/* -*- C++ -*- * * This file is part of RawTherapee. * * Copyright 2018 Alberto Griggio * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ #include "color.h" #include "curves.h" #include "guidedfilter.h" #include "iccstore.h" #include "improcfun.h" #include "labimage.h" #include "procparams.h" #include "sleef.h" //#define BENCHMARK #include "StopWatch.h" namespace { #ifdef __SSE2__ void fastlin2log(float *x, float factor, float base, int w) { float baseLog = 1.f / xlogf(base); vfloat baseLogv = F2V(baseLog); factor = factor * (base - 1.f); vfloat factorv = F2V(factor); vfloat onev = F2V(1.f); int i = 0; for (; i < w - 3; i += 4) { STVFU(x[i], xlogf(LVFU(x[i]) * factorv + onev) * baseLogv); } for (; i < w; ++i) { x[i] = xlogf(x[i] * factor + 1.f) * baseLog; } } #endif } namespace rtengine { void ImProcFunctions::labColorCorrectionRegions(LabImage *lab) { if (!params->colorToning.enabled || params->colorToning.method != "LabRegions") { return; } BENCHFUN int n = params->colorToning.labregions.size(); int show_mask_idx = params->colorToning.labregionsShowMask; if (show_mask_idx >= n) { show_mask_idx = -1; } std::vector> hmask(n); std::vector> cmask(n); std::vector> lmask(n); const int begin_idx = max(show_mask_idx, 0); const int end_idx = (show_mask_idx < 0 ? n : show_mask_idx+1); for (int i = begin_idx; i < end_idx; ++i) { auto &r = params->colorToning.labregions[i]; if (!r.hueMask.empty() && r.hueMask[0] != FCT_Linear) { hmask[i].reset(new FlatCurve(r.hueMask, true)); } if (!r.chromaticityMask.empty() && r.chromaticityMask[0] != FCT_Linear) { cmask[i].reset(new FlatCurve(r.chromaticityMask, false)); } if (!r.lightnessMask.empty() && r.lightnessMask[0] != FCT_Linear) { lmask[i].reset(new FlatCurve(r.lightnessMask, false)); } } std::vector> abmask(n); std::vector> Lmask(n); for (int i = begin_idx; i < end_idx; ++i) { abmask[i](lab->W, lab->H); Lmask[i](lab->W, lab->H); } array2D guide(lab->W, lab->H); // magic constant c_factor: normally chromaticity is in [0; 42000] (see color.h), but here we use the constant to match how the chromaticity pipette works (see improcfun.cc lines 4705-4706 and color.cc line 1930 constexpr float c_factor = 327.68f / 48000.f; #ifdef _OPENMP #pragma omp parallel if (multiThread) #endif { #ifdef __SSE2__ float cBuffer[lab->W]; float hBuffer[lab->W]; #endif #ifdef _OPENMP #pragma omp for schedule(dynamic, 16) #endif for (int y = 0; y < lab->H; ++y) { #ifdef __SSE2__ // vectorized precalculation Color::Lab2Lch(lab->a[y], lab->b[y], cBuffer, hBuffer, lab->W); fastlin2log(cBuffer, c_factor, 10.f, lab->W); #endif for (int x = 0; x < lab->W; ++x) { const float l = lab->L[y][x] / 32768.f; guide[y][x] = LIM01(l); #ifdef __SSE2__ // use precalculated values const float c = cBuffer[x]; float h = hBuffer[x]; #else float c, h; Color::Lab2Lch(lab->a[y][x], lab->b[y][x], c, h); c = xlin2log(c * c_factor, 10.f); #endif h = Color::huelab_to_huehsv2(h); h += 1.f/6.f; // offset the hue because we start from purple instead of red if (h > 1.f) { h -= 1.f; } h = xlin2log(h, 3.f); for (int i = begin_idx; i < end_idx; ++i) { auto &hm = hmask[i]; auto &cm = cmask[i]; auto &lm = lmask[i]; float blend = LIM01((hm ? hm->getVal(h) : 1.f) * (cm ? cm->getVal(c) : 1.f) * (lm ? lm->getVal(l) : 1.f)); Lmask[i][y][x] = abmask[i][y][x] = blend; } } } } for (int i = begin_idx; i < end_idx; ++i) { float blur = params->colorToning.labregions[i].maskBlur; blur = blur < 0.f ? -1.f/blur : 1.f + blur; int r1 = max(int(4 / scale * blur + 0.5), 1); int r2 = max(int(25 / scale * blur + 0.5), 1); rtengine::guidedFilter(guide, abmask[i], abmask[i], r1, 0.001, multiThread); rtengine::guidedFilter(guide, Lmask[i], Lmask[i], r2, 0.0001, multiThread); } if (show_mask_idx >= 0) { #ifdef _OPENMP #pragma omp parallel for if (multiThread) #endif for (int y = 0; y < lab->H; ++y) { for (int x = 0; x < lab->W; ++x) { auto blend = abmask[show_mask_idx][y][x]; lab->a[y][x] = 0.f; lab->b[y][x] = blend * 42000.f; lab->L[y][x] = LIM(lab->L[y][x] + 32768.f * blend, 0.f, 32768.f); } } return; } const auto abcoord = [](float x) -> float { return /*12000.f **/ SGN(x) * xlog2lin(std::abs(x), 4.f); }; float abca[n]; float abcb[n]; float rs[n]; float slope[n]; float offset[n]; float power[n]; int channel[n]; for (int i = 0; i < n; ++i) { auto &r = params->colorToning.labregions[i]; abca[i] = abcoord(r.a); abcb[i] = abcoord(r.b); rs[i] = 1.f + r.saturation / (SGN(r.saturation) > 0 ? 50.f : 100.f); slope[i] = r.slope; offset[i] = r.offset; power[i] = r.power; channel[i] = r.channel; } TMatrix ws = ICCStore::getInstance()->workingSpaceMatrix(params->icm.workingProfile); TMatrix iws = ICCStore::getInstance()->workingSpaceInverseMatrix(params->icm.workingProfile); const auto CDL = [=](float &l, float &a, float &b, float slope, float offset, float power, float saturation) -> void { if (slope != 1.f || offset != 0.f || power != 1.f || saturation != 1.f) { float rgb[3]; float x, y, z; Color::Lab2XYZ(l, a, b, x, y, z); Color::xyz2rgb(x, y, z, rgb[0], rgb[1], rgb[2], iws); for (int i = 0; i < 3; ++i) { rgb[i] = (pow_F(max((rgb[i] / 65535.f) * slope + offset, 0.f), power)) * 65535.f; } if (saturation != 1.f) { float Y = Color::rgbLuminance(rgb[0], rgb[1], rgb[2], ws); for (int i = 0; i < 3; ++i) { rgb[i] = max(Y + saturation * (rgb[i] - Y), 0.f); } } Color::rgbxyz(rgb[0], rgb[1], rgb[2], x, y, z, ws); Color::XYZ2Lab(x, y, z, l, a, b); } }; const auto chan = [=](float prev_l, float prev_a, float prev_b, float &l, float &a, float &b, int channel) -> void { if (channel >= 0) { float prev_rgb[3]; float rgb[3]; float x, y, z; Color::Lab2XYZ(l, a, b, x, y, z); Color::xyz2rgb(x, y, z, rgb[0], rgb[1], rgb[2], iws); Color::Lab2XYZ(prev_l, prev_a, prev_b, x, y, z); Color::xyz2rgb(x, y, z, prev_rgb[0], prev_rgb[1], prev_rgb[2], iws); prev_rgb[channel] = rgb[channel]; Color::rgbxyz(prev_rgb[0], prev_rgb[1], prev_rgb[2], x, y, z, ws); Color::XYZ2Lab(x, y, z, l, a, b); } }; #ifdef __SSE2__ const auto CDL_v = [=](vfloat &l, vfloat &a, vfloat &b, float slope, float offset, float power, float saturation) -> void { if (slope != 1.f || offset != 0.f || power != 1.f || saturation != 1.f) { float ll[4]; float aa[4]; float bb[4]; STVFU(ll[0], l); STVFU(aa[0], a); STVFU(bb[0], b); for (int i = 0; i < 4; ++i) { CDL(ll[i], aa[i], bb[i], slope, offset, power, saturation); } l = LVFU(ll[0]); a = LVFU(aa[0]); b = LVFU(bb[0]); } }; const auto chan_v = [=](vfloat prev_l, vfloat prev_a, vfloat prev_b, vfloat &l, vfloat &a, vfloat &b, int channel) -> void { if (channel >= 0) { float ll[4]; float aa[4]; float bb[4]; STVFU(ll[0], l); STVFU(aa[0], a); STVFU(bb[0], b); float prev_ll[4]; float prev_aa[4]; float prev_bb[4]; STVFU(prev_ll[0], prev_l); STVFU(prev_aa[0], prev_a); STVFU(prev_bb[0], prev_b); for (int i = 0; i < 4; ++i) { chan(prev_ll[i], prev_aa[i], prev_bb[i], ll[i], aa[i], bb[i], channel); } l = LVFU(ll[0]); a = LVFU(aa[0]); b = LVFU(bb[0]); } }; #endif #ifdef _OPENMP #pragma omp parallel if (multiThread) #endif { #ifdef __SSE2__ vfloat c42000v = F2V(42000.f); vfloat cm42000v = F2V(-42000.f); #endif #ifdef _OPENMP #pragma omp for #endif for (int y = 0; y < lab->H; ++y) { int x = 0; #ifdef __SSE2__ for (; x < lab->W - 3; x += 4) { vfloat lv = LVFU(lab->L[y][x]); vfloat av = LVFU(lab->a[y][x]); vfloat bv = LVFU(lab->b[y][x]); for (int i = 0; i < n; ++i) { vfloat blendv = LVFU(abmask[i][y][x]); vfloat l_newv = lv; vfloat a_newv = vclampf(av + lv * F2V(abca[i]), cm42000v, c42000v); vfloat b_newv = vclampf(bv + lv * F2V(abcb[i]), cm42000v, c42000v); CDL_v(l_newv, a_newv, b_newv, slope[i], offset[i], power[i], rs[i]); l_newv = vmaxf(l_newv, ZEROV); chan_v(lv, av, bv, l_newv, a_newv, b_newv, channel[i]); lv = vintpf(LVFU(Lmask[i][y][x]), l_newv, lv); av = vintpf(blendv, a_newv, av); bv = vintpf(blendv, b_newv, bv); } STVFU(lab->L[y][x], lv); STVFU(lab->a[y][x], av); STVFU(lab->b[y][x], bv); } #endif for (; x < lab->W; ++x) { float l = lab->L[y][x]; float a = lab->a[y][x]; float b = lab->b[y][x]; for (int i = 0; i < n; ++i) { float blend = abmask[i][y][x]; float l_new = l; float a_new = LIM(a + l * abca[i], -42000.f, 42000.f); float b_new = LIM(b + l * abcb[i], -42000.f, 42000.f); CDL(l_new, a_new, b_new, slope[i], offset[i], power[i], rs[i]); l_new = max(l_new, 0.f); chan(l, a, b, l_new, a_new, b_new, channel[i]); l = intp(Lmask[i][y][x], l_new, l); a = intp(blend, a_new, a); b = intp(blend, b_new, b); } lab->L[y][x] = l; lab->a[y][x] = a; lab->b[y][x] = b; } } } } } // namespace rtengine