/* -*- C++ -*- * * This file is part of RawTherapee. * * Copyright (c) 2018 Alberto Griggio * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ /* * Haze removal using the algorithm described in the paper: * * Single Image Haze Removal Using Dark Channel Prior * by He, Sun and Tang * * using a guided filter for the "soft matting" of the transmission map * */ #include "improcfun.h" #include "guidedfilter.h" #include "rt_math.h" #include "rt_algo.h" #include #include extern Options options; namespace rtengine { namespace { #if 0 # define DEBUG_DUMP(arr) \ do { \ Imagefloat im(arr.width(), arr.height()); \ const char *out = "/tmp/" #arr ".tif"; \ for (int y = 0; y < im.getHeight(); ++y) { \ for (int x = 0; x < im.getWidth(); ++x) { \ im.r(y, x) = im.g(y, x) = im.b(y, x) = arr[y][x] * 65535.f; \ } \ } \ im.saveTIFF(out, 16); \ } while (false) #else # define DEBUG_DUMP(arr) #endif int get_dark_channel(const array2D &R, const array2D &G, const array2D &B, array2D &dst, int patchsize, const float ambient[3], bool clip, bool multithread) { const int W = R.width(); const int H = R.height(); #ifdef _OPENMP #pragma omp parallel for if (multithread) #endif for (int y = 0; y < H; y += patchsize) { const int pH = min(y + patchsize, H); for (int x = 0; x < W; x += patchsize) { float val = RT_INFINITY_F; const int pW = min(x + patchsize, W); for (int yy = y; yy < pH; ++yy) { for (int xx = x; xx < pW; ++xx) { float r = R[yy][xx]; float g = G[yy][xx]; float b = B[yy][xx]; if (ambient) { r /= ambient[0]; g /= ambient[1]; b /= ambient[2]; } val = min(val, r, g, b); } } if (clip) { val = LIM01(val); } for (int yy = y; yy < pH; ++yy) { std::fill(dst[yy] + x, dst[yy] + pW, val); } } } return (W / patchsize + ((W % patchsize) > 0)) * (H / patchsize + ((H % patchsize) > 0)); } float estimate_ambient_light(const array2D &R, const array2D &G, const array2D &B, const array2D &dark, int patchsize, int npatches, float ambient[3]) { const int W = R.width(); const int H = R.height(); const auto get_percentile = [](std::priority_queue &q, float prcnt) -> float { size_t n = LIM(q.size() * prcnt, 1, q.size()); while (q.size() > n) { q.pop(); } return q.top(); }; float darklim = RT_INFINITY_F; { std::priority_queue p; for (int y = 0; y < H; y += patchsize) { for (int x = 0; x < W; x += patchsize) { if (!OOG(dark[y][x], 1.f - 1e-5f)) { p.push(dark[y][x]); } } } darklim = get_percentile(p, 0.95); } std::vector> patches; patches.reserve(npatches); for (int y = 0; y < H; y += patchsize) { for (int x = 0; x < W; x += patchsize) { if (dark[y][x] >= darklim && !OOG(dark[y][x], 1.f)) { patches.push_back(std::make_pair(x, y)); } } } if (options.rtSettings.verbose) { std::cout << "dehaze: computing ambient light from " << patches.size() << " patches" << std::endl; } float bright_lim = RT_INFINITY_F; { std::priority_queue l; for (auto &p : patches) { const int pW = min(p.first+patchsize, W); const int pH = min(p.second+patchsize, H); for (int y = p.second; y < pH; ++y) { for (int x = p.first; x < pW; ++x) { l.push(R[y][x] + G[y][x] + B[y][x]); } } } bright_lim = get_percentile(l, 0.95); } double rr = 0, gg = 0, bb = 0; int n = 0; for (auto &p : patches) { const int pW = min(p.first+patchsize, W); const int pH = min(p.second+patchsize, H); for (int y = p.second; y < pH; ++y) { for (int x = p.first; x < pW; ++x) { float r = R[y][x]; float g = G[y][x]; float b = B[y][x]; if (r + g + b >= bright_lim) { rr += r; gg += g; bb += b; ++n; } } } } n = std::max(n, 1); ambient[0] = rr / n; ambient[1] = gg / n; ambient[2] = bb / n; // taken from darktable return darklim > 0 ? -1.125f * std::log(darklim) : std::log(std::numeric_limits::max()) / 2; } void extract_channels(Imagefloat *img, array2D &r, array2D &g, array2D &b, int radius, float epsilon, bool multithread) { const int W = img->getWidth(); const int H = img->getHeight(); array2D imgR(W, H, img->r.ptrs, ARRAY2D_BYREFERENCE); guidedFilter(imgR, imgR, r, radius, epsilon, multithread); array2D imgG(W, H, img->g.ptrs, ARRAY2D_BYREFERENCE); guidedFilter(imgG, imgG, g, radius, epsilon, multithread); array2D imgB(W, H, img->b.ptrs, ARRAY2D_BYREFERENCE); guidedFilter(imgB, imgB, b, radius, epsilon, multithread); } } // namespace void ImProcFunctions::dehaze(Imagefloat *img) { if (!params->dehaze.enabled) { return; } img->normalizeFloatTo1(); const int W = img->getWidth(); const int H = img->getHeight(); const float strength = LIM01(float(params->dehaze.strength) / 100.f * 0.9f); if (options.rtSettings.verbose) { std::cout << "dehaze: strength = " << strength << std::endl; } array2D dark(W, H); int patchsize = max(int(5 / scale), 2); int npatches = 0; float ambient[3]; array2D &t_tilde = dark; float max_t = 0.f; { array2D R(W, H); array2D G(W, H); array2D B(W, H); extract_channels(img, R, G, B, patchsize, 1e-1, multiThread); patchsize = max(max(W, H) / 600, 2); npatches = get_dark_channel(R, G, B, dark, patchsize, nullptr, false, multiThread); DEBUG_DUMP(dark); max_t = estimate_ambient_light(R, G, B, dark, patchsize, npatches, ambient); if (options.rtSettings.verbose) { std::cout << "dehaze: ambient light is " << ambient[0] << ", " << ambient[1] << ", " << ambient[2] << std::endl; } get_dark_channel(R, G, B, dark, patchsize, ambient, true, multiThread); } if (min(ambient[0], ambient[1], ambient[2]) < 0.01f) { if (options.rtSettings.verbose) { std::cout << "dehaze: no haze detected" << std::endl; } img->normalizeFloatTo65535(); return; // probably no haze at all } DEBUG_DUMP(t_tilde); #ifdef _OPENMP #pragma omp parallel for if (multiThread) #endif for (int y = 0; y < H; ++y) { for (int x = 0; x < W; ++x) { dark[y][x] = 1.f - strength * dark[y][x]; } } const int radius = patchsize * 4; const float epsilon = 1e-5; array2D &t = t_tilde; { array2D guideB(W, H, img->b.ptrs, ARRAY2D_BYREFERENCE); guidedFilter(guideB, t_tilde, t, radius, epsilon, multiThread); } DEBUG_DUMP(t); if (options.rtSettings.verbose) { std::cout << "dehaze: max distance is " << max_t << std::endl; } float depth = -float(params->dehaze.depth) / 100.f; const float t0 = max(1e-3f, std::exp(depth * max_t)); const float teps = 1e-3f; #ifdef _OPENMP #pragma omp parallel for if (multiThread) #endif for (int y = 0; y < H; ++y) { for (int x = 0; x < W; ++x) { // ensure that the transmission is such that to avoid clipping... float rgb[3] = { img->r(y, x), img->g(y, x), img->b(y, x) }; // ... t >= tl to avoid negative values float tl = 1.f - min(rgb[0]/ambient[0], rgb[1]/ambient[1], rgb[2]/ambient[2]); // ... t >= tu to avoid values > 1 float tu = t0 - teps; for (int c = 0; c < 3; ++c) { if (ambient[c] < 1) { tu = max(tu, (rgb[c] - ambient[c])/(1.f - ambient[c])); } } float mt = max(t[y][x], t0, tl + teps, tu + teps); if (params->dehaze.showDepthMap) { img->r(y, x) = img->g(y, x) = img->b(y, x) = LIM01(1.f - mt); } else { float r = (rgb[0] - ambient[0]) / mt + ambient[0]; float g = (rgb[1] - ambient[1]) / mt + ambient[1]; float b = (rgb[2] - ambient[2]) / mt + ambient[2]; img->r(y, x) = r; img->g(y, x) = g; img->b(y, x) = b; } } } img->normalizeFloatTo65535(); } void ImProcFunctions::dehazeloc(Imagefloat *img, float deha, float depth) { img->normalizeFloatTo1(); const int W = img->getWidth(); const int H = img->getHeight(); float strength = deha;//LIM01(float(params->locallab.dehaze) / 100.f * 0.9f); if (options.rtSettings.verbose) { std::cout << "dehaze: strength = " << strength << std::endl; } array2D dark(W, H); int patchsize = max(int(5 / scale), 2); int npatches = 0; float ambient[3]; array2D &t_tilde = dark; float max_t = 0.f; { array2D R(W, H); array2D G(W, H); array2D B(W, H); extract_channels(img, R, G, B, patchsize, 1e-1, multiThread); patchsize = max(max(W, H) / 600, 2); npatches = get_dark_channel(R, G, B, dark, patchsize, nullptr, false, multiThread); DEBUG_DUMP(dark); max_t = estimate_ambient_light(R, G, B, dark, patchsize, npatches, ambient); if (options.rtSettings.verbose) { std::cout << "dehaze: ambient light is " << ambient[0] << ", " << ambient[1] << ", " << ambient[2] << std::endl; } get_dark_channel(R, G, B, dark, patchsize, ambient, true, multiThread); } if (min(ambient[0], ambient[1], ambient[2]) < 0.01f) { if (options.rtSettings.verbose) { std::cout << "dehaze: no haze detected" << std::endl; } img->normalizeFloatTo65535(); return; // probably no haze at all } DEBUG_DUMP(t_tilde); #ifdef _OPENMP #pragma omp parallel for if (multiThread) #endif for (int y = 0; y < H; ++y) { for (int x = 0; x < W; ++x) { dark[y][x] = 1.f - strength * dark[y][x]; } } const int radius = patchsize * 4; const float epsilon = 1e-5; array2D &t = t_tilde; { array2D guideB(W, H, img->b.ptrs, ARRAY2D_BYREFERENCE); guidedFilter(guideB, t_tilde, t, radius, epsilon, multiThread); } DEBUG_DUMP(t); if (options.rtSettings.verbose) { std::cout << "dehaze: max distance is " << max_t << std::endl; } float dept = depth; if (options.rtSettings.verbose) { std::cout << "dehaze: depth = " << dept << std::endl; } const float t0 = max(1e-3f, std::exp(dept * max_t)); const float teps = 1e-3f; #ifdef _OPENMP #pragma omp parallel for if (multiThread) #endif for (int y = 0; y < H; ++y) { for (int x = 0; x < W; ++x) { // ensure that the transmission is such that to avoid clipping... float rgb[3] = { img->r(y, x), img->g(y, x), img->b(y, x) }; // ... t >= tl to avoid negative values float tl = 1.f - min(rgb[0]/ambient[0], rgb[1]/ambient[1], rgb[2]/ambient[2]); // ... t >= tu to avoid values > 1 float tu = t0 - teps; for (int c = 0; c < 3; ++c) { if (ambient[c] < 1) { tu = max(tu, (rgb[c] - ambient[c])/(1.f - ambient[c])); } } float mt = max(t[y][x], t0, tl + teps, tu + teps); if (params->dehaze.showDepthMap) { img->r(y, x) = img->g(y, x) = img->b(y, x) = 1.f - mt; } else { float r = (rgb[0] - ambient[0]) / mt + ambient[0]; float g = (rgb[1] - ambient[1]) / mt + ambient[1]; float b = (rgb[2] - ambient[2]) / mt + ambient[2]; img->r(y, x) = r; img->g(y, x) = g; img->b(y, x) = b; } } } img->normalizeFloatTo65535(); } } // namespace rtengine