//////////////////////////////////////////////////////////////// // // this code was taken from http://shibatch.sourceforge.net/ // Many thanks to the author of original version: Naoki Shibata // // Copyright Naoki Shibata and contributors 2010 - 2021. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file sleef_LICENSE.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // This version contains modifications made by Ingo Weyrich // //////////////////////////////////////////////////////////////// #pragma once #include #include #include "rt_math.h" #include "opthelper.h" #define PI4_A .7853981554508209228515625 #define PI4_B .794662735614792836713604629039764404296875e-8 #define PI4_C .306161699786838294306516483068750264552437361480769e-16 #define M_4_PI 1.273239544735162542821171882678754627704620361328125 #define L2U .69314718055966295651160180568695068359375 #define L2L .28235290563031577122588448175013436025525412068e-12 #define R_LN2 1.442695040888963407359924681001892137426645954152985934135449406931 __inline int64_t doubleToRawLongBits(double d) { union { double f; int64_t i; } tmp; tmp.f = d; return tmp.i; } __inline double longBitsToDouble(int64_t i) { union { double f; int64_t i; } tmp; tmp.i = i; return tmp.f; } __inline double xfabs(double x) { return longBitsToDouble(0x7fffffffffffffffLL & doubleToRawLongBits(x)); } __inline double mulsign(double x, double y) { return longBitsToDouble(doubleToRawLongBits(x) ^ (doubleToRawLongBits(y) & (1LL << 63))); } __inline double sign(double d) { return mulsign(1, d); } __inline double mla(double x, double y, double z) { return x * y + z; } __inline double xrint(double x) { return x < 0 ? (int)(x - 0.5) : (int)(x + 0.5); } __inline int xisnan(double x) { return x != x; } __inline int xisinf(double x) { return x == rtengine::RT_INFINITY || x == -rtengine::RT_INFINITY; } __inline int xisminf(double x) { return x == -rtengine::RT_INFINITY; } __inline int xispinf(double x) { return x == rtengine::RT_INFINITY; } __inline double ldexpk(double x, int q) { double u; int m; m = q >> 31; m = (((m + q) >> 9) - m) << 7; q = q - (m << 2); u = longBitsToDouble(((int64_t)(m + 0x3ff)) << 52); double u2 = u*u; u2 = u2 * u2; x = x * u2; u = longBitsToDouble(((int64_t)(q + 0x3ff)) << 52); return x * u; } __inline double xldexp(double x, int q) { return ldexpk(x, q); } __inline int ilogbp1(double d) { int m = d < 4.9090934652977266E-91; d = m ? 2.037035976334486E90 * d : d; int q = (doubleToRawLongBits(d) >> 52) & 0x7ff; q = m ? q - (300 + 0x03fe) : q - 0x03fe; return q; } __inline int xilogb(double d) { int e = ilogbp1(xfabs(d)) - 1; e = d == 0 ? (-2147483647 - 1) : e; e = d == rtengine::RT_INFINITY || d == -rtengine::RT_INFINITY ? 2147483647 : e; return e; } __inline double upper(double d) { return longBitsToDouble(doubleToRawLongBits(d) & 0xfffffffff8000000LL); } typedef struct { double x, y; } double2; typedef struct { float x, y; } float2; __inline double2 dd(double h, double l) { double2 ret; ret.x = h; ret.y = l; return ret; } __inline double2 normalize_d(double2 t) { double2 s; s.x = t.x + t.y; s.y = t.x - s.x + t.y; return s; } __inline double2 scale_d(double2 d, double s) { double2 r; r.x = d.x * s; r.y = d.y * s; return r; } __inline double2 add2_ss(double x, double y) { double2 r; r.x = x + y; double v = r.x - x; r.y = (x - (r.x - v)) + (y - v); return r; } __inline double2 add_ds(double2 x, double y) { // |x| >= |y| double2 r; assert(xisnan(x.x) || xisnan(y) || xfabs(x.x) >= xfabs(y)); r.x = x.x + y; r.y = x.x - r.x + y + x.y; return r; } __inline double2 add2_ds(double2 x, double y) { // |x| >= |y| double2 r; r.x = x.x + y; double v = r.x - x.x; r.y = (x.x - (r.x - v)) + (y - v); r.y += x.y; return r; } __inline double2 add_sd(double x, double2 y) { // |x| >= |y| double2 r; assert(xisnan(x) || xisnan(y.x) || xfabs(x) >= xfabs(y.x)); r.x = x + y.x; r.y = x - r.x + y.x + y.y; return r; } __inline double2 add_dd(double2 x, double2 y) { // |x| >= |y| double2 r; assert(xisnan(x.x) || xisnan(y.x) || xfabs(x.x) >= xfabs(y.x)); r.x = x.x + y.x; r.y = x.x - r.x + y.x + x.y + y.y; return r; } __inline double2 add2_dd(double2 x, double2 y) { double2 r; r.x = x.x + y.x; double v = r.x - x.x; r.y = (x.x - (r.x - v)) + (y.x - v); r.y += x.y + y.y; return r; } __inline double2 div_dd(double2 n, double2 d) { double t = 1.0 / d.x; double dh = upper(d.x), dl = d.x - dh; double th = upper(t ), tl = t - th; double nhh = upper(n.x), nhl = n.x - nhh; double2 q; q.x = n.x * t; double u = -q.x + nhh * th + nhh * tl + nhl * th + nhl * tl + q.x * (1 - dh * th - dh * tl - dl * th - dl * tl); q.y = t * (n.y - q.x * d.y) + u; return q; } __inline double2 mul_ss(double x, double y) { double xh = upper(x), xl = x - xh; double yh = upper(y), yl = y - yh; double2 r; r.x = x * y; r.y = xh * yh - r.x + xl * yh + xh * yl + xl * yl; return r; } __inline double2 mul_ds(double2 x, double y) { double xh = upper(x.x), xl = x.x - xh; double yh = upper(y ), yl = y - yh; double2 r; r.x = x.x * y; r.y = xh * yh - r.x + xl * yh + xh * yl + xl * yl + x.y * y; return r; } __inline double2 mul_dd(double2 x, double2 y) { double xh = upper(x.x), xl = x.x - xh; double yh = upper(y.x), yl = y.x - yh; double2 r; r.x = x.x * y.x; r.y = xh * yh - r.x + xl * yh + xh * yl + xl * yl + x.x * y.y + x.y * y.x; return r; } __inline double2 squ_d(double2 x) { double xh = upper(x.x), xl = x.x - xh; double2 r; r.x = x.x * x.x; r.y = xh * xh - r.x + (xh + xh) * xl + xl * xl + x.x * (x.y + x.y); return r; } __inline double2 rec_s(double d) { double t = 1.0 / d; double dh = upper(d), dl = d - dh; double th = upper(t), tl = t - th; double2 q; q.x = t; q.y = t * (1 - dh * th - dh * tl - dl * th - dl * tl); return q; } __inline double2 sqrt_d(double2 d) { double t = sqrt(d.x + d.y); return scale_d(mul_dd(add2_dd(d, mul_ss(t, t)), rec_s(t)), 0.5); } __inline double atan2k(double y, double x) { double s, t, u; int q = 0; if (x < 0) { x = -x; q = -2; } if (y > x) { t = x; x = y; y = -t; q += 1; } s = y / x; t = s * s; u = -1.88796008463073496563746e-05; u = u * t + (0.000209850076645816976906797); u = u * t + (-0.00110611831486672482563471); u = u * t + (0.00370026744188713119232403); u = u * t + (-0.00889896195887655491740809); u = u * t + (0.016599329773529201970117); u = u * t + (-0.0254517624932312641616861); u = u * t + (0.0337852580001353069993897); u = u * t + (-0.0407629191276836500001934); u = u * t + (0.0466667150077840625632675); u = u * t + (-0.0523674852303482457616113); u = u * t + (0.0587666392926673580854313); u = u * t + (-0.0666573579361080525984562); u = u * t + (0.0769219538311769618355029); u = u * t + (-0.090908995008245008229153); u = u * t + (0.111111105648261418443745); u = u * t + (-0.14285714266771329383765); u = u * t + (0.199999999996591265594148); u = u * t + (-0.333333333333311110369124); t = u * t * s + s; t = q * (rtengine::RT_PI_2) + t; return t; } __inline double xatan2(double y, double x) { double r = atan2k(xfabs(y), x); r = mulsign(r, x); if (xisinf(x) || x == 0) r = rtengine::RT_PI_2 - (xisinf(x) ? (sign(x) * (rtengine::RT_PI_2)) : 0); if (xisinf(y) ) r = rtengine::RT_PI_2 - (xisinf(x) ? (sign(x) * (rtengine::RT_PI*1/4)) : 0); if ( y == 0) r = (sign(x) == -1 ? rtengine::RT_PI : 0); return xisnan(x) || xisnan(y) ? rtengine::RT_NAN : mulsign(r, y); } __inline double xasin(double d) { return mulsign(atan2k(xfabs(d), sqrt((1+d)*(1-d))), d); } __inline double xacos(double d) { return mulsign(atan2k(sqrt((1+d)*(1-d)), xfabs(d)), d) + (d < 0 ? rtengine::RT_PI : 0); } __inline double xatan(double s) { double t, u; int q = 0; if (s < 0) { s = -s; q = 2; } if (s > 1) { s = 1.0 / s; q |= 1; } t = s * s; u = -1.88796008463073496563746e-05; u = u * t + (0.000209850076645816976906797); u = u * t + (-0.00110611831486672482563471); u = u * t + (0.00370026744188713119232403); u = u * t + (-0.00889896195887655491740809); u = u * t + (0.016599329773529201970117); u = u * t + (-0.0254517624932312641616861); u = u * t + (0.0337852580001353069993897); u = u * t + (-0.0407629191276836500001934); u = u * t + (0.0466667150077840625632675); u = u * t + (-0.0523674852303482457616113); u = u * t + (0.0587666392926673580854313); u = u * t + (-0.0666573579361080525984562); u = u * t + (0.0769219538311769618355029); u = u * t + (-0.090908995008245008229153); u = u * t + (0.111111105648261418443745); u = u * t + (-0.14285714266771329383765); u = u * t + (0.199999999996591265594148); u = u * t + (-0.333333333333311110369124); t = s + s * (t * u); if ((q & 1) != 0) t = 1.570796326794896557998982 - t; if ((q & 2) != 0) t = -t; return t; } __inline double xsin(double d) { int q; double u, s; q = (int)xrint(d * rtengine::RT_1_PI); d = mla(q, -PI4_A*4, d); d = mla(q, -PI4_B*4, d); d = mla(q, -PI4_C*4, d); s = d * d; if ((q & 1) != 0) d = -d; u = -7.97255955009037868891952e-18; u = mla(u, s, 2.81009972710863200091251e-15); u = mla(u, s, -7.64712219118158833288484e-13); u = mla(u, s, 1.60590430605664501629054e-10); u = mla(u, s, -2.50521083763502045810755e-08); u = mla(u, s, 2.75573192239198747630416e-06); u = mla(u, s, -0.000198412698412696162806809); u = mla(u, s, 0.00833333333333332974823815); u = mla(u, s, -0.166666666666666657414808); u = mla(s, u * d, d); return u; } __inline double xcos(double d) { int q; double u, s; q = 1 + 2*(int)xrint(d * rtengine::RT_1_PI - 0.5); d = mla(q, -PI4_A*2, d); d = mla(q, -PI4_B*2, d); d = mla(q, -PI4_C*2, d); s = d * d; if ((q & 2) == 0) d = -d; u = -7.97255955009037868891952e-18; u = mla(u, s, 2.81009972710863200091251e-15); u = mla(u, s, -7.64712219118158833288484e-13); u = mla(u, s, 1.60590430605664501629054e-10); u = mla(u, s, -2.50521083763502045810755e-08); u = mla(u, s, 2.75573192239198747630416e-06); u = mla(u, s, -0.000198412698412696162806809); u = mla(u, s, 0.00833333333333332974823815); u = mla(u, s, -0.166666666666666657414808); u = mla(s, u * d, d); return u; } __inline double2 xsincos(double d) { int q; double u, s, t; double2 r; q = (int)xrint(d * (2 * rtengine::RT_1_PI)); s = d; s = mla(-q, PI4_A*2, s); s = mla(-q, PI4_B*2, s); s = mla(-q, PI4_C*2, s); t = s; s = s * s; u = 1.58938307283228937328511e-10; u = mla(u, s, -2.50506943502539773349318e-08); u = mla(u, s, 2.75573131776846360512547e-06); u = mla(u, s, -0.000198412698278911770864914); u = mla(u, s, 0.0083333333333191845961746); u = mla(u, s, -0.166666666666666130709393); u = u * s * t; r.x = t + u; u = -1.13615350239097429531523e-11; u = mla(u, s, 2.08757471207040055479366e-09); u = mla(u, s, -2.75573144028847567498567e-07); u = mla(u, s, 2.48015872890001867311915e-05); u = mla(u, s, -0.00138888888888714019282329); u = mla(u, s, 0.0416666666666665519592062); u = mla(u, s, -0.5); r.y = u * s + 1; if ((q & 1) != 0) { s = r.y; r.y = r.x; r.x = s; } if ((q & 2) != 0) { r.x = -r.x; } if (((q+1) & 2) != 0) { r.y = -r.y; } if (xisinf(d)) { r.x = r.y = rtengine::RT_NAN; } return r; } __inline double xtan(double d) { int q; double u, s, x; q = (int)xrint(d * (2 * rtengine::RT_1_PI)); x = mla(q, -PI4_A*2, d); x = mla(q, -PI4_B*2, x); x = mla(q, -PI4_C*2, x); s = x * x; if ((q & 1) != 0) x = -x; u = 1.01419718511083373224408e-05; u = mla(u, s, -2.59519791585924697698614e-05); u = mla(u, s, 5.23388081915899855325186e-05); u = mla(u, s, -3.05033014433946488225616e-05); u = mla(u, s, 7.14707504084242744267497e-05); u = mla(u, s, 8.09674518280159187045078e-05); u = mla(u, s, 0.000244884931879331847054404); u = mla(u, s, 0.000588505168743587154904506); u = mla(u, s, 0.00145612788922812427978848); u = mla(u, s, 0.00359208743836906619142924); u = mla(u, s, 0.00886323944362401618113356); u = mla(u, s, 0.0218694882853846389592078); u = mla(u, s, 0.0539682539781298417636002); u = mla(u, s, 0.133333333333125941821962); u = mla(u, s, 0.333333333333334980164153); u = mla(s, u * x, x); if ((q & 1) != 0) u = 1.0 / u; if (xisinf(d)) u = rtengine::RT_NAN; return u; } __inline double xlog(double d) { double x, x2, t, m; int e; e = ilogbp1(d * 0.7071); m = ldexpk(d, -e); x = (m-1) / (m+1); x2 = x * x; t = 0.148197055177935105296783; t = mla(t, x2, 0.153108178020442575739679); t = mla(t, x2, 0.181837339521549679055568); t = mla(t, x2, 0.22222194152736701733275); t = mla(t, x2, 0.285714288030134544449368); t = mla(t, x2, 0.399999999989941956712869); t = mla(t, x2, 0.666666666666685503450651); t = mla(t, x2, 2); x = x * t + 0.693147180559945286226764 * e; if (xispinf(d)) x = rtengine::RT_INFINITY; if (d < 0) x = rtengine::RT_NAN; if (d == 0) x = -rtengine::RT_INFINITY; return x; } __inline double xexp(double d) { int q = (int)xrint(d * R_LN2); double s, u; s = mla(q, -L2U, d); s = mla(q, -L2L, s); u = 2.08860621107283687536341e-09; u = mla(u, s, 2.51112930892876518610661e-08); u = mla(u, s, 2.75573911234900471893338e-07); u = mla(u, s, 2.75572362911928827629423e-06); u = mla(u, s, 2.4801587159235472998791e-05); u = mla(u, s, 0.000198412698960509205564975); u = mla(u, s, 0.00138888888889774492207962); u = mla(u, s, 0.00833333333331652721664984); u = mla(u, s, 0.0416666666666665047591422); u = mla(u, s, 0.166666666666666851703837); u = mla(u, s, 0.5); u = s * s * u + s + 1; u = ldexpk(u, q); if (xisminf(d)) u = 0; return u; } __inline double2 logk(double d) { double2 x, x2; double m, t; int e; e = ilogbp1(d * 0.7071); m = ldexpk(d, -e); x = div_dd(add2_ss(-1, m), add2_ss(1, m)); x2 = squ_d(x); t = 0.134601987501262130076155; t = mla(t, x2.x, 0.132248509032032670243288); t = mla(t, x2.x, 0.153883458318096079652524); t = mla(t, x2.x, 0.181817427573705403298686); t = mla(t, x2.x, 0.222222231326187414840781); t = mla(t, x2.x, 0.285714285651261412873718); t = mla(t, x2.x, 0.400000000000222439910458); t = mla(t, x2.x, 0.666666666666666371239645); return add2_dd(mul_ds(dd(0.693147180559945286226764, 2.319046813846299558417771e-17), e), add2_dd(scale_d(x, 2), mul_ds(mul_dd(x2, x), t))); } __inline double expk(double2 d) { int q = (int)rint((d.x + d.y) * R_LN2); double2 s, t; double u; s = add2_ds(d, q * -L2U); s = add2_ds(s, q * -L2L); s = normalize_d(s); u = 2.51069683420950419527139e-08; u = mla(u, s.x, 2.76286166770270649116855e-07); u = mla(u, s.x, 2.75572496725023574143864e-06); u = mla(u, s.x, 2.48014973989819794114153e-05); u = mla(u, s.x, 0.000198412698809069797676111); u = mla(u, s.x, 0.0013888888939977128960529); u = mla(u, s.x, 0.00833333333332371417601081); u = mla(u, s.x, 0.0416666666665409524128449); u = mla(u, s.x, 0.166666666666666740681535); u = mla(u, s.x, 0.500000000000000999200722); t = add_dd(s, mul_ds(squ_d(s), u)); t = add_sd(1, t); return ldexpk(t.x + t.y, q); } __inline double xpow(double x, double y) { int yisint = (int)y == y; int yisodd = (1 & (int)y) != 0 && yisint; double result = expk(mul_ds(logk(xfabs(x)), y)); result = xisnan(result) ? rtengine::RT_INFINITY : result; result *= (x >= 0 ? 1 : (!yisint ? rtengine::RT_NAN : (yisodd ? -1 : 1))); double efx = mulsign(xfabs(x) - 1, y); if (xisinf(y)) result = efx < 0 ? 0.0 : (efx == 0 ? 1.0 : rtengine::RT_INFINITY); if (xisinf(x) || x == 0) result = (yisodd ? sign(x) : 1) * ((x == 0 ? -y : y) < 0 ? 0 : rtengine::RT_INFINITY); if (xisnan(x) || xisnan(y)) result = rtengine::RT_NAN; if (y == 0 || x == 1) result = 1; return result; } __inline double2 expk2(double2 d) { int q = (int)rint((d.x + d.y) * R_LN2); double2 s, t; double u; s = add2_ds(d, q * -L2U); s = add2_ds(s, q * -L2L); s = normalize_d(s); u = 2.51069683420950419527139e-08; u = mla(u, s.x, 2.76286166770270649116855e-07); u = mla(u, s.x, 2.75572496725023574143864e-06); u = mla(u, s.x, 2.48014973989819794114153e-05); u = mla(u, s.x, 0.000198412698809069797676111); u = mla(u, s.x, 0.0013888888939977128960529); u = mla(u, s.x, 0.00833333333332371417601081); u = mla(u, s.x, 0.0416666666665409524128449); u = mla(u, s.x, 0.166666666666666740681535); u = mla(u, s.x, 0.500000000000000999200722); t = add_dd(s, mul_ds(squ_d(s), u)); t = add_sd(1, t); return dd(ldexpk(t.x, q), ldexpk(t.y, q)); } __inline double xsinh(double x) { double y = xfabs(x); double2 d = expk2(dd(y, 0)); d = add2_dd(d, div_dd(dd(-1, 0), d)); y = (d.x + d.y) * 0.5; y = xisinf(x) || xisnan(y) ? rtengine::RT_INFINITY : y; y = mulsign(y, x); y = xisnan(x) ? rtengine::RT_NAN : y; return y; } __inline double xcosh(double x) { double2 d = expk2(dd(x, 0)); d = add2_dd(d, div_dd(dd(1, 0), d)); double y = (d.x + d.y) * 0.5; y = xisinf(x) || xisnan(y) ? rtengine::RT_INFINITY : y; y = xisnan(x) ? rtengine::RT_NAN : y; return y; } __inline double xtanh(double x) { double y = xfabs(x); double2 d = expk2(dd(y, 0)); double2 e = div_dd(dd(1, 0), d); d = div_dd(add2_dd(d, scale_d(e, -1)), add2_dd(d, e)); y = d.x + d.y; y = xisinf(x) || xisnan(y) ? 1.0 : y; y = mulsign(y, x); y = xisnan(x) ? rtengine::RT_NAN : y; return y; } __inline double2 logk2(double2 d) { double2 x, x2, m; double t; int e; d = normalize_d(d); e = ilogbp1(d.x * 0.7071); m = scale_d(d, ldexpk(1, -e)); x = div_dd(add2_ds(m, -1), add2_ds(m, 1)); x2 = squ_d(x); t = 0.134601987501262130076155; t = mla(t, x2.x, 0.132248509032032670243288); t = mla(t, x2.x, 0.153883458318096079652524); t = mla(t, x2.x, 0.181817427573705403298686); t = mla(t, x2.x, 0.222222231326187414840781); t = mla(t, x2.x, 0.285714285651261412873718); t = mla(t, x2.x, 0.400000000000222439910458); t = mla(t, x2.x, 0.666666666666666371239645); return add2_dd(mul_ds(dd(0.693147180559945286226764, 2.319046813846299558417771e-17), e), add2_dd(scale_d(x, 2), mul_ds(mul_dd(x2, x), t))); } __inline double xasinh(double x) { double y = xfabs(x); double2 d = logk2(add2_ds(sqrt_d(add2_ds(mul_ss(y, y), 1)), y)); y = d.x + d.y; y = xisinf(x) || xisnan(y) ? rtengine::RT_INFINITY : y; y = mulsign(y, x); y = xisnan(x) ? rtengine::RT_NAN : y; return y; } __inline double xacosh(double x) { double2 d = logk2(add2_ds(sqrt_d(add2_ds(mul_ss(x, x), -1)), x)); double y = d.x + d.y; y = xisinf(x) || xisnan(y) ? rtengine::RT_INFINITY : y; y = x == 1.0 ? 0.0 : y; y = x < 1.0 ? rtengine::RT_NAN : y; y = xisnan(x) ? rtengine::RT_NAN : y; return y; } __inline double xatanh(double x) { double y = xfabs(x); double2 d = logk2(div_dd(add2_ss(1, y), add2_ss(1, -y))); y = y > 1.0 ? rtengine::RT_NAN : (y == 1.0 ? rtengine::RT_INFINITY : (d.x + d.y) * 0.5); y = xisinf(x) || xisnan(y) ? rtengine::RT_NAN : y; y = mulsign(y, x); y = xisnan(x) ? rtengine::RT_NAN : y; return y; } // __inline double xfma(double x, double y, double z) { union { double f; long long int i; } tmp; tmp.f = x; tmp.i = (tmp.i + 0x4000000) & 0xfffffffff8000000LL; double xh = tmp.f, xl = x - xh; tmp.f = y; tmp.i = (tmp.i + 0x4000000) & 0xfffffffff8000000LL; double yh = tmp.f, yl = y - yh; double h = x * y; double l = xh * yh - h + xl * yh + xh * yl + xl * yl; double h2, l2, v; h2 = h + z; v = h2 - h; l2 = (h - (h2 - v)) + (z - v) + l; return h2 + l2; } __inline double xsqrt(double d) { // max error : 0.5 ulp double q = 1; if (d < 8.636168555094445E-78) { d *= 1.157920892373162E77; q = 2.9387358770557188E-39; } // http://en.wikipedia.org/wiki/Fast_inverse_square_root double x = longBitsToDouble(0x5fe6ec85e7de30da - (doubleToRawLongBits(d + 1e-320) >> 1)); x = x * (1.5 - 0.5 * d * x * x); x = x * (1.5 - 0.5 * d * x * x); x = x * (1.5 - 0.5 * d * x * x); // You can change xfma to fma if fma is correctly implemented x = xfma(d * x, d * x, -d) * (x * -0.5) + d * x; return d == rtengine::RT_INFINITY ? rtengine::RT_INFINITY : x * q; } __inline double xcbrt(double d) { // max error : 2 ulps double x, y, q = 1.0; int e, r; e = ilogbp1(d); d = ldexpk(d, -e); r = (e + 6144) % 3; q = (r == 1) ? 1.2599210498948731647672106 : q; q = (r == 2) ? 1.5874010519681994747517056 : q; q = ldexpk(q, (e + 6144) / 3 - 2048); q = mulsign(q, d); d = xfabs(d); x = -0.640245898480692909870982; x = x * d + 2.96155103020039511818595; x = x * d + -5.73353060922947843636166; x = x * d + 6.03990368989458747961407; x = x * d + -3.85841935510444988821632; x = x * d + 2.2307275302496609725722; y = x * x; y = y * y; x -= (d * y - x) * (1.0 / 3.0); y = d * x * x; y = (y - (2.0 / 3.0) * y * (y * x - 1)) * q; return y; } __inline double xexp2(double a) { double u = expk(mul_ds(dd(0.69314718055994528623, 2.3190468138462995584e-17), a)); if (xispinf(a)) u = rtengine::RT_INFINITY; if (xisminf(a)) u = 0; return u; } __inline double xexp10(double a) { double u = expk(mul_ds(dd(2.3025850929940459011, -2.1707562233822493508e-16), a)); if (xispinf(a)) u = rtengine::RT_INFINITY; if (xisminf(a)) u = 0; return u; } __inline double xexpm1(double a) { double2 d = add2_ds(expk2(dd(a, 0)), -1.0); double x = d.x + d.y; if (xispinf(a)) x = rtengine::RT_INFINITY; if (xisminf(a)) x = -1; return x; } __inline double xlog10(double a) { double2 d = mul_dd(logk(a), dd(0.43429448190325176116, 6.6494347733425473126e-17)); double x = d.x + d.y; if (xispinf(a)) x = rtengine::RT_INFINITY; if (a < 0) x = rtengine::RT_NAN; if (a == 0) x = -rtengine::RT_INFINITY; return x; } __inline double xlog1p(double a) { double2 d = logk2(add2_ss(a, 1)); double x = d.x + d.y; if (xispinf(a)) x = rtengine::RT_INFINITY; if (a < -1) x = rtengine::RT_NAN; if (a == -1) x = -rtengine::RT_INFINITY; return x; } /////////////////////////////////////////// #define PI4_Af 0.78515625f #define PI4_Bf 0.00024127960205078125f #define PI4_Cf 6.3329935073852539062e-07f #define PI4_Df 4.9604681473525147339e-10f #define L2Uf 0.693145751953125f #define L2Lf 1.428606765330187045e-06f #define R_LN2f 1.442695040888963407359924681001892137426645954152985934135449406931f #ifdef __SSE2__ __inline int xrintf(float x) { return _mm_cvt_ss2si(_mm_set_ss(x)); } #else __inline int xrintf(float x) { return x + (x < 0 ? -0.5f : 0.5f); } #endif __inline int32_t floatToRawIntBits(float d) { union { float f; int32_t i; } tmp; tmp.f = d; return tmp.i; } __inline float intBitsToFloat(int32_t i) { union { float f; int32_t i; } tmp; tmp.i = i; return tmp.f; } __inline float xfabsf(float x) { return intBitsToFloat(0x7fffffffL & floatToRawIntBits(x)); } __inline float mulsignf(float x, float y) { return intBitsToFloat(floatToRawIntBits(x) ^ (floatToRawIntBits(y) & (1 << 31))); } __inline float signf(float d) { return std::copysign(1.f, d); } __inline float mlaf(float x, float y, float z) { return x * y + z; } __inline int xisnanf(float x) { return x != x; } __inline int xisinff(float x) { return x == rtengine::RT_INFINITY_F || x == -rtengine::RT_INFINITY_F; } __inline int xisminff(float x) { return x == -rtengine::RT_INFINITY_F; } __inline int xispinff(float x) { return x == rtengine::RT_INFINITY_F; } __inline int ilogbp1f(float d) { int m = d < 5.421010862427522E-20f; d = m ? 1.8446744073709552E19f * d : d; int q = (floatToRawIntBits(d) >> 23) & 0xff; q = m ? q - (64 + 0x7e) : q - 0x7e; return q; } __inline float ldexpkf(float x, int q) { float u; int m; m = q >> 31; m = (((m + q) >> 6) - m) << 4; q = q - (m << 2); u = intBitsToFloat(((int32_t)(m + 0x7f)) << 23); u = u * u; x = x * u * u; u = intBitsToFloat(((int32_t)(q + 0x7f)) << 23); return x * u; } __inline float xcbrtf(float d) { // max error : 2 ulps float x, y, q = 1.0f; int e, r; e = ilogbp1f(d); d = ldexpkf(d, -e); r = (e + 6144) % 3; q = (r == 1) ? 1.2599210498948731647672106f : q; q = (r == 2) ? 1.5874010519681994747517056f : q; q = ldexpkf(q, (e + 6144) / 3 - 2048); q = mulsignf(q, d); d = xfabsf(d); x = -0.601564466953277587890625f; x = mlaf(x, d, 2.8208892345428466796875f); x = mlaf(x, d, -5.532182216644287109375f); x = mlaf(x, d, 5.898262500762939453125f); x = mlaf(x, d, -3.8095417022705078125f); x = mlaf(x, d, 2.2241256237030029296875f); y = d * x * x; y = (y - (2.0f / 3.0f) * y * (y * x - 1.0f)) * q; return y; } __inline float xsinf(float d) { int q; float u, s; q = xrintf(d * rtengine::RT_1_PI_F); d = mlaf(q, -PI4_Af*4, d); d = mlaf(q, -PI4_Bf*4, d); d = mlaf(q, -PI4_Cf*4, d); d = mlaf(q, -PI4_Df*4, d); s = d * d; if ((q & 1) != 0) d = -d; u = 2.6083159809786593541503e-06f; u = mlaf(u, s, -0.0001981069071916863322258f); u = mlaf(u, s, 0.00833307858556509017944336f); u = mlaf(u, s, -0.166666597127914428710938f); u = mlaf(s, u * d, d); return u; } __inline float xcosf(float d) { #ifdef __SSE2__ // faster than scalar version return xcosf(_mm_set_ss(d))[0]; #else int q; float u, s; q = 1 + 2*xrintf(d * rtengine::RT_1_PI_F - 0.5f); d = mlaf(q, -PI4_Af*2, d); d = mlaf(q, -PI4_Bf*2, d); d = mlaf(q, -PI4_Cf*2, d); d = mlaf(q, -PI4_Df*2, d); s = d * d; if ((q & 2) == 0) d = -d; u = 2.6083159809786593541503e-06f; u = mlaf(u, s, -0.0001981069071916863322258f); u = mlaf(u, s, 0.00833307858556509017944336f); u = mlaf(u, s, -0.166666597127914428710938f); u = mlaf(s, u * d, d); return u; #endif } __inline float2 xsincosf(float d) { #ifdef __SSE2__ // faster than scalar version vfloat2 res = xsincosf(_mm_set_ss(d)); return {res.x[0], res.y[0]}; #else int q; float u, s, t; float2 r; q = xrintf(d * rtengine::RT_2_PI_F); s = d; s = mlaf(q, -PI4_Af*2, s); s = mlaf(q, -PI4_Bf*2, s); s = mlaf(q, -PI4_Cf*2, s); s = mlaf(q, -PI4_Df*2, s); t = s; s = s * s; u = -0.000195169282960705459117889f; u = mlaf(u, s, 0.00833215750753879547119141f); u = mlaf(u, s, -0.166666537523269653320312f); u = u * s * t; r.x = t + u; u = -2.71811842367242206819355e-07f; u = mlaf(u, s, 2.47990446951007470488548e-05f); u = mlaf(u, s, -0.00138888787478208541870117f); u = mlaf(u, s, 0.0416666641831398010253906f); u = mlaf(u, s, -0.5f); r.y = u * s + 1; if ((q & 1) != 0) { s = r.y; r.y = r.x; r.x = s; } if ((q & 2) != 0) { r.x = -r.x; } if (((q+1) & 2) != 0) { r.y = -r.y; } if (xisinff(d)) { r.x = r.y = rtengine::RT_NAN_F; } return r; #endif } __inline float xtanf(float d) { int q; float u, s, x; q = xrintf(d * (float)(2 * rtengine::RT_1_PI)); x = d; x = mlaf(q, -PI4_Af*2, x); x = mlaf(q, -PI4_Bf*2, x); x = mlaf(q, -PI4_Cf*2, x); x = mlaf(q, -PI4_Df*2, x); s = x * x; if ((q & 1) != 0) x = -x; u = 0.00927245803177356719970703f; u = mlaf(u, s, 0.00331984995864331722259521f); u = mlaf(u, s, 0.0242998078465461730957031f); u = mlaf(u, s, 0.0534495301544666290283203f); u = mlaf(u, s, 0.133383005857467651367188f); u = mlaf(u, s, 0.333331853151321411132812f); u = mlaf(s, u * x, x); if ((q & 1) != 0) u = 1.0f / u; if (xisinff(d)) u = rtengine::RT_NAN_F; return u; } __inline float xatanf(float s) { float t, u; int q = 0; if (s < 0) { s = -s; q = 2; } if (s > 1) { s = 1.0f / s; q |= 1; } t = s * s; u = 0.00282363896258175373077393f; u = mlaf(u, t, -0.0159569028764963150024414f); u = mlaf(u, t, 0.0425049886107444763183594f); u = mlaf(u, t, -0.0748900920152664184570312f); u = mlaf(u, t, 0.106347933411598205566406f); u = mlaf(u, t, -0.142027363181114196777344f); u = mlaf(u, t, 0.199926957488059997558594f); u = mlaf(u, t, -0.333331018686294555664062f); t = s + s * (t * u); if ((q & 1) != 0) t = 1.570796326794896557998982f - t; if ((q & 2) != 0) t = -t; return t; } __inline float atan2kf(float y, float x) { float s, t, u; float q = 0.f; if (x < 0) { x = -x; q = -2.f; } if (y > x) { t = x; x = y; y = -t; q += 1.f; } s = y / x; t = s * s; u = 0.00282363896258175373077393f; u = mlaf(u, t, -0.0159569028764963150024414f); u = mlaf(u, t, 0.0425049886107444763183594f); u = mlaf(u, t, -0.0748900920152664184570312f); u = mlaf(u, t, 0.106347933411598205566406f); u = mlaf(u, t, -0.142027363181114196777344f); u = mlaf(u, t, 0.199926957488059997558594f); u = mlaf(u, t, -0.333331018686294555664062f); t = u * t; t = mlaf(t,s,s); return mlaf(q,(float)(rtengine::RT_PI_F_2),t); } __inline float xatan2f(float y, float x) { float r = atan2kf(xfabsf(y), x); r = mulsignf(r, x); if (xisinff(x) || x == 0) r = rtengine::RT_PI_F/2 - (xisinff(x) ? (signf(x) * (float)(rtengine::RT_PI_F*.5f)) : 0); if (xisinff(y) ) r = rtengine::RT_PI_F/2 - (xisinff(x) ? (signf(x) * (float)(rtengine::RT_PI_F*.25f)) : 0); if ( y == 0) r = (signf(x) == -1 ? rtengine::RT_PI_F : 0); return xisnanf(x) || xisnanf(y) ? rtengine::RT_NAN_F : mulsignf(r, y); } __inline float xasinf(float d) { return mulsignf(atan2kf(fabsf(d), sqrtf((1.0f+d)*(1.0f-d))), d); } __inline float xacosf(float d) { return mulsignf(atan2kf(sqrtf((1.0f+d)*(1.0f-d)), fabsf(d)), d) + (d < 0 ? (float)rtengine::RT_PI : 0.0f); } __inline float xlogf(float d) { float x, x2, t, m; int e; e = ilogbp1f(d * 0.7071f); m = ldexpkf(d, -e); x = (m-1.0f) / (m+1.0f); x2 = x * x; t = 0.2371599674224853515625f; t = mlaf(t, x2, 0.285279005765914916992188f); t = mlaf(t, x2, 0.400005519390106201171875f); t = mlaf(t, x2, 0.666666567325592041015625f); t = mlaf(t, x2, 2.0f); x = x * t + 0.693147180559945286226764f * e; if (xispinff(d)) x = rtengine::RT_INFINITY_F; if (d < 0) x = rtengine::RT_NAN_F; if (d == 0) x = -rtengine::RT_INFINITY_F; return x; } __inline float xlogf1(float d) { // does xlogf(vmaxf(d, 1.f)) but faster float x, x2, t, m; int e; e = ilogbp1f(d * 0.7071f); m = ldexpkf(d, -e); x = (m-1.0f) / (m+1.0f); x2 = x * x; t = 0.2371599674224853515625f; t = mlaf(t, x2, 0.285279005765914916992188f); t = mlaf(t, x2, 0.400005519390106201171875f); t = mlaf(t, x2, 0.666666567325592041015625f); t = mlaf(t, x2, 2.0f); x = x * t + 0.693147180559945286226764f * e; if (xispinff(d)) x = rtengine::RT_INFINITY_F; if (d <= 1.f) x = 0; return x; } __inline float xexpf(float d) { if(d<=-104.0f) return 0.0f; int q = xrintf(d * R_LN2f); float s, u; s = mlaf(q, -L2Uf, d); s = mlaf(q, -L2Lf, s); u = 0.00136324646882712841033936f; u = mlaf(u, s, 0.00836596917361021041870117f); u = mlaf(u, s, 0.0416710823774337768554688f); u = mlaf(u, s, 0.166665524244308471679688f); u = mlaf(u, s, 0.499999850988388061523438f); u = mlaf( s, mlaf(s,u,1.f),1.f); return ldexpkf(u, q); } __inline float xmul2f(float d) { union { float floatval; int intval; } uflint; uflint.floatval = d; if (uflint.intval & 0x7FFFFFFF) { // if f==0 do nothing uflint.intval += 1 << 23; // add 1 to the exponent } return uflint.floatval; } __inline float xdiv2f(float d) { union { float floatval; int intval; } uflint; uflint.floatval = d; if (uflint.intval & 0x7FFFFFFF) { // if f==0 do nothing uflint.intval -= 1 << 23; // sub 1 from the exponent } return uflint.floatval; } __inline float xdivf( float d, int n){ union { float floatval; int intval; } uflint; uflint.floatval = d; if (uflint.intval & 0x7FFFFFFF) { // if f==0 do nothing uflint.intval -= n << 23; // add n to the exponent } return uflint.floatval; } __inline float xlin2log(float x, float base) { constexpr float one(1); return xlogf(x * (base - one) + one) / xlogf(base); } __inline float xlog2lin(float x, float base) { constexpr float one(1); return (pow_F(base, x) - one) / (base - one); }