b (y, x) = sum[2] / 3.f; break; case 1: tmpImg->r (y, x) = sum[0] / 2.f; tmpImg->g (y, x) = image[ofs][1]; tmpImg->b (y, x) = sum[2] / 2.f; break; case 2: tmpImg->r (y, x) = sum[0] / 3.f; tmpImg->g (y, x) = sum[1] / 5.f; tmpImg->b (y, x) = image[ofs][2]; break; } } } } else { // int iwidth = ri->get_iwidth(); // int iheight = ri->get_iheight(); // int left_margin = ri->get_leftmargin(); firstgreen += left_margin; // int top_margin = ri->get_topmargin(); int wmax = tmpw; int hmax = tmph; if ((ri->get_maker() == "Sigma" || ri->get_maker() == "Pentax" || ri->get_maker() == "Sony") && ri->DNGVERSION()) { // Hack to prevent sigma dng files from crashing wmax = (width - 2 - left_margin) / hskip; hmax = (height - 2 - top_margin) / vskip; } int y = 0; for (int row = 1 + top_margin; row < iheight + top_margin - 1 && y < hmax; row += vskip, y++) { rofs = row * iwidth; int x = 0; for (int col = firstgreen; col < iwidth + left_margin - 1 && x < wmax; col += hskip, x++) { int ofs = rofs + col; tmpImg->r (y, x) = image[ofs][0]; tmpImg->g (y, x) = image[ofs][1]; tmpImg->b (y, x) = image[ofs][2]; } for (; x < tmpw; ++x) { tmpImg->r (y, x) = tmpImg->g (y, x) = tmpImg->b (y, x) = 0; } } for (; y < tmph; ++y) { for (int x = 0; x < tmpw; ++x) { tmpImg->r (y, x) = tmpImg->g (y, x) = tmpImg->b (y, x) = 0; } } } } if (ri->get_FujiWidth() != 0) { int fw = ri->get_FujiWidth() / hskip; double step = sqrt (0.5); int wide = fw / step; int high = (tmph - fw) / step; Imagefloat* fImg = new Imagefloat (wide, high); float r, c; for (int row = 0; row < high; row++) for (int col = 0; col < wide; col++) { int ur = r = fw + (row - col) * step; int uc = c = (row + col) * step; if (ur > tmph - 2 || uc > tmpw - 2) { continue; } double fr = r - ur; double fc = c - uc; fImg->r (row, col) = (tmpImg->r (ur, uc) * (1 - fc) + tmpImg->r (ur, uc + 1) * fc) * (1 - fr) + (tmpImg->r (ur + 1, uc) * (1 - fc) + tmpImg->r (ur + 1, uc + 1) * fc) * fr; fImg->g (row, col) = (tmpImg->g (ur, uc) * (1 - fc) + tmpImg->g (ur, uc + 1) * fc) * (1 - fr) + (tmpImg->g (ur + 1, uc) * (1 - fc) + tmpImg->g (ur + 1, uc + 1) * fc) * fr; fImg->b (row, col) = (tmpImg->b (ur, uc) * (1 - fc) + tmpImg->b (ur, uc + 1) * fc) * (1 - fr) + (tmpImg->b (ur + 1, uc) * (1 - fc) + tmpImg->b (ur + 1, uc + 1) * fc) * fr; } delete tmpImg; tmpImg = fImg; tmpw = wide; tmph = high; } const bool rotate_90 = rotate && ( ri->get_rotateDegree() == 90 || ri->get_rotateDegree() == 270 ); if (rotate_90) { std::swap (tmpw, tmph); } if (fixwh == 1) { // fix height, scale width w = tmpw * h / tmph; } else { h = tmph * w / tmpw; } if (tpp->thumbImg) { delete tpp->thumbImg; } if (rotate_90) { tpp->thumbImg = resizeTo (h, w, TI_Bilinear, tmpImg); } else { tpp->thumbImg = resizeTo (w, h, TI_Bilinear, tmpImg); } delete tmpImg; if (ri->get_FujiWidth() != 0) { tpp->scale = (double) (height - ri->get_FujiWidth()) * 2.0 / (rotate_90 ? w : h); } else { tpp->scale = (double) height / (rotate_90 ? w : h); } if(!forHistogramMatching) { // we don't need this for histogram matching // generate histogram for auto exposure, also calculate autoWB tpp->aeHistCompression = 3; tpp->aeHistogram(65536 >> tpp->aeHistCompression); tpp->aeHistogram.clear(); const unsigned int add = filter ? 1 : 4 / ri->get_colors(); double pixSum[3] = {0.0}; unsigned int n[3] = {0}; const double compression = pow(2.0, tpp->aeHistCompression); const double camWb[3] = {tpp->camwbRed / compression, tpp->camwbGreen / compression, tpp->camwbBlue / compression}; const double clipval = 64000.0 / tpp->defGain; for (int i = 32; i < height - 32; i++) { int start, end; if (ri->get_FujiWidth() != 0) { int fw = ri->get_FujiWidth(); start = ABS (fw - i) + 32; end = min (height + width - fw - i, fw + i) - 32; } else { start = 32; end = width - 32; } if (ri->get_colors() == 1) { for (int j = start; j < end; j++) { tpp->aeHistogram[image[i * width + j][0] >> tpp->aeHistCompression]++; } } else if (ri->getSensorType() == ST_BAYER) { int c0 = ri->FC(i, start); int c1 = ri->FC(i, start + 1); int j = start; int n0 = 0; int n1 = 0; double pixSum0 = 0.0; double pixSum1 = 0.0; for (; j < end - 1; j+=2) { double v0 = image[i * width + j][c0]; tpp->aeHistogram[(int)(camWb[c0] * v0)]++; if (v0 <= clipval) { pixSum0 += v0; n0++; } double v1 = image[i * width + j + 1][c1]; tpp->aeHistogram[(int)(camWb[c1] * v1)]++; if (v1 <= clipval) { pixSum1 += v1; n1++; } } if (j < end) { double v0 = image[i * width + j][c0]; tpp->aeHistogram[(int)(camWb[c0] * v0)]++; if (v0 <= clipval) { pixSum0 += v0; n0++; } } n[c0] += n0; n[c1] += n1; pixSum[c0] += pixSum0; pixSum[c1] += pixSum1; } else if (ri->getSensorType() == ST_FUJI_XTRANS) { int c[6]; for(int cc = 0; cc < 6; ++cc) { c[cc] = ri->XTRANSFC(i, start + cc); } int j = start; for (; j < end - 5; j += 6) { for(int cc = 0; cc < 6; ++cc) { double d = image[i * width + j + cc][c[cc]]; tpp->aeHistogram[(int)(camWb[c[cc]] * d)]++; if (d <= clipval) { pixSum[c[cc]] += d; n[c[cc]]++; } } } for (; j < end; j++) { if (ri->ISXTRANSGREEN (i, j)) { double d = image[i * width + j][1]; tpp->aeHistogram[(int)(camWb[1] * d)]++; if (d <= clipval) { pixSum[1] += d; n[1]++; } } else if (ri->ISXTRANSRED (i, j)) { double d = image[i * width + j][0]; tpp->aeHistogram[(int)(camWb[0] * d)]++; if (d <= clipval) { pixSum[0] += d; n[0]++; } } else if (ri->ISXTRANSBLUE (i, j)) { double d = image[i * width + j][2]; tpp->aeHistogram[(int)(camWb[2] * d)]++; if (d <= clipval) { pixSum[2] += d; n[2]++; } } } } else { /* if(ri->getSensorType()==ST_FOVEON) */ for (int j = start; j < end; j++) { double r = image[i * width + j][0]; if (r <= clipval) { pixSum[0] += r; n[0]++; } double g = image[i * width + j][1]; if (g <= clipval) { pixSum[1] += g; n[1]++; } tpp->aeHistogram[((int)g) >> tpp->aeHistCompression] += add; double b = image[i * width + j][2]; if (b <= clipval) { pixSum[2] += b; n[2]++; } tpp->aeHistogram[((int) (b * 0.5f)) >> tpp->aeHistCompression] += add; } } } ProcParams paramsForAutoExp; // Dummy for constructor ImProcFunctions ipf (¶msForAutoExp, false); ipf.getAutoExp (tpp->aeHistogram, tpp->aeHistCompression, 0.02, tpp->aeExposureCompensation, tpp->aeLightness, tpp->aeContrast, tpp->aeBlack, tpp->aeHighlightCompression, tpp->aeHighlightCompressionThreshold); tpp->aeValid = true; if (ri->get_colors() == 1) { pixSum[0] = pixSum[1] = pixSum[2] = 1.; n[0] = n[1] = n[2] = 1; } pixSum[0] *= tpp->defGain; pixSum[1] *= tpp->defGain; pixSum[2] *= tpp->defGain; double reds = pixSum[0] / std::max(n[0], 1u) * tpp->camwbRed; double greens = pixSum[1] / std::max(n[1], 1u) * tpp->camwbGreen; double blues = pixSum[2] / std::max(n[2], 1u) * tpp->camwbBlue; tpp->redAWBMul = ri->get_rgb_cam (0, 0) * reds + ri->get_rgb_cam (0, 1) * greens + ri->get_rgb_cam (0, 2) * blues; tpp->greenAWBMul = ri->get_rgb_cam (1, 0) * reds + ri->get_rgb_cam (1, 1) * greens + ri->get_rgb_cam (1, 2) * blues; tpp->blueAWBMul = ri->get_rgb_cam (2, 0) * reds + ri->get_rgb_cam (2, 1) * greens + ri->get_rgb_cam (2, 2) * blues; tpp->wbEqual = wbEq; tpp->wbTempBias = 0.0; tpp->wbObserver = wbObserver; ColorTemp cTemp; cTemp.mul2temp (tpp->redAWBMul, tpp->greenAWBMul, tpp->blueAWBMul, tpp->wbEqual, tpp->wbObserver, tpp->autoWBTemp, tpp->autoWBGreen); } if (rotate && ri->get_rotateDegree() > 0) { tpp->thumbImg->rotate (ri->get_rotateDegree()); } for (int a = 0; a < 3; a++) for (int b = 0; b < 3; b++) { tpp->colorMatrix[a][b] = ri->get_rgb_cam (a, b); } tpp->init(); RawImageSource::computeFullSize(ri, TR_NONE, tpp->full_width, tpp->full_height); delete ri; return tpp; } #undef FISRED #undef FISGREEN #undef FISBLUE void Thumbnail::init () { RawImageSource::inverse33 (colorMatrix, iColorMatrix); //colorMatrix is rgb_cam memset (cam2xyz, 0, sizeof (cam2xyz)); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) for (int k = 0; k < 3; k++) { cam2xyz[i][j] += xyz_sRGB[i][k] * colorMatrix[k][j]; } camProfile = ICCStore::getInstance()->createFromMatrix (cam2xyz, false, "Camera"); } Thumbnail::Thumbnail () : camProfile (nullptr), iColorMatrix{}, cam2xyz{}, thumbImg (nullptr), camwbRed (1.0), camwbGreen (1.0), camwbBlue (1.0), redAWBMul (-1.0), greenAWBMul (-1.0), blueAWBMul (-1.0), autoWBTemp (2700), autoWBGreen (1.0), wbEqual (-1.0), wbTempBias (0.0), aeHistCompression (3), aeValid(false), aeExposureCompensation(0.0), aeLightness(0), aeContrast(0), aeBlack(0), aeHighlightCompression(0), aeHighlightCompressionThreshold(0), embProfileLength (0), embProfileData (nullptr), embProfile (nullptr), redMultiplier (1.0), greenMultiplier (1.0), blueMultiplier (1.0), scale (1.0), defGain (1.0), scaleForSave (8192), gammaCorrected (false), colorMatrix{}, scaleGain (1.0), isRaw (true), full_width(-1), full_height(-1) { } Thumbnail::~Thumbnail () { delete thumbImg; //delete [] aeHistogram; delete [] embProfileData; if (embProfile) { cmsCloseProfile (embProfile); } if (camProfile) { cmsCloseProfile (camProfile); } } // Simple processing of RAW internal JPGs IImage8* Thumbnail::quickProcessImage (const procparams::ProcParams& params, int rheight, rtengine::TypeInterpolation interp) { int rwidth; if (params.coarse.rotate == 90 || params.coarse.rotate == 270) { rwidth = rheight; rheight = thumbImg->getHeight() * rwidth / thumbImg->getWidth(); } else { rwidth = thumbImg->getWidth() * rheight / thumbImg->getHeight(); } Image8* baseImg = resizeTo (rwidth, rheight, interp, thumbImg); if (params.coarse.rotate) { baseImg->rotate (params.coarse.rotate); } if (params.coarse.hflip) { baseImg->hflip (); } if (params.coarse.vflip) { baseImg->vflip (); } return baseImg; } // Full thumbnail processing, second stage if complete profile exists IImage8* Thumbnail::processImage (const procparams::ProcParams& params, eSensorType sensorType, int rheight, TypeInterpolation interp, const FramesMetaData *metadata, double& myscale, bool forMonitor, bool forHistogramMatching) { const std::string camName = metadata->getCamera(); const float shutter = metadata->getShutterSpeed(); const float fnumber = metadata->getFNumber(); const float iso = metadata->getISOSpeed(); const float fcomp = metadata->getExpComp(); // check if the WB's equalizer, temperature bias, or observer value has changed if (wbEqual < (params.wb.equal - 5e-4) || wbEqual > (params.wb.equal + 5e-4) || wbTempBias < (params.wb.tempBias - 5e-4) || wbTempBias > (params.wb.tempBias + 5e-4) || wbObserver != params.wb.observer) { wbEqual = params.wb.equal; wbTempBias = params.wb.tempBias; wbObserver = params.wb.observer; // recompute the autoWB ColorTemp cTemp; cTemp.mul2temp (redAWBMul, greenAWBMul, blueAWBMul, wbEqual, wbObserver, autoWBTemp, autoWBGreen); autoWBTemp += autoWBTemp * wbTempBias; } // compute WB multipliers ColorTemp currWB = ColorTemp (params.wb.temperature, params.wb.green, params.wb.equal, params.wb.method, params.wb.observer); if (!params.wb.enabled) { currWB = ColorTemp(); } else if (params.wb.method == "Camera") { //recall colorMatrix is rgb_cam double cam_r = colorMatrix[0][0] * camwbRed + colorMatrix[0][1] * camwbGreen + colorMatrix[0][2] * camwbBlue; double cam_g = colorMatrix[1][0] * camwbRed + colorMatrix[1][1] * camwbGreen + colorMatrix[1][2] * camwbBlue; double cam_b = colorMatrix[2][0] * camwbRed + colorMatrix[2][1] * camwbGreen + colorMatrix[2][2] * camwbBlue; currWB = ColorTemp (cam_r, cam_g, cam_b, params.wb.equal, params.wb.observer); } else if (params.wb.method == "autold") { if (params.wb.compat_version == 1 && !isRaw) { // RGB grey compatibility version 1 used the identity multipliers // plus temperature bias for non-raw files. currWB.update(1., 1., 1., params.wb.equal, params.wb.observer, params.wb.tempBias); } else { currWB = ColorTemp(autoWBTemp, autoWBGreen, wbEqual, "Custom", wbObserver); } } else if (params.wb.method == "autitcgreen") { if (params.wb.compat_version == 1 && !isRaw) { currWB = ColorTemp(5000., 1., 1., params.wb.method, StandardObserver::TEN_DEGREES); } else { // TODO: Temperature correlation AWB. } } double rm, gm, bm; if (currWB.getTemp() < 0) { rm = redMultiplier; gm = greenMultiplier; bm = blueMultiplier; } else { double r, g, b; currWB.getMultipliers (r, g, b); //iColorMatrix is cam_rgb rm = iColorMatrix[0][0] * r + iColorMatrix[0][1] * g + iColorMatrix[0][2] * b; gm = iColorMatrix[1][0] * r + iColorMatrix[1][1] * g + iColorMatrix[1][2] * b; bm = iColorMatrix[2][0] * r + iColorMatrix[2][1] * g + iColorMatrix[2][2] * b; } rm = camwbRed / rm; gm = camwbGreen / gm; bm = camwbBlue / bm; double mul_lum = 0.299 * rm + 0.587 * gm + 0.114 * bm; float rmi, gmi, bmi; rmi = rm * defGain / mul_lum; gmi = gm * defGain / mul_lum; bmi = bm * defGain / mul_lum; // The RAW exposure is not reflected since it's done in preprocessing. If we only have e.g. the cached thumb, // that is already preprocessed. So we simulate the effect here roughly my modifying the exposure accordingly if (isRaw) { rmi *= params.raw.expos; gmi *= params.raw.expos; bmi *= params.raw.expos; } // resize to requested width and perform coarse transformation int rwidth; if (params.coarse.rotate == 90 || params.coarse.rotate == 270) { rwidth = rheight; rheight = int (size_t (thumbImg->getHeight()) * size_t (rwidth) / size_t (thumbImg->getWidth())); } else { rwidth = int (size_t (thumbImg->getWidth()) * size_t (rheight) / size_t (thumbImg->getHeight())); } if (rwidth < 1) rwidth = 1; if (rheight < 1) rheight = 1; Imagefloat* baseImg = resizeTo (rwidth, rheight, interp, thumbImg); // Film negative legacy mode, for backwards compatibility RT v5.8 if (params.filmNegative.enabled) { if (params.filmNegative.backCompat == FilmNegativeParams::BackCompat::V1) { processFilmNegative(params, baseImg, rwidth, rheight); } else if (params.filmNegative.backCompat == FilmNegativeParams::BackCompat::V2) { processFilmNegativeV2(params, baseImg, rwidth, rheight); } } if (params.coarse.rotate) { baseImg->rotate (params.coarse.rotate); rwidth = baseImg->getWidth(); rheight = baseImg->getHeight(); } if (params.coarse.hflip) { baseImg->hflip (); } if (params.coarse.vflip) { baseImg->vflip (); } // apply white balance and raw white point (simulated) for (int i = 0; i < rheight; i++) { #ifdef _OPENMP #pragma omp simd #endif for (int j = 0; j < rwidth; j++) { float red = baseImg->r (i, j) * rmi; float green = baseImg->g (i, j) * gmi; float blue = baseImg->b (i, j) * bmi; // avoid magenta highlights if highlight recovery is enabled if (params.toneCurve.hrenabled && red > MAXVALF && blue > MAXVALF) { baseImg->r(i, j) = baseImg->g(i, j) = baseImg->b(i, j) = CLIP((red + green + blue) / 3.f); } else { baseImg->r(i, j) = CLIP(red); baseImg->g(i, j) = CLIP(green); baseImg->b(i, j) = CLIP(blue); } } } // if luma denoise has to be done for thumbnails, it should be right here int fw = baseImg->getWidth(); int fh = baseImg->getHeight(); //ColorTemp::CAT02 (baseImg, ¶ms) ;//perhaps not good! ImProcFunctions ipf (¶ms, forHistogramMatching); // enable multithreading when forHistogramMatching is true ipf.setScale (sqrt (double (fw * fw + fh * fh)) / sqrt (double (thumbImg->getWidth() * thumbImg->getWidth() + thumbImg->getHeight() * thumbImg->getHeight()))*scale); ipf.updateColorProfiles (ICCStore::getInstance()->getDefaultMonitorProfileName(), RenderingIntent(settings->monitorIntent), false, false); // Process film negative BEFORE colorspace conversion, if needed if (params.filmNegative.enabled && params.filmNegative.backCompat == FilmNegativeParams::BackCompat::CURRENT && params.filmNegative.colorSpace == FilmNegativeParams::ColorSpace::INPUT) { ipf.filmNegativeProcess(baseImg, baseImg, params.filmNegative); } // perform color space transformation if (isRaw) { double pre_mul[3] = { redMultiplier, greenMultiplier, blueMultiplier }; RawImageSource::colorSpaceConversion (baseImg, params.icm, currWB, pre_mul, embProfile, camProfile, cam2xyz, camName, metadata->getFileName()); } else { StdImageSource::colorSpaceConversion (baseImg, params.icm, embProfile, thumbImg->getSampleFormat()); } // Process film negative AFTER colorspace conversion, if needed if (params.filmNegative.enabled && params.filmNegative.backCompat == FilmNegativeParams::BackCompat::CURRENT && params.filmNegative.colorSpace != FilmNegativeParams::ColorSpace::INPUT) { ipf.filmNegativeProcess(baseImg, baseImg, params.filmNegative); } LUTu hist16 (65536); ipf.firstAnalysis (baseImg, params, hist16); ipf.dehaze(baseImg, params.dehaze); ipf.ToneMapFattal02(baseImg, params.fattal, 3, 0, nullptr, 0, 0, 0, false); // perform transform int origFW; int origFH; double tscale = 0.0; getDimensions (origFW, origFH, tscale); if (ipf.needsTransform(origFW * tscale + 0.5, origFH * tscale + 0.5, 0, metadata)) { Imagefloat* trImg = new Imagefloat (fw, fh); ipf.transform (baseImg, trImg, 0, 0, 0, 0, fw, fh, origFW * tscale + 0.5, origFH * tscale + 0.5, metadata, 0, true); // Raw rotate degree not detectable here delete baseImg; baseImg = trImg; } // RGB processing double expcomp = params.toneCurve.expcomp; int bright = params.toneCurve.brightness; int contr = params.toneCurve.contrast; int black = params.toneCurve.black; int hlcompr = params.toneCurve.hlcompr; int hlcomprthresh = params.toneCurve.hlcomprthresh; if (params.toneCurve.autoexp) { if (aeValid) { expcomp = aeExposureCompensation; bright = aeLightness; contr = aeContrast; black = aeBlack; hlcompr = aeHighlightCompression; hlcomprthresh = aeHighlightCompressionThreshold; } else if (aeHistogram) { ipf.getAutoExp (aeHistogram, aeHistCompression, 0.02, expcomp, bright, contr, black, hlcompr, hlcomprthresh); } } LUTf curve1 (65536); LUTf curve2 (65536); LUTf curve (65536); LUTf satcurve (65536); LUTf lhskcurve (65536); LUTf lumacurve (32770, 0); // lumacurve[32768] and lumacurve[32769] will be set to 32768 and 32769 later to allow linear interpolation LUTf clcurve (65536); LUTf clToningcurve; LUTf cl2Toningcurve; LUTu dummy; ToneCurve customToneCurve1, customToneCurve2; ColorGradientCurve ctColorCurve; OpacityCurve ctOpacityCurve; ColorAppearance customColCurve1; ColorAppearance customColCurve2; ColorAppearance customColCurve3; ToneCurve customToneCurvebw1; ToneCurve customToneCurvebw2; CurveFactory::complexCurve (expcomp, black / 65535.0, hlcompr, hlcomprthresh, params.toneCurve.shcompr, bright, contr, params.toneCurve.curve, params.toneCurve.curve2, hist16, curve1, curve2, curve, dummy, customToneCurve1, customToneCurve2, 16); LUTf rCurve; LUTf gCurve; LUTf bCurve; CurveFactory::RGBCurve (params.rgbCurves.rcurve, rCurve, 16); CurveFactory::RGBCurve (params.rgbCurves.gcurve, gCurve, 16); CurveFactory::RGBCurve (params.rgbCurves.bcurve, bCurve, 16); bool opautili = false; if (params.colorToning.enabled) { TMatrix wprof = ICCStore::getInstance()->workingSpaceMatrix (params.icm.workingProfile); double wp[3][3] = { {wprof[0][0], wprof[0][1], wprof[0][2]}, {wprof[1][0], wprof[1][1], wprof[1][2]}, {wprof[2][0], wprof[2][1], wprof[2][2]} }; params.colorToning.getCurves (ctColorCurve, ctOpacityCurve, wp, opautili); clToningcurve (65536); CurveFactory::diagonalCurve2Lut (params.colorToning.clcurve, clToningcurve, scale == 1 ? 1 : 16); cl2Toningcurve (65536); CurveFactory::diagonalCurve2Lut (params.colorToning.cl2curve, cl2Toningcurve, scale == 1 ? 1 : 16); } if (params.blackwhite.enabled) { CurveFactory::curveBW (params.blackwhite.beforeCurve, params.blackwhite.afterCurve, hist16, dummy, customToneCurvebw1, customToneCurvebw2, 16); } double rrm, ggm, bbm; float autor, autog, autob; float satLimit = float (params.colorToning.satProtectionThreshold) / 100.f * 0.7f + 0.3f; float satLimitOpacity = 1.f - (float (params.colorToning.saturatedOpacity) / 100.f); if (params.colorToning.enabled && params.colorToning.autosat && params.colorToning.method != "LabGrid") { //for colortoning evaluation of saturation settings float moyS = 0.f; float eqty = 0.f; ipf.moyeqt (baseImg, moyS, eqty);//return image : mean saturation and standard dev of saturation //printf("moy=%f ET=%f\n", moyS,eqty); float satp = ((moyS + 1.5f * eqty) - 0.3f) / 0.7f; //1.5 sigma ==> 93% pixels with high saturation -0.3 / 0.7 convert to Hombre scale if (satp >= 0.92f) { satp = 0.92f; //avoid values too high (out of gamut) } if (satp <= 0.15f) { satp = 0.15f; //avoid too low values } satLimit = 100.f * satp; satLimitOpacity = 100.f * (moyS - 0.85f * eqty); //-0.85 sigma==>20% pixels with low saturation } autor = autog = autob = -9000.f; // This will ask to compute the "auto" values for the B&W tool LabImage* labView = new LabImage (fw, fh); DCPProfile *dcpProf = nullptr; DCPProfileApplyState as; if (isRaw) { cmsHPROFILE dummy; RawImageSource::findInputProfile (params.icm.inputProfile, nullptr, camName, metadata->getFileName(), &dcpProf, dummy); if (dcpProf) { dcpProf->setStep2ApplyState (params.icm.workingProfile, params.icm.toneCurve, params.icm.applyLookTable, params.icm.applyBaselineExposureOffset, as); } } LUTu histToneCurve; ipf.rgbProc (baseImg, labView, nullptr, curve1, curve2, curve, params.toneCurve.saturation, rCurve, gCurve, bCurve, satLimit, satLimitOpacity, ctColorCurve, ctOpacityCurve, opautili, clToningcurve, cl2Toningcurve, customToneCurve1, customToneCurve2, customToneCurvebw1, customToneCurvebw2, rrm, ggm, bbm, autor, autog, autob, expcomp, hlcompr, hlcomprthresh, dcpProf, as, histToneCurve); // freeing up some memory customToneCurve1.Reset(); customToneCurve2.Reset(); ctColorCurve.Reset(); ctOpacityCurve.Reset(); customToneCurvebw1.Reset(); customToneCurvebw2.Reset(); // luminance histogram update if (params.labCurve.contrast != 0) { hist16.clear(); for (int i = 0; i < fh; i++) for (int j = 0; j < fw; j++) { hist16[ (int) ((labView->L[i][j]))]++; } } // luminance processing // ipf.EPDToneMap(labView,0,6); bool utili; CurveFactory::complexLCurve (params.labCurve.brightness, params.labCurve.contrast, params.labCurve.lcurve, hist16, lumacurve, dummy, 16, utili); const bool clcutili = CurveFactory::diagonalCurve2Lut(params.labCurve.clcurve, clcurve, 16); bool autili, butili, ccutili, cclutili; CurveFactory::complexsgnCurve (autili, butili, ccutili, cclutili, params.labCurve.acurve, params.labCurve.bcurve, params.labCurve.cccurve, params.labCurve.lccurve, curve1, curve2, satcurve, lhskcurve, 16); if (params.colorToning.enabled && params.colorToning.method == "LabGrid") { ipf.colorToningLabGrid(labView, 0,labView->W , 0, labView->H, false); } ipf.shadowsHighlights(labView, params.sh.enabled, params.sh.lab,params.sh.highlights ,params.sh.shadows, params.sh.radius, 16, params.sh.htonalwidth, params.sh.stonalwidth); if (params.localContrast.enabled) { // Alberto's local contrast ipf.localContrast(labView, labView->L, params.localContrast, false, 16); } ipf.chromiLuminanceCurve (nullptr, 1, labView, labView, curve1, curve2, satcurve, lhskcurve, clcurve, lumacurve, utili, autili, butili, ccutili, cclutili, clcutili, dummy, dummy); ipf.vibrance (labView, params.vibrance, params.toneCurve.hrenabled, params.icm.workingProfile); ipf.labColorCorrectionRegions(labView); bool cam02 = params.colorappearance.modelmethod == "02" && params.colorappearance.enabled; // if ((params.colorappearance.enabled && !params.colorappearance.tonecie) || !params.colorappearance.enabled) { if ((params.colorappearance.enabled && !params.colorappearance.tonecie) || !cam02) { ipf.EPDToneMap (labView, 5, 6); } ipf.softLight(labView, params.softlight); if (params.icm.workingTRC != ColorManagementParams::WorkingTrc::NONE && params.icm.trcExp) { const int GW = labView->W; const int GH = labView->H; std::unique_ptr provis; if(params.icm.trcExp) {//local contrast int level_hr = 7; int maxlevpo = 9; bool wavcurvecont = false; WaveletParams WaveParams = params.wavelet; ColorManagementParams Colparams = params.icm; WavOpacityCurveWL icmOpacityCurveWL; Colparams.getCurves(icmOpacityCurveWL); ipf.complete_local_contrast(labView, labView, WaveParams, Colparams, icmOpacityCurveWL, 1, level_hr, maxlevpo, wavcurvecont); } const float pres = 0.01f * params.icm.preser; if (pres > 0.f && params.icm.wprim != ColorManagementParams::Primaries::DEFAULT) { provis.reset(new LabImage(GW, GH)); provis->CopyFrom(labView); } const std::unique_ptr tmpImage1(new Imagefloat(GW, GH)); ipf.lab2rgb(*labView, *tmpImage1, params.icm.workingProfile); const float gamtone = params.icm.wGamma; const float slotone = params.icm.wSlope; int illum = toUnderlying(params.icm.will); const int prim = toUnderlying(params.icm.wprim); Glib::ustring prof = params.icm.workingProfile; cmsHTRANSFORM dummy = nullptr; int ill = 0; int locprim = 0; float rdx, rdy, grx, gry, blx, bly = 0.f; float meanx, meany, meanxe, meanye = 0.f; ipf.workingtrc(0, tmpImage1.get(), tmpImage1.get(), GW, GH, -5, prof, 2.4, 12.92310, 0, ill, 0, 0, rdx, rdy, grx, gry, blx, bly, meanx, meany, meanxe, meanye, dummy, true, false, false); ipf.workingtrc(0, tmpImage1.get(), tmpImage1.get(), GW, GH, 5, prof, gamtone, slotone,0, illum, prim, locprim, rdx, rdy, grx, gry, blx, bly,meanx, meany, meanxe, meanye, dummy, false, true, true); const int midton = params.icm.wmidtcie; if(midton != 0) { ToneEqualizerParams params; params.enabled = true; params.regularization = 0.f; params.pivot = 0.f; params.bands[0] = 0; params.bands[2] = midton; params.bands[4] = 0; params.bands[5] = 0; int mid = abs(midton); int threshmid = 50; if(mid > threshmid) { params.bands[1] = sign(midton) * (mid - threshmid); params.bands[3] = sign(midton) * (mid - threshmid); } ipf.toneEqualizer(tmpImage1.get(), params, prof, 1, false); } const bool smoothi = params.icm.wsmoothcie; if(smoothi) { ToneEqualizerParams params; params.enabled = true; params.regularization = 0.f; params.pivot = 0.f; params.bands[0] = 0; params.bands[1] = 0; params.bands[2] = 0; params.bands[3] = 0; params.bands[4] = -40;//arbitrary value to adapt with WhiteEvjz - here White Ev # 10 params.bands[5] = -80;//8 Ev and above bool Evsix = true; if(Evsix) {//EV = 6 majority of images params.bands[4] = -15; } ipf.toneEqualizer(tmpImage1.get(), params, prof, 1, false); } ipf.rgb2lab(*tmpImage1, *labView, params.icm.workingProfile); // labView and provis if(provis) { ipf.preserv(labView, provis.get(), GW, GH); } if(params.icm.fbw) { #ifdef _OPENMP #pragma omp parallel for #endif for (int x = 0; x < GH; x++) for (int y = 0; y < GW; y++) { labView->a[x][y] = 0.f; labView->b[x][y] = 0.f; } } } if (params.colorappearance.enabled) { CurveFactory::curveLightBrightColor ( params.colorappearance.curve, params.colorappearance.curve2, params.colorappearance.curve3, hist16, dummy, dummy, dummy, customColCurve1, customColCurve2, customColCurve3, 16); bool execsharp = false; float d, dj, yb; float fnum = fnumber;// F number float fiso = iso;// ISO float fspeed = shutter;//speed float adap; if (fnum < 0.3f || fiso < 5.f || fspeed < 0.00001f) //if no exif data or wrong { adap = 2000.f; } else { float E_V = fcomp + log2 ((fnum * fnum) / fspeed / (fiso / 100.f)); double kexp = 0.; float expo2 = kexp * params.toneCurve.expcomp; // exposure compensation in tonecurve ==> direct EV E_V += expo2; float expo1;//exposure raw white point expo1 = 0.5 * log2 (params.raw.expos); //log2 ==>linear to EV E_V += expo1; adap = powf (2.f, E_V - 3.f); //cd / m2 //end calculation adaptation scene luminosity } LUTf CAMBrightCurveJ; LUTf CAMBrightCurveQ; float CAMMean; int sk; sk = 16; int rtt = 0; CieImage* cieView = new CieImage (fw, fh); CAMMean = NAN; CAMBrightCurveJ.dirty = true; CAMBrightCurveQ.dirty = true; ipf.ciecam_02float (cieView, adap, 1, 2, labView, ¶ms, customColCurve1, customColCurve2, customColCurve3, dummy, dummy, CAMBrightCurveJ, CAMBrightCurveQ, CAMMean, 5, sk, execsharp, d, dj, yb, rtt); delete cieView; } // color processing //ipf.colorCurve (labView, labView); // obtain final image Image8* readyImg = nullptr; if (forMonitor) { readyImg = new Image8 (fw, fh); ipf.lab2monitorRgb (labView, readyImg); } else { readyImg = ipf.lab2rgb(labView, 0, 0, fw, fh, params.icm, false); } delete labView; delete baseImg; // calculate scale if (params.coarse.rotate == 90 || params.coarse.rotate == 270) { myscale = scale * thumbImg->getWidth() / fh; } else { myscale = scale * thumbImg->getHeight() / fh; } myscale = 1.0 / myscale; // apply crop if (params.crop.enabled) { int ix = 0; for (int i = 0; i < fh; ++i) { for (int j = 0; j < fw; ++j) { if (i < params.crop.y * myscale || i > (params.crop.y + params.crop.h) * myscale || j < params.crop.x * myscale || j > (params.crop.x + params.crop.w) * myscale) { readyImg->data[ix++] /= 3; readyImg->data[ix++] /= 3; readyImg->data[ix++] /= 3; } else { ix += 3; } } } } return readyImg; } int Thumbnail::getImageWidth (const procparams::ProcParams& params, int rheight, float &ratio) { if (!thumbImg) { return 0; // Can happen if thumb is just building and GUI comes in with resize wishes } int rwidth; if (params.coarse.rotate == 90 || params.coarse.rotate == 270) { ratio = (float) (thumbImg->getHeight()) / (float) (thumbImg->getWidth()); } else { ratio = (float) (thumbImg->getWidth()) / (float) (thumbImg->getHeight()); } rwidth = (int) (ratio * (float)rheight); return rwidth; } void Thumbnail::getDimensions (int& w, int& h, double& scaleFac) { if (thumbImg) { w = thumbImg->getWidth(); h = thumbImg->getHeight(); scaleFac = scale; } else { w = 0; h = 0; scale = 1; } } void Thumbnail::getCamWB (double& temp, double& green, StandardObserver observer) { double cam_r = colorMatrix[0][0] * camwbRed + colorMatrix[0][1] * camwbGreen + colorMatrix[0][2] * camwbBlue; double cam_g = colorMatrix[1][0] * camwbRed + colorMatrix[1][1] * camwbGreen + colorMatrix[1][2] * camwbBlue; double cam_b = colorMatrix[2][0] * camwbRed + colorMatrix[2][1] * camwbGreen + colorMatrix[2][2] * camwbBlue; ColorTemp currWB = ColorTemp (cam_r, cam_g, cam_b, 1.0, observer); // we do not take the equalizer into account here, because we want camera's WB temp = currWB.getTemp (); green = currWB.getGreen (); } void Thumbnail::getAutoWB (double& temp, double& green, double equal, double tempBias, StandardObserver observer) { if (equal != wbEqual || tempBias != wbTempBias || observer != wbObserver) { // compute the values depending on equal ColorTemp cTemp; wbEqual = equal; wbTempBias = tempBias; wbObserver = observer; // compute autoWBTemp and autoWBGreen cTemp.mul2temp (redAWBMul, greenAWBMul, blueAWBMul, wbEqual, wbObserver, autoWBTemp, autoWBGreen); autoWBTemp += autoWBTemp * tempBias; } temp = autoWBTemp; green = autoWBGreen; } void Thumbnail::getAutoWBMultipliers (double& rm, double& gm, double& bm) { rm = redAWBMul; gm = greenAWBMul; bm = blueAWBMul; } void Thumbnail::applyAutoExp (procparams::ProcParams& params) { if (params.toneCurve.autoexp && aeHistogram) { ImProcFunctions ipf (¶ms, false); ipf.getAutoExp (aeHistogram, aeHistCompression, params.toneCurve.clip, params.toneCurve.expcomp, params.toneCurve.brightness, params.toneCurve.contrast, params.toneCurve.black, params.toneCurve.hlcompr, params.toneCurve.hlcomprthresh); } } void Thumbnail::getSpotWB (const procparams::ProcParams& params, int xp, int yp, int rect, double& rtemp, double& rgreen) { std::vector points, red, green, blue; for (int i = yp - rect; i <= yp + rect; i++) for (int j = xp - rect; j <= xp + rect; j++) { points.push_back (Coord2D (j, i)); } int fw = thumbImg->getWidth(), fh = thumbImg->getHeight(); if (params.coarse.rotate == 90 || params.coarse.rotate == 270) { fw = thumbImg->getHeight(); fh = thumbImg->getWidth(); } ImProcFunctions ipf (¶ms, false); ipf.transCoord (fw, fh, points, red, green, blue); int tr = getCoarseBitMask (params.coarse); // calculate spot wb (copy & pasted from stdimagesource) double reds = 0, greens = 0, blues = 0; int rn = 0, gn = 0, bn = 0; thumbImg->getSpotWBData (reds, greens, blues, rn, gn, bn, red, green, blue, tr); reds = reds / rn * camwbRed; greens = greens / gn * camwbGreen; blues = blues / bn * camwbBlue; double rm = colorMatrix[0][0] * reds + colorMatrix[0][1] * greens + colorMatrix[0][2] * blues; double gm = colorMatrix[1][0] * reds + colorMatrix[1][1] * greens + colorMatrix[1][2] * blues; double bm = colorMatrix[2][0] * reds + colorMatrix[2][1] * greens + colorMatrix[2][2] * blues; ColorTemp ct (rm, gm, bm, params.wb.equal, params.wb.observer); rtemp = ct.getTemp (); rgreen = ct.getGreen (); } void Thumbnail::transformPixel (int x, int y, int tran, int& tx, int& ty) { int W = thumbImg->getWidth(); int H = thumbImg->getHeight(); int sw = W, sh = H; if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) { sw = H; sh = W; } int ppx = x, ppy = y; if (tran & TR_HFLIP) { ppx = sw - 1 - x ; } if (tran & TR_VFLIP) { ppy = sh - 1 - y; } tx = ppx; ty = ppy; if ((tran & TR_ROT) == TR_R180) { tx = W - 1 - ppx; ty = H - 1 - ppy; } else if ((tran & TR_ROT) == TR_R90) { tx = ppy; ty = H - 1 - ppx; } else if ((tran & TR_ROT) == TR_R270) { tx = W - 1 - ppy; ty = ppx; } tx /= scale; ty /= scale; } unsigned char* Thumbnail::getGrayscaleHistEQ (int trim_width) { if (!thumbImg) { return nullptr; } if (thumbImg->getWidth() < trim_width) { return nullptr; } // to utilize the 8 bit color range of the thumbnail we brighten it and apply gamma correction unsigned char* tmpdata = new unsigned char[thumbImg->getHeight() * trim_width]; int ix = 0; if (gammaCorrected) { // if it's gamma correct (usually a RAW), we have the problem that there is a lot noise etc. that makes the maximum way too high. // Strategy is limit a certain percent of pixels so the overall picture quality when scaling to 8 bit is way better const double BurnOffPct = 0.03; // *100 = percent pixels that may be clipped // Calc the histogram unsigned int* hist16 = new unsigned int [65536]; memset (hist16, 0, sizeof (int) * 65536); if (thumbImg->getType() == sImage8) { Image8 *image = static_cast (thumbImg); image->calcGrayscaleHist (hist16); } else if (thumbImg->getType() == sImage16) { Image16 *image = static_cast (thumbImg); image->calcGrayscaleHist (hist16); } else if (thumbImg->getType() == sImagefloat) { Imagefloat *image = static_cast (thumbImg); image->calcGrayscaleHist (hist16); } else { printf ("getGrayscaleHistEQ #1: Unsupported image type \"%s\"!\n", thumbImg->getType()); } // Go down till we cut off that many pixels unsigned long cutoff = thumbImg->getHeight() * thumbImg->getHeight() * 4 * BurnOffPct; int max_; unsigned long sum = 0; for (max_ = 65535; max_ > 16384 && sum < cutoff; max_--) { sum += hist16[max_]; } delete[] hist16; scaleForSave = 65535 * 8192 / max_; // Correction and gamma to 8 Bit if (thumbImg->getType() == sImage8) { Image8 *image = static_cast (thumbImg); for (int i = 0; i < thumbImg->getHeight(); i++) for (int j = (thumbImg->getWidth() - trim_width) / 2; j < trim_width + (thumbImg->getWidth() - trim_width) / 2; j++) { unsigned short r_, g_, b_; image->convertTo (image->r (i, j), r_); image->convertTo (image->g (i, j), g_); image->convertTo (image->b (i, j), b_); int r = Color::gammatabThumb[min (r_, static_cast (max_)) * scaleForSave >> 13]; int g = Color::gammatabThumb[min (g_, static_cast (max_)) * scaleForSave >> 13]; int b = Color::gammatabThumb[min (b_, static_cast (max_)) * scaleForSave >> 13]; tmpdata[ix++] = (r * 19595 + g * 38469 + b * 7472) >> 16; } } else if (thumbImg->getType() == sImage16) { Image16 *image = static_cast (thumbImg); for (int i = 0; i < thumbImg->getHeight(); i++) for (int j = (thumbImg->getWidth() - trim_width) / 2; j < trim_width + (thumbImg->getWidth() - trim_width) / 2; j++) { unsigned short r_, g_, b_; image->convertTo (image->r (i, j), r_); image->convertTo (image->g (i, j), g_); image->convertTo (image->b (i, j), b_); int r = Color::gammatabThumb[min (r_, static_cast (max_)) * scaleForSave >> 13]; int g = Color::gammatabThumb[min (g_, static_cast (max_)) * scaleForSave >> 13]; int b = Color::gammatabThumb[min (b_, static_cast (max_)) * scaleForSave >> 13]; tmpdata[ix++] = (r * 19595 + g * 38469 + b * 7472) >> 16; } } else if (thumbImg->getType() == sImagefloat) { Imagefloat *image = static_cast (thumbImg); for (int i = 0; i < thumbImg->getHeight(); i++) for (int j = (thumbImg->getWidth() - trim_width) / 2; j < trim_width + (thumbImg->getWidth() - trim_width) / 2; j++) { unsigned short r_, g_, b_; image->convertTo (image->r (i, j), r_); image->convertTo (image->g (i, j), g_); image->convertTo (image->b (i, j), b_); int r = Color::gammatabThumb[min (r_, static_cast (max_)) * scaleForSave >> 13]; int g = Color::gammatabThumb[min (g_, static_cast (max_)) * scaleForSave >> 13]; int b = Color::gammatabThumb[min (b_, static_cast (max_)) * scaleForSave >> 13]; tmpdata[ix++] = (r * 19595 + g * 38469 + b * 7472) >> 16; } } } else { // If it's not gamma corrected (usually a JPG) we take the normal maximum int max = 0; if (thumbImg->getType() == sImage8) { Image8 *image = static_cast (thumbImg); unsigned char max_ = 0; for (int row = 0; row < image->getHeight(); row++) for (int col = 0; col < image->getWidth(); col++) { if (image->r (row, col) > max_) { max_ = image->r (row, col); } if (image->g (row, col) > max_) { max_ = image->g (row, col); } if (image->b (row, col) > max_) { max_ = image->b (row, col); } } image->convertTo (max_, max); if (max < 16384) { max = 16384; } scaleForSave = 65535 * 8192 / max; // Correction and gamma to 8 Bit for (int i = 0; i < image->getHeight(); i++) for (int j = (image->getWidth() - trim_width) / 2; j < trim_width + (image->getWidth() - trim_width) / 2; j++) { unsigned short rtmp, gtmp, btmp; image->convertTo (image->r (i, j), rtmp); image->convertTo (image->g (i, j), gtmp); image->convertTo (image->b (i, j), btmp); int r = rtmp * scaleForSave >> 21; int g = gtmp * scaleForSave >> 21; int b = btmp * scaleForSave >> 21; tmpdata[ix++] = (r * 19595 + g * 38469 + b * 7472) >> 16; } } else if (thumbImg->getType() == sImage16) { Image16 *image = static_cast (thumbImg); unsigned short max_ = 0; for (int row = 0; row < image->getHeight(); row++) for (int col = 0; col < image->getWidth(); col++) { if (image->r (row, col) > max_) { max_ = image->r (row, col); } if (image->g (row, col) > max_) { max_ = image->g (row, col); } if (image->b (row, col) > max_) { max_ = image->b (row, col); } } image->convertTo (max_, max); if (max < 16384) { max = 16384; } scaleForSave = 65535 * 8192 / max; // Correction and gamma to 8 Bit for (int i = 0; i < image->getHeight(); i++) for (int j = (image->getWidth() - trim_width) / 2; j < trim_width + (image->getWidth() - trim_width) / 2; j++) { unsigned short rtmp, gtmp, btmp; image->convertTo (image->r (i, j), rtmp); image->convertTo (image->g (i, j), gtmp); image->convertTo (image->b (i, j), btmp); int r = rtmp * scaleForSave >> 21; int g = gtmp * scaleForSave >> 21; int b = btmp * scaleForSave >> 21; tmpdata[ix++] = (r * 19595 + g * 38469 + b * 7472) >> 16; } } else if (thumbImg->getType() == sImagefloat) { Imagefloat *image = static_cast (thumbImg); float max_ = 0.f; for (int row = 0; row < image->getHeight(); row++) for (int col = 0; col < image->getWidth(); col++) { if (image->r (row, col) > max_) { max_ = image->r (row, col); } if (image->g (row, col) > max_) { max_ = image->g (row, col); } if (image->b (row, col) > max_) { max_ = image->b (row, col); } } image->convertTo (max_, max); if (max < 16384) { max = 16384; } scaleForSave = 65535 * 8192 / max; // Correction and gamma to 8 Bit for (int i = 0; i < image->getHeight(); i++) for (int j = (image->getWidth() - trim_width) / 2; j < trim_width + (image->getWidth() - trim_width) / 2; j++) { unsigned short rtmp, gtmp, btmp; image->convertTo (image->r (i, j), rtmp); image->convertTo (image->g (i, j), gtmp); image->convertTo (image->b (i, j), btmp); int r = rtmp * scaleForSave >> 21; int g = gtmp * scaleForSave >> 21; int b = btmp * scaleForSave >> 21; tmpdata[ix++] = (r * 19595 + g * 38469 + b * 7472) >> 16; } } else { printf ("getGrayscaleHistEQ #2: Unsupported image type \"%s\"!\n", thumbImg->getType()); } } // histogram equalization unsigned int hist[256] = {0}; for (int i = 0; i < ix; i++) { hist[tmpdata[i]]++; } int cdf = 0, cdf_min = -1; for (int i = 0; i < 256; i++) { cdf += hist[i]; if (cdf > 0 && cdf_min == -1) { cdf_min = cdf; } if (cdf_min != -1) { hist[i] = (cdf - cdf_min) * 255 / ((thumbImg->getHeight() * trim_width) - cdf_min); } } for (int i = 0; i < ix; i++) { tmpdata[i] = hist[tmpdata[i]]; } return tmpdata; } bool Thumbnail::writeImage (const Glib::ustring& fname) { if (!thumbImg) { return false; } Glib::ustring fullFName = fname + ".rtti"; FILE* f = ::g_fopen (fullFName.c_str (), "wb"); if (!f) { return false; } fwrite (thumbImg->getType(), sizeof (char), strlen (thumbImg->getType()), f); fputc ('\n', f); guint32 w = guint32 (thumbImg->getWidth()); guint32 h = guint32 (thumbImg->getHeight()); fwrite (&w, sizeof (guint32), 1, f); fwrite (&h, sizeof (guint32), 1, f); if (thumbImg->getType() == sImage8) { Image8 *image = static_cast (thumbImg); image->writeData (f); } else if (thumbImg->getType() == sImage16) { Image16 *image = static_cast (thumbImg); image->writeData (f); } else if (thumbImg->getType() == sImagefloat) { Imagefloat *image = static_cast (thumbImg); image->writeData (f); } //thumbImg->writeData(f); fclose (f); return true; } bool Thumbnail::readImage (const Glib::ustring& fname) { if (thumbImg) { delete thumbImg; thumbImg = nullptr; } Glib::ustring fullFName = fname + ".rtti"; if (!Glib::file_test(fullFName, Glib::FILE_TEST_EXISTS)) { return false; } FILE* f = ::g_fopen(fullFName.c_str (), "rb"); if (!f) { return false; } char imgType[31]; // 30 -> arbitrary size, but should be enough for all image type's name fgets(imgType, 30, f); imgType[strlen(imgType) - 1] = '\0'; // imgType has a \n trailing character, so we overwrite it by the \0 char guint32 width, height; if (fread(&width, 1, sizeof(guint32), f) < sizeof(guint32)) { width = 0; } if (fread(&height, 1, sizeof(guint32), f) < sizeof(guint32)) { height = 0; } bool success = false; if (std::min(width , height) > 0) { if (!strcmp(imgType, sImage8)) { Image8 *image = new Image8(width, height); image->readData(f); thumbImg = image; success = true; } else if (!strcmp(imgType, sImage16)) { Image16 *image = new Image16(width, height); image->readData(f); thumbImg = image; success = true; } else if (!strcmp(imgType, sImagefloat)) { Imagefloat *image = new Imagefloat(width, height); image->readData(f); thumbImg = image; success = true; } else { printf ("readImage: Unsupported image type \"%s\"!\n", imgType); } } fclose(f); return success; } bool Thumbnail::readData (const Glib::ustring& fname) { setlocale (LC_NUMERIC, "C"); // to set decimal point to "." Glib::KeyFile keyFile; try { MyMutex::MyLock thmbLock (thumbMutex); try { keyFile.load_from_file (fname); } catch (Glib::Error&) { return false; } if (keyFile.has_group ("LiveThumbData")) { if (keyFile.has_key ("LiveThumbData", "CamWBRed")) { camwbRed = keyFile.get_double ("LiveThumbData", "CamWBRed"); } if (keyFile.has_key ("LiveThumbData", "CamWBGreen")) { camwbGreen = keyFile.get_double ("LiveThumbData", "CamWBGreen"); } if (keyFile.has_key ("LiveThumbData", "CamWBBlue")) { camwbBlue = keyFile.get_double ("LiveThumbData", "CamWBBlue"); } if (keyFile.has_key ("LiveThumbData", "RedAWBMul")) { redAWBMul = keyFile.get_double ("LiveThumbData", "RedAWBMul"); } if (keyFile.has_key ("LiveThumbData", "GreenAWBMul")) { greenAWBMul = keyFile.get_double ("LiveThumbData", "GreenAWBMul"); } if (keyFile.has_key ("LiveThumbData", "BlueAWBMul")) { blueAWBMul = keyFile.get_double ("LiveThumbData", "BlueAWBMul"); } if (keyFile.has_key ("LiveThumbData", "AEHistCompression")) { aeHistCompression = keyFile.get_integer ("LiveThumbData", "AEHistCompression"); } aeValid = true; if (keyFile.has_key ("LiveThumbData", "AEExposureCompensation")) { aeExposureCompensation = keyFile.get_double ("LiveThumbData", "AEExposureCompensation"); } else { aeValid = false; } if (keyFile.has_key ("LiveThumbData", "AELightness")) { aeLightness = keyFile.get_integer ("LiveThumbData", "AELightness"); } else { aeValid = false; } if (keyFile.has_key ("LiveThumbData", "AEContrast")) { aeContrast = keyFile.get_integer ("LiveThumbData", "AEContrast"); } else { aeValid = false; } if (keyFile.has_key ("LiveThumbData", "AEBlack")) { aeBlack = keyFile.get_integer ("LiveThumbData", "AEBlack"); } else { aeValid = false; } if (keyFile.has_key ("LiveThumbData", "AEHighlightCompression")) { aeHighlightCompression = keyFile.get_integer ("LiveThumbData", "AEHighlightCompression"); } else { aeValid = false; } if (keyFile.has_key ("LiveThumbData", "AEHighlightCompressionThreshold")) { aeHighlightCompressionThreshold = keyFile.get_integer ("LiveThumbData", "AEHighlightCompressionThreshold"); } else { aeValid = false; } if (keyFile.has_key ("LiveThumbData", "RedMultiplier")) { redMultiplier = keyFile.get_double ("LiveThumbData", "RedMultiplier"); } if (keyFile.has_key ("LiveThumbData", "GreenMultiplier")) { greenMultiplier = keyFile.get_double ("LiveThumbData", "GreenMultiplier"); } if (keyFile.has_key ("LiveThumbData", "BlueMultiplier")) { blueMultiplier = keyFile.get_double ("LiveThumbData", "BlueMultiplier"); } if (keyFile.has_key ("LiveThumbData", "Scale")) { scale = keyFile.get_double ("LiveThumbData", "Scale"); } if (keyFile.has_key ("LiveThumbData", "DefaultGain")) { defGain = keyFile.get_double ("LiveThumbData", "DefaultGain"); } if (keyFile.has_key ("LiveThumbData", "ScaleForSave")) { scaleForSave = keyFile.get_integer ("LiveThumbData", "ScaleForSave"); } if (keyFile.has_key ("LiveThumbData", "GammaCorrected")) { gammaCorrected = keyFile.get_boolean ("LiveThumbData", "GammaCorrected"); } if (keyFile.has_key ("LiveThumbData", "ColorMatrix")) { std::vector cm = keyFile.get_double_list ("LiveThumbData", "ColorMatrix"); int ix = 0; for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) { colorMatrix[i][j] = cm[ix++]; } } if (keyFile.has_key ("LiveThumbData", "ScaleGain")) { scaleGain = keyFile.get_double ("LiveThumbData", "ScaleGain"); } } return true; } catch (Glib::Error &err) { if (settings->verbose) { printf ("Thumbnail::readData / Error code %d while reading values from \"%s\":\n%s\n", err.code(), fname.c_str(), err.what().c_str()); } } catch (...) { if (settings->verbose) { printf ("Thumbnail::readData / Unknown exception while trying to load \"%s\"!\n", fname.c_str()); } } return false; } bool Thumbnail::writeData (const Glib::ustring& fname) { MyMutex::MyLock thmbLock (thumbMutex); Glib::ustring keyData; try { Glib::KeyFile keyFile; try { keyFile.load_from_file (fname); } catch (Glib::Error&) {} keyFile.set_double ("LiveThumbData", "CamWBRed", camwbRed); keyFile.set_double ("LiveThumbData", "CamWBGreen", camwbGreen); keyFile.set_double ("LiveThumbData", "CamWBBlue", camwbBlue); keyFile.set_double ("LiveThumbData", "RedAWBMul", redAWBMul); keyFile.set_double ("LiveThumbData", "GreenAWBMul", greenAWBMul); keyFile.set_double ("LiveThumbData", "BlueAWBMul", blueAWBMul); keyFile.set_double ("LiveThumbData", "AEExposureCompensation", aeExposureCompensation); keyFile.set_integer ("LiveThumbData", "AELightness", aeLightness); keyFile.set_integer ("LiveThumbData", "AEContrast", aeContrast); keyFile.set_integer ("LiveThumbData", "AEBlack", aeBlack); keyFile.set_integer ("LiveThumbData", "AEHighlightCompression", aeHighlightCompression); keyFile.set_integer ("LiveThumbData", "AEHighlightCompressionThreshold", aeHighlightCompressionThreshold); keyFile.set_double ("LiveThumbData", "RedMultiplier", redMultiplier); keyFile.set_double ("LiveThumbData", "GreenMultiplier", greenMultiplier); keyFile.set_double ("LiveThumbData", "BlueMultiplier", blueMultiplier); keyFile.set_double ("LiveThumbData", "Scale", scale); keyFile.set_double ("LiveThumbData", "DefaultGain", defGain); keyFile.set_integer ("LiveThumbData", "ScaleForSave", scaleForSave); keyFile.set_boolean ("LiveThumbData", "GammaCorrected", gammaCorrected); Glib::ArrayHandle cm ((double*)colorMatrix, 9, Glib::OWNERSHIP_NONE); keyFile.set_double_list ("LiveThumbData", "ColorMatrix", cm); keyFile.set_double ("LiveThumbData", "ScaleGain", scaleGain); keyData = keyFile.to_data (); } catch (Glib::Error& err) { if (settings->verbose) { printf ("Thumbnail::writeData / Error code %d while reading values from \"%s\":\n%s\n", err.code(), fname.c_str(), err.what().c_str()); } } catch (...) { if (settings->verbose) { printf ("Thumbnail::writeData / Unknown exception while trying to save \"%s\"!\n", fname.c_str()); } } if (keyData.empty ()) { return false; } FILE *f = ::g_fopen (fname.c_str (), "wt"); if (!f) { if (settings->verbose) { printf ("Thumbnail::writeData / Error: unable to open file \"%s\" with write access!\n", fname.c_str()); } return false; } else { fprintf (f, "%s", keyData.c_str ()); fclose (f); } return true; } bool Thumbnail::readEmbProfile (const Glib::ustring& fname) { embProfileData = nullptr; embProfile = nullptr; embProfileLength = 0; FILE* f = ::g_fopen (fname.c_str (), "rb"); if (f) { if (!fseek (f, 0, SEEK_END)) { int profileLength = ftell (f); if (profileLength > 0) { embProfileLength = profileLength; if (!fseek (f, 0, SEEK_SET)) { embProfileData = new unsigned char[embProfileLength]; embProfileLength = fread (embProfileData, 1, embProfileLength, f); embProfile = cmsOpenProfileFromMem (embProfileData, embProfileLength); } } } fclose (f); return embProfile != nullptr; } return false; } bool Thumbnail::writeEmbProfile (const Glib::ustring& fname) { if (embProfileData) { FILE* f = ::g_fopen (fname.c_str (), "wb"); if (f) { fwrite (embProfileData, 1, embProfileLength, f); fclose (f); return true; } } return false; } unsigned char* Thumbnail::getImage8Data() { if (thumbImg && thumbImg->getType() == rtengine::sImage8) { Image8* img8 = static_cast (thumbImg); return img8->data; } return nullptr; } }