/* * This file is part of RawTherapee. * * Copyright (c) 2004-2010 Gabor Horvath * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ #include "rtengine.h" #include "colortemp.h" #include "imagesource.h" #include "improcfun.h" #include "curves.h" #include "iccstore.h" #include "clutstore.h" #include "processingjob.h" #include #include "../rtgui/options.h" #include "rawimagesource.h" #include "../rtgui/multilangmgr.h" #include "mytime.h" #undef THREAD_PRIORITY_NORMAL namespace rtengine { extern const Settings* settings; namespace { template void adjust_radius(const T &default_param, double scale_factor, T ¶m) { const double delta = (param - default_param) * scale_factor; param = default_param + delta; } class ImageProcessor { public: ImageProcessor( ProcessingJob* pjob, int& errorCode, ProgressListener* pl, bool flush ) : job(static_cast(pjob)), errorCode(errorCode), pl(pl), flush(flush), // internal state ii(nullptr), imgsrc(nullptr), fw(0), fh(0), tr(0), pp(0, 0, 0, 0, 0), calclum(nullptr), autoNR(0.f), autoNRmax(0.f), tilesize(0), overlap(0), ch_M(nullptr), max_r(nullptr), max_b(nullptr), min_b(nullptr), min_r(nullptr), lumL(nullptr), chromC(nullptr), ry(nullptr), sk(nullptr), pcsk(nullptr), expcomp(0.0), bright(0), contr(0), black(0), hlcompr(0), hlcomprthresh(0), baseImg(nullptr), labView(nullptr), autili(false), butili(false) { } Imagefloat *operator()() { if (!job->fast) { return normal_pipeline(); } else { return fast_pipeline(); } } private: Imagefloat *normal_pipeline() { if (!stage_init()) { return nullptr; } stage_denoise(); stage_transform(); return stage_finish(); } Imagefloat *fast_pipeline() { if (!job->pparams.resize.enabled) { return normal_pipeline(); } pl = nullptr; if (!stage_init()) { return nullptr; } stage_transform(); stage_early_resize(); stage_denoise(); return stage_finish(); } bool stage_init() { errorCode = 0; if (pl) { pl->setProgressStr("PROGRESSBAR_PROCESSING"); pl->setProgress(0.0); } ii = job->initialImage; if (!ii) { ii = InitialImage::load(job->fname, job->isRaw, &errorCode); if (errorCode) { delete job; return false; //return nullptr; } } procparams::ProcParams& params = job->pparams; // acquire image from imagesource imgsrc = ii->getImageSource(); tr = getCoarseBitMask(params.coarse); if(imgsrc->getSensorType() == ST_BAYER) { if(params.raw.bayersensor.method!= RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::PIXELSHIFT)) { imgsrc->setBorder(params.raw.bayersensor.border); } else { imgsrc->setBorder(std::max(params.raw.bayersensor.border, 2)); } } imgsrc->getFullSize(fw, fh, tr); // check the crop params if (params.crop.x > fw || params.crop.y > fh) { // the crop is completely out of the image, so we disable the crop params.crop.enabled = false; // and we set the values to the defaults params.crop.x = 0; params.crop.y = 0; params.crop.w = fw; params.crop.h = fh; } else { if (params.crop.x < 0) { params.crop.x = 0; } if (params.crop.y < 0) { params.crop.y = 0; } if ((params.crop.x + params.crop.w) > fw) { // crop overflow in the width dimension ; we trim it params.crop.w = fw - params.crop.x; } if ((params.crop.y + params.crop.h) > fh) { // crop overflow in the height dimension ; we trim it params.crop.h = fh - params.crop.y; } } // MyTime t1,t2; // t1.set(); ipf_p.reset(new ImProcFunctions(¶ms, true)); ImProcFunctions &ipf = * (ipf_p.get()); imgsrc->setCurrentFrame(params.raw.bayersensor.imageNum); imgsrc->preprocess(params.raw, params.lensProf, params.coarse, params.dirpyrDenoise.enabled); if (pl) { pl->setProgress(0.20); } bool autoContrast = imgsrc->getSensorType() == ST_BAYER ? params.raw.bayersensor.dualDemosaicAutoContrast : params.raw.xtranssensor.dualDemosaicAutoContrast; double contrastThreshold = imgsrc->getSensorType() == ST_BAYER ? params.raw.bayersensor.dualDemosaicContrast : params.raw.xtranssensor.dualDemosaicContrast; imgsrc->demosaic (params.raw, autoContrast, contrastThreshold); if (pl) { pl->setProgress(0.30); } pp = PreviewProps (0, 0, fw, fh, 1); if (params.retinex.enabled) { //enabled Retinex LUTf cdcurve(65536, 0); LUTf mapcurve(65536, 0); LUTu dummy; RetinextransmissionCurve dehatransmissionCurve; RetinexgaintransmissionCurve dehagaintransmissionCurve; bool dehacontlutili = false; bool mapcontlutili = false; bool useHsl = false; // multi_array2D conversionBuffer(1, 1); multi_array2D conversionBuffer(1, 1); imgsrc->retinexPrepareBuffers(params.icm, params.retinex, conversionBuffer, dummy); imgsrc->retinexPrepareCurves(params.retinex, cdcurve, mapcurve, dehatransmissionCurve, dehagaintransmissionCurve, dehacontlutili, mapcontlutili, useHsl, dummy, dummy); float minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax; imgsrc->retinex(params.icm, params.retinex, params.toneCurve, cdcurve, mapcurve, dehatransmissionCurve, dehagaintransmissionCurve, conversionBuffer, dehacontlutili, mapcontlutili, useHsl, minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax, dummy); } if (pl) { pl->setProgress(0.40); } imgsrc->HLRecovery_Global(params.toneCurve); if (pl) { pl->setProgress(0.45); } // set the color temperature currWB = ColorTemp(params.wb.temperature, params.wb.green, params.wb.equal, params.wb.method); if (!params.wb.enabled) { currWB = ColorTemp(); } else if (params.wb.method == "Camera") { currWB = imgsrc->getWB(); } else if (params.wb.method == "Auto") { double rm, gm, bm; imgsrc->getAutoWBMultipliers(rm, gm, bm); currWB.update(rm, gm, bm, params.wb.equal, params.wb.tempBias); } calclum = nullptr ; params.dirpyrDenoise.getCurves(noiseLCurve, noiseCCurve); autoNR = (float) settings->nrauto;// autoNRmax = (float) settings->nrautomax;// if (settings->leveldnti == 0) { tilesize = 1024; overlap = 128; } if (settings->leveldnti == 1) { tilesize = 768; overlap = 96; } // const int tilesize = 768; // const int overlap = 96; int numtiles_W, numtiles_H, tilewidth, tileheight, tileWskip, tileHskip; ipf.Tile_calc(tilesize, overlap, 2, fw, fh, numtiles_W, numtiles_H, tilewidth, tileheight, tileWskip, tileHskip); int nbtl = numtiles_W * numtiles_H; if ((settings->leveldnautsimpl == 1 && params.dirpyrDenoise.Cmethod == "AUT") || (settings->leveldnautsimpl == 0 && params.dirpyrDenoise.C2method == "AUTO")) { nbtl = 9; } ch_M = new float [nbtl];//allocate memory max_r = new float [nbtl]; max_b = new float [nbtl]; min_b = new float [9]; min_r = new float [9]; lumL = new float [nbtl]; chromC = new float [nbtl]; ry = new float [nbtl]; sk = new float [nbtl]; pcsk = new float [nbtl]; // printf("expert=%d\n",settings->leveldnautsimpl); if (settings->leveldnautsimpl == 1 && params.dirpyrDenoise.Cmethod == "PON") { MyTime t1pone, t2pone; t1pone.set(); int crW = 100; // settings->leveldnv == 0 int crH = 100; // settings->leveldnv == 0 if (settings->leveldnv == 1) { crW = 250; crH = 250; } if (settings->leveldnv == 2) { crW = int (tileWskip / 2); crH = int (tileHskip / 2); } // if(settings->leveldnv ==2) {crW=int(tileWskip/2);crH=int(1.15f*(tileWskip/2));}//adapted to scale of preview if (settings->leveldnv == 3) { crW = tileWskip - 10; crH = tileHskip - 10; } float lowdenoise = 1.f; int levaut = settings->leveldnaut; if (levaut == 1) { //Standard lowdenoise = 0.7f; } // int crW=tileWskip-10;//crop noise width // int crH=tileHskip-10;//crop noise height // Imagefloat *origCropPart;//init auto noise // origCropPart = new Imagefloat (crW, crH);//allocate memory if (params.dirpyrDenoise.enabled) {//evaluate Noise LUTf gamcurve(65536, 0); float gam, gamthresh, gamslope; ipf.RGB_denoise_infoGamCurve(params.dirpyrDenoise, imgsrc->isRAW(), gamcurve, gam, gamthresh, gamslope); #ifdef _OPENMP #pragma omp parallel #endif { Imagefloat *origCropPart;//init auto noise origCropPart = new Imagefloat(crW, crH); //allocate memory Imagefloat *provicalc = new Imagefloat((crW + 1) / 2, (crH + 1) / 2); //for denoise curves int skipP = 1; #ifdef _OPENMP #pragma omp for schedule(dynamic) collapse(2) nowait #endif for (int wcr = 0; wcr < numtiles_W; wcr++) { for (int hcr = 0; hcr < numtiles_H; hcr++) { int beg_tileW = wcr * tileWskip + tileWskip / 2.f - crW / 2.f; int beg_tileH = hcr * tileHskip + tileHskip / 2.f - crH / 2.f; PreviewProps ppP(beg_tileW, beg_tileH, crW, crH, skipP); imgsrc->getImage(currWB, tr, origCropPart, ppP, params.toneCurve, params.raw); //baseImg->getStdImage(currWB, tr, origCropPart, ppP, true, params.toneCurve); // we only need image reduced to 1/4 here for (int ii = 0; ii < crH; ii += 2) { for (int jj = 0; jj < crW; jj += 2) { provicalc->r(ii >> 1, jj >> 1) = origCropPart->r(ii, jj); provicalc->g(ii >> 1, jj >> 1) = origCropPart->g(ii, jj); provicalc->b(ii >> 1, jj >> 1) = origCropPart->b(ii, jj); } } imgsrc->convertColorSpace(provicalc, params.icm, currWB); //for denoise luminance curve float maxr = 0.f; float maxb = 0.f; float pondcorrec = 1.0f; float chaut, redaut, blueaut, maxredaut, maxblueaut, minredaut, minblueaut, chromina, sigma, lumema, sigma_L, redyel, skinc, nsknc; int Nb; chaut = 0.f; redaut = 0.f; blueaut = 0.f; maxredaut = 0.f; maxblueaut = 0.f; chromina = 0.f; sigma = 0.f; ipf.RGB_denoise_info(origCropPart, provicalc, imgsrc->isRAW(), gamcurve, gam, gamthresh, gamslope, params.dirpyrDenoise, imgsrc->getDirPyrDenoiseExpComp(), chaut, Nb, redaut, blueaut, maxredaut, maxblueaut, minredaut, minblueaut, chromina, sigma, lumema, sigma_L, redyel, skinc, nsknc); float multip = 1.f; float adjustr = 1.f; if (params.icm.workingProfile == "ProPhoto") { adjustr = 1.f; // } else if (params.icm.workingProfile == "Adobe RGB") { adjustr = 1.f / 1.3f; } else if (params.icm.workingProfile == "sRGB") { adjustr = 1.f / 1.3f; } else if (params.icm.workingProfile == "WideGamut") { adjustr = 1.f / 1.1f; } else if (params.icm.workingProfile == "Rec2020") { adjustr = 1.f / 1.1f; } else if (params.icm.workingProfile == "Beta RGB") { adjustr = 1.f / 1.2f; } else if (params.icm.workingProfile == "BestRGB") { adjustr = 1.f / 1.2f; } else if (params.icm.workingProfile == "BruceRGB") { adjustr = 1.f / 1.2f; } if (!imgsrc->isRAW()) { multip = 2.f; //take into account gamma for TIF / JPG approximate value...not good for gamma=1 } float maxmax = max(maxredaut, maxblueaut); float delta; int mode = 2; int lissage = settings->leveldnliss; ipf.calcautodn_info(chaut, delta, Nb, levaut, maxmax, lumema, chromina, mode, lissage, redyel, skinc, nsknc); // printf("PROCESS cha=%f red=%f bl=%f redM=%f bluM=%f chrom=%f sigm=%f lum=%f sigL=%f\n",chaut,redaut,blueaut, maxredaut, maxblueaut, chromina, sigma, lumema, sigma_L); if (maxredaut > maxblueaut) { maxr = (delta) / ((autoNRmax * multip * adjustr * lowdenoise) / 2.f); if (minblueaut <= minredaut && minblueaut < chaut) { maxb = (-chaut + minblueaut) / (autoNRmax * multip * adjustr * lowdenoise); } } else { maxb = (delta) / ((autoNRmax * multip * adjustr * lowdenoise) / 2.f); if (minredaut <= minblueaut && minredaut < chaut) { maxr = (-chaut + minredaut) / (autoNRmax * multip * adjustr * lowdenoise); } }//maxb mxr - empirical evaluation red / blue ch_M[hcr * numtiles_W + wcr] = pondcorrec * chaut / (autoNR * multip * adjustr * lowdenoise); max_r[hcr * numtiles_W + wcr] = pondcorrec * maxr; max_b[hcr * numtiles_W + wcr] = pondcorrec * maxb; lumL[hcr * numtiles_W + wcr] = lumema; chromC[hcr * numtiles_W + wcr] = chromina; ry[hcr * numtiles_W + wcr] = redyel; sk[hcr * numtiles_W + wcr] = skinc; pcsk[hcr * numtiles_W + wcr] = nsknc; } } delete provicalc; delete origCropPart; } int liss = settings->leveldnliss; //smooth result around mean if (liss == 2 || liss == 3) { // I smooth only mean and not delta (max) float nchm = 0.f; float koef = 0.4f; //between 0.1 to 0.9 if (liss == 3) { koef = 0.0f; //quasi auto for mean Ch } for (int wcr = 0; wcr < numtiles_W; wcr++) { for (int hcr = 0; hcr < numtiles_H; hcr++) { nchm += ch_M[hcr * numtiles_W + wcr]; } } nchm /= (numtiles_H * numtiles_W); for (int wcr = 0; wcr < numtiles_W; wcr++) { for (int hcr = 0; hcr < numtiles_H; hcr++) { ch_M[hcr * numtiles_W + wcr] = nchm + (ch_M[hcr * numtiles_W + wcr] - nchm) * koef; } } } if (liss == 3) { //same as auto but with much cells float MaxR = 0.f; float MaxB = 0.f; float MaxRMoy = 0.f; float MaxBMoy = 0.f; for (int k = 0; k < nbtl; k++) { MaxBMoy += max_b[k]; MaxRMoy += max_r[k]; if (max_r[k] > MaxR) { MaxR = max_r[k]; } if (max_b[k] > MaxB) { MaxB = max_b[k]; } } MaxBMoy /= nbtl; MaxRMoy /= nbtl; for (int k = 0; k < nbtl; k++) { if (MaxR > MaxB) { max_r[k] = MaxRMoy + (MaxR - MaxRMoy) * 0.66f; //#std Dev //max_b[k]=MinB; max_b[k] = MaxBMoy + (MaxB - MaxBMoy) * 0.66f; } else { max_b[k] = MaxBMoy + (MaxB - MaxBMoy) * 0.66f; //max_r[k]=MinR; max_r[k] = MaxRMoy + (MaxR - MaxRMoy) * 0.66f; } } } if (settings->verbose) { t2pone.set(); printf("Info denoise ponderated performed in %d usec:\n", t2pone.etime(t1pone)); } } } if ((settings->leveldnautsimpl == 1 && params.dirpyrDenoise.Cmethod == "AUT") || (settings->leveldnautsimpl == 0 && params.dirpyrDenoise.C2method == "AUTO")) { MyTime t1aue, t2aue; t1aue.set(); int crW, crH; if (settings->leveldnv == 0) { crW = 100; crH = 100; } if (settings->leveldnv == 1) { crW = 250; crH = 250; } if (settings->leveldnv == 2) { crW = int (tileWskip / 2); crH = int (tileHskip / 2); } // if(settings->leveldnv ==2) {crW=int(tileWskip/2);crH=int(1.15f*(tileWskip/2));}//adapted to scale of preview if (settings->leveldnv == 3) { crW = tileWskip - 10; crH = tileHskip - 10; } float lowdenoise = 1.f; int levaut = settings->leveldnaut; if (levaut == 1) { //Standard lowdenoise = 0.7f; } if (params.dirpyrDenoise.enabled) {//evaluate Noise LUTf gamcurve(65536, 0); float gam, gamthresh, gamslope; ipf.RGB_denoise_infoGamCurve(params.dirpyrDenoise, imgsrc->isRAW(), gamcurve, gam, gamthresh, gamslope); int Nb[9]; int coordW[3];//coordinate of part of image to measure noise int coordH[3]; int begW = 50; int begH = 50; coordW[0] = begW; coordW[1] = fw / 2 - crW / 2; coordW[2] = fw - crW - begW; coordH[0] = begH; coordH[1] = fh / 2 - crH / 2; coordH[2] = fh - crH - begH; #ifdef _OPENMP #pragma omp parallel #endif { Imagefloat *origCropPart;//init auto noise origCropPart = new Imagefloat(crW, crH); //allocate memory Imagefloat *provicalc = new Imagefloat((crW + 1) / 2, (crH + 1) / 2); //for denoise curves #ifdef _OPENMP #pragma omp for schedule(dynamic) collapse(2) nowait #endif for (int wcr = 0; wcr <= 2; wcr++) { for (int hcr = 0; hcr <= 2; hcr++) { PreviewProps ppP(coordW[wcr], coordH[hcr], crW, crH, 1); imgsrc->getImage(currWB, tr, origCropPart, ppP, params.toneCurve, params.raw); //baseImg->getStdImage(currWB, tr, origCropPart, ppP, true, params.toneCurve); // we only need image reduced to 1/4 here for (int ii = 0; ii < crH; ii += 2) { for (int jj = 0; jj < crW; jj += 2) { provicalc->r(ii >> 1, jj >> 1) = origCropPart->r(ii, jj); provicalc->g(ii >> 1, jj >> 1) = origCropPart->g(ii, jj); provicalc->b(ii >> 1, jj >> 1) = origCropPart->b(ii, jj); } } imgsrc->convertColorSpace(provicalc, params.icm, currWB); //for denoise luminance curve int nb = 0; float chaut = 0.f, redaut = 0.f, blueaut = 0.f, maxredaut = 0.f, maxblueaut = 0.f, minredaut = 0.f, minblueaut = 0.f, chromina = 0.f, sigma = 0.f, lumema = 0.f, sigma_L = 0.f, redyel = 0.f, skinc = 0.f, nsknc = 0.f; ipf.RGB_denoise_info(origCropPart, provicalc, imgsrc->isRAW(), gamcurve, gam, gamthresh, gamslope, params.dirpyrDenoise, imgsrc->getDirPyrDenoiseExpComp(), chaut, nb, redaut, blueaut, maxredaut, maxblueaut, minredaut, minblueaut, chromina, sigma, lumema, sigma_L, redyel, skinc, nsknc); Nb[hcr * 3 + wcr] = nb; ch_M[hcr * 3 + wcr] = chaut; max_r[hcr * 3 + wcr] = maxredaut; max_b[hcr * 3 + wcr] = maxblueaut; min_r[hcr * 3 + wcr] = minredaut; min_b[hcr * 3 + wcr] = minblueaut; lumL[hcr * 3 + wcr] = lumema; chromC[hcr * 3 + wcr] = chromina; ry[hcr * 3 + wcr] = redyel; sk[hcr * 3 + wcr] = skinc; pcsk[hcr * 3 + wcr] = nsknc; } } delete provicalc; delete origCropPart; } float chM = 0.f; float MaxR = 0.f; float MaxB = 0.f; float MinR = 100000000.f; float MinB = 100000000.f; float maxr = 0.f; float maxb = 0.f; float multip = 1.f; float adjustr = 1.f; float Max_R[9] = {0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f}; float Max_B[9] = {0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f}; float Min_R[9]; float Min_B[9]; float MaxRMoy = 0.f; float MaxBMoy = 0.f; float MinRMoy = 0.f; float MinBMoy = 0.f; if (params.icm.workingProfile == "ProPhoto") { adjustr = 1.f; } else if (params.icm.workingProfile == "Adobe RGB") { adjustr = 1.f / 1.3f; } else if (params.icm.workingProfile == "sRGB") { adjustr = 1.f / 1.3f; } else if (params.icm.workingProfile == "WideGamut") { adjustr = 1.f / 1.1f; } else if (params.icm.workingProfile == "Rec2020") { adjustr = 1.f / 1.1f; } else if (params.icm.workingProfile == "Beta RGB") { adjustr = 1.f / 1.2f; } else if (params.icm.workingProfile == "BestRGB") { adjustr = 1.f / 1.2f; } else if (params.icm.workingProfile == "BruceRGB") { adjustr = 1.f / 1.2f; } if (!imgsrc->isRAW()) { multip = 2.f; //take into account gamma for TIF / JPG approximate value...not good for gamma=1 } float delta[9]; int mode = 1; int lissage = settings->leveldnliss; for (int k = 0; k < 9; k++) { float maxmax = max(max_r[k], max_b[k]); ipf.calcautodn_info(ch_M[k], delta[k], Nb[k], levaut, maxmax, lumL[k], chromC[k], mode, lissage, ry[k], sk[k], pcsk[k]); // printf("ch_M=%f delta=%f\n",ch_M[k], delta[k]); } for (int k = 0; k < 9; k++) { if (max_r[k] > max_b[k]) { //printf("R delta=%f koef=%f\n",delta[k],autoNRmax*multip*adjustr*lowdenoise); Max_R[k] = (delta[k]) / ((autoNRmax * multip * adjustr * lowdenoise) / 2.f); Min_B[k] = - (ch_M[k] - min_b[k]) / (autoNRmax * multip * adjustr * lowdenoise); Max_B[k] = 0.f; Min_R[k] = 0.f; } else { //printf("B delta=%f koef=%f\n",delta[k],autoNRmax*multip*adjustr*lowdenoise); Max_B[k] = (delta[k]) / ((autoNRmax * multip * adjustr * lowdenoise) / 2.f); Min_R[k] = - (ch_M[k] - min_r[k]) / (autoNRmax * multip * adjustr * lowdenoise); Min_B[k] = 0.f; Max_R[k] = 0.f; } } for (int k = 0; k < 9; k++) { // printf("ch_M= %f Max_R=%f Max_B=%f min_r=%f min_b=%f\n",ch_M[k],Max_R[k], Max_B[k],Min_R[k], Min_B[k]); chM += ch_M[k]; MaxBMoy += Max_B[k]; MaxRMoy += Max_R[k]; MinRMoy += Min_R[k]; MinBMoy += Min_B[k]; if (Max_R[k] > MaxR) { MaxR = Max_R[k]; } if (Max_B[k] > MaxB) { MaxB = Max_B[k]; } if (Min_R[k] < MinR) { MinR = Min_R[k]; } if (Min_B[k] < MinB) { MinB = Min_B[k]; } } chM /= 9; MaxBMoy /= 9; MaxRMoy /= 9; MinBMoy /= 9; MinRMoy /= 9; if (MaxR > MaxB) { maxr = MaxRMoy + (MaxR - MaxRMoy) * 0.66f; //#std Dev // maxb=MinB; maxb = MinBMoy + (MinB - MinBMoy) * 0.66f; } else { maxb = MaxBMoy + (MaxB - MaxBMoy) * 0.66f; // maxr=MinR; maxr = MinRMoy + (MinR - MinRMoy) * 0.66f; } // printf("SIMPL cha=%f red=%f bl=%f \n",chM,maxr,maxb); params.dirpyrDenoise.chroma = chM / (autoNR * multip * adjustr); params.dirpyrDenoise.redchro = maxr; params.dirpyrDenoise.bluechro = maxb; } if (settings->verbose) { t2aue.set(); printf("Info denoise auto performed in %d usec:\n", t2aue.etime(t1aue)); } //end evaluate noise } baseImg = new Imagefloat(fw, fh); imgsrc->getImage(currWB, tr, baseImg, pp, params.toneCurve, params.raw); if (pl) { pl->setProgress(0.50); } // LUTf Noisecurve (65536,0); //!!!// auto exposure!!! expcomp = params.toneCurve.expcomp; bright = params.toneCurve.brightness; contr = params.toneCurve.contrast; black = params.toneCurve.black; hlcompr = params.toneCurve.hlcompr; hlcomprthresh = params.toneCurve.hlcomprthresh; if (params.toneCurve.autoexp) { LUTu aehist; int aehistcompr; imgsrc->getAutoExpHistogram(aehist, aehistcompr); ipf.getAutoExp(aehist, aehistcompr, params.toneCurve.clip, expcomp, bright, contr, black, hlcompr, hlcomprthresh); } if (params.toneCurve.histmatching) { if (!params.toneCurve.fromHistMatching) { imgsrc->getAutoMatchedToneCurve(params.icm, params.toneCurve.curve); } if (params.toneCurve.autoexp) { params.toneCurve.expcomp = 0.0; } params.toneCurve.autoexp = false; params.toneCurve.curveMode = ToneCurveParams::TcMode::FILMLIKE; params.toneCurve.curve2 = { 0 }; params.toneCurve.brightness = 0; params.toneCurve.contrast = 0; params.toneCurve.black = 0; } // at this stage, we can flush the raw data to free up quite an important amount of memory // commented out because it makes the application crash when batch processing... // TODO: find a better place to flush rawData and rawRGB if (flush) { imgsrc->flushRawData(); imgsrc->flushRGB(); } return true; } void stage_denoise() { procparams::ProcParams& params = job->pparams; //ImProcFunctions ipf (¶ms, true); ImProcFunctions &ipf = * (ipf_p.get()); // perform luma/chroma denoise // CieImage *cieView; // NoisCurve noiseLCurve; // bool lldenoiseutili=false; // Imagefloat *calclum ; // params.dirpyrDenoise.getCurves(noiseLCurve, lldenoiseutili); // if (params.dirpyrDenoise.enabled && lldenoiseutili) { DirPyrDenoiseParams denoiseParams = params.dirpyrDenoise; // make a copy because we cheat here if (denoiseParams.Lmethod == "CUR") { if (noiseLCurve) { denoiseParams.luma = 0.5f; } else { denoiseParams.luma = 0.0f; } } else if (denoiseParams.Lmethod == "SLI") { noiseLCurve.Reset(); } if (denoiseParams.enabled && (noiseLCurve || noiseCCurve)) { // we only need image reduced to 1/4 here calclum = new Imagefloat((fw + 1) / 2, (fh + 1) / 2); //for luminance denoise curve #ifdef _OPENMP #pragma omp parallel for #endif for (int ii = 0; ii < fh; ii += 2) { for (int jj = 0; jj < fw; jj += 2) { calclum->r(ii >> 1, jj >> 1) = baseImg->r(ii, jj); calclum->g(ii >> 1, jj >> 1) = baseImg->g(ii, jj); calclum->b(ii >> 1, jj >> 1) = baseImg->b(ii, jj); } } imgsrc->convertColorSpace(calclum, params.icm, currWB); } if (denoiseParams.enabled) { // CurveFactory::denoiseLL(lldenoiseutili, denoiseParams.lcurve, Noisecurve,1); //denoiseParams.getCurves(noiseLCurve); // ipf.RGB_denoise(baseImg, baseImg, calclum, imgsrc->isRAW(), denoiseParams, params.defringe, imgsrc->getDirPyrDenoiseExpComp(), noiseLCurve, lldenoiseutili); float nresi, highresi; int kall = 2; ipf.RGB_denoise(kall, baseImg, baseImg, calclum, ch_M, max_r, max_b, imgsrc->isRAW(), denoiseParams, imgsrc->getDirPyrDenoiseExpComp(), noiseLCurve, noiseCCurve, nresi, highresi); } // delete calclum; delete [] ch_M; delete [] max_r; delete [] max_b; delete [] min_r; delete [] min_b; delete [] lumL; delete [] chromC; delete [] ry; delete [] sk; delete [] pcsk; } void stage_transform() { procparams::ProcParams& params = job->pparams; //ImProcFunctions ipf (¶ms, true); ImProcFunctions &ipf = * (ipf_p.get()); imgsrc->convertColorSpace(baseImg, params.icm, currWB); // perform first analysis hist16(65536); ipf.firstAnalysis(baseImg, params, hist16); ipf.dehaze(baseImg); ipf.ToneMapFattal02(baseImg); // perform transform (excepted resizing) if (ipf.needsTransform()) { Imagefloat* trImg = nullptr; if (ipf.needsLuminanceOnly()) { trImg = baseImg; } else { trImg = new Imagefloat(fw, fh); } ipf.transform(baseImg, trImg, 0, 0, 0, 0, fw, fh, fw, fh, imgsrc->getMetaData(), imgsrc->getRotateDegree(), true); if (trImg != baseImg) { delete baseImg; baseImg = trImg; } } } Imagefloat *stage_finish() { procparams::ProcParams& params = job->pparams; //ImProcFunctions ipf (¶ms, true); ImProcFunctions &ipf = * (ipf_p.get()); if (params.dirpyrequalizer.cbdlMethod == "bef" && params.dirpyrequalizer.enabled && !params.colorappearance.enabled) { const int W = baseImg->getWidth(); const int H = baseImg->getHeight(); LabImage labcbdl(W, H); ipf.rgb2lab (*baseImg, labcbdl, params.icm.workingProfile); ipf.dirpyrequalizer(&labcbdl, 1); ipf.lab2rgb (labcbdl, *baseImg, params.icm.workingProfile); } //gamma TRC working if (params.icm.workingTRC == "Custom") { //exec TRC IN free const Glib::ustring profile = params.icm.workingProfile; if (profile == "sRGB" || profile == "Adobe RGB" || profile == "ProPhoto" || profile == "WideGamut" || profile == "BruceRGB" || profile == "Beta RGB" || profile == "BestRGB" || profile == "Rec2020" || profile == "ACESp0" || profile == "ACESp1") { const int cw = baseImg->getWidth(); const int ch = baseImg->getHeight(); cmsHTRANSFORM dummy = nullptr; // put gamma TRC to 1 ipf.workingtrc(baseImg, baseImg, cw, ch, -5, params.icm.workingProfile, 2.4, 12.92310, dummy, true, false, false); //adjust TRC ipf.workingtrc(baseImg, baseImg, cw, ch, 5, params.icm.workingProfile, params.icm.workingTRCGamma, params.icm.workingTRCSlope, dummy, false, true, false); } } // RGB processing curve1(65536); curve2(65536); curve(65536, 0); satcurve(65536, 0); lhskcurve(65536, 0); lumacurve(32770, 0); // lumacurve[32768] and lumacurve[32769] will be set to 32768 and 32769 later to allow linear interpolation clcurve(65536, 0); wavclCurve(65536, 0); //if(params.blackwhite.enabled) params.toneCurve.hrenabled=false; CurveFactory::complexCurve(expcomp, black / 65535.0, hlcompr, hlcomprthresh, params.toneCurve.shcompr, bright, contr, params.toneCurve.curve, params.toneCurve.curve2, hist16, curve1, curve2, curve, dummy, customToneCurve1, customToneCurve2); CurveFactory::RGBCurve(params.rgbCurves.rcurve, rCurve, 1); CurveFactory::RGBCurve(params.rgbCurves.gcurve, gCurve, 1); CurveFactory::RGBCurve(params.rgbCurves.bcurve, bCurve, 1); bool opautili = false; if (params.colorToning.enabled) { TMatrix wprof = ICCStore::getInstance()->workingSpaceMatrix (params.icm.workingProfile); double wp[3][3] = { {wprof[0][0], wprof[0][1], wprof[0][2]}, {wprof[1][0], wprof[1][1], wprof[1][2]}, {wprof[2][0], wprof[2][1], wprof[2][2]} }; params.colorToning.getCurves(ctColorCurve, ctOpacityCurve, wp, opautili); clToningcurve(65536, 0); CurveFactory::curveToning(params.colorToning.clcurve, clToningcurve, 1); cl2Toningcurve(65536, 0); CurveFactory::curveToning(params.colorToning.cl2curve, cl2Toningcurve, 1); } labView = new LabImage(fw, fh); reservView = new LabImage(fw, fh); if (params.blackwhite.enabled) { CurveFactory::curveBW(params.blackwhite.beforeCurve, params.blackwhite.afterCurve, hist16, dummy, customToneCurvebw1, customToneCurvebw2, 1); } double rrm, ggm, bbm; float autor, autog, autob; float satLimit = float (params.colorToning.satProtectionThreshold) / 100.f * 0.7f + 0.3f; float satLimitOpacity = 1.f - (float (params.colorToning.saturatedOpacity) / 100.f); if (params.colorToning.enabled && params.colorToning.autosat && params.colorToning.method != "LabGrid") { //for colortoning evaluation of saturation settings float moyS = 0.f; float eqty = 0.f; ipf.moyeqt(baseImg, moyS, eqty); //return image : mean saturation and standard dev of saturation float satp = ((moyS + 1.5f * eqty) - 0.3f) / 0.7f; //1.5 sigma ==> 93% pixels with high saturation -0.3 / 0.7 convert to Hombre scale if (satp >= 0.92f) { satp = 0.92f; //avoid values too high (out of gamut) } if (satp <= 0.15f) { satp = 0.15f; //avoid too low values } satLimit = 100.f * satp; satLimitOpacity = 100.f * (moyS - 0.85f * eqty); //-0.85 sigma==>20% pixels with low saturation } autor = -9000.f; // This will ask to compute the "auto" values for the B&W tool (have to be inferior to -5000) DCPProfile::ApplyState as; DCPProfile *dcpProf = imgsrc->getDCP(params.icm, as); LUTu histToneCurve; ipf.rgbProc(baseImg, labView, nullptr, curve1, curve2, curve, params.toneCurve.saturation, rCurve, gCurve, bCurve, satLimit, satLimitOpacity, ctColorCurve, ctOpacityCurve, opautili, clToningcurve, cl2Toningcurve, customToneCurve1, customToneCurve2, customToneCurvebw1, customToneCurvebw2, rrm, ggm, bbm, autor, autog, autob, expcomp, hlcompr, hlcomprthresh, dcpProf, as, histToneCurve); if (settings->verbose) { printf("Output image / Auto B&W coefs: R=%.2f G=%.2f B=%.2f\n", autor, autog, autob); } // if clut was used and size of clut cache == 1 we free the memory used by the clutstore (default clut cache size = 1 for 32 bit OS) if (params.filmSimulation.enabled && !params.filmSimulation.clutFilename.empty() && options.clutCacheSize == 1) { CLUTStore::getInstance().clearCache(); } // freeing up some memory customToneCurve1.Reset(); customToneCurve2.Reset(); ctColorCurve.Reset(); ctOpacityCurve.Reset(); noiseLCurve.Reset(); noiseCCurve.Reset(); customToneCurvebw1.Reset(); customToneCurvebw2.Reset(); // Freeing baseImg because not used anymore delete baseImg; baseImg = nullptr; if (pl) { pl->setProgress(0.55); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // start tile processing...??? if (params.labCurve.contrast != 0) { //only use hist16 for contrast hist16.clear(); #ifdef _OPENMP #pragma omp parallel #endif { LUTu hist16thr(hist16.getSize()); // one temporary lookup table per thread hist16thr.clear(); #ifdef _OPENMP #pragma omp for schedule(static) nowait #endif for (int i = 0; i < fh; i++) for (int j = 0; j < fw; j++) { hist16thr[(int)((labView->L[i][j]))]++; } #ifdef _OPENMP #pragma omp critical #endif { hist16 += hist16thr; } } } bool utili; CurveFactory::complexLCurve(params.labCurve.brightness, params.labCurve.contrast, params.labCurve.lcurve, hist16, lumacurve, dummy, 1, utili); bool clcutili; CurveFactory::curveCL(clcutili, params.labCurve.clcurve, clcurve, 1); bool ccutili, cclutili; CurveFactory::complexsgnCurve(autili, butili, ccutili, cclutili, params.labCurve.acurve, params.labCurve.bcurve, params.labCurve.cccurve, params.labCurve.lccurve, curve1, curve2, satcurve, lhskcurve, 1); // bool locallutili = false; // bool localcutili = false; reservView->CopyFrom(labView); if (params.locallab.enabled) { MyTime t1, t2; t1.set(); LUTf huerefs(500, -10000.f); LUTf sobelrefs(500, -10000.f); LUTi centerx(500, -10000); LUTi centery(500, -10000); LocretigainCurve locRETgainCurve; LocLHCurve loclhCurve; LocHHCurve lochhCurve; LocCCmaskCurve locccmasCurve; LocLLmaskCurve locllmasCurve; LocHHmaskCurve lochhmasCurve; LocCCmaskexpCurve locccmasexpCurve; LocLLmaskexpCurve locllmasexpCurve; LocHHmaskexpCurve lochhmasexpCurve; LUTf lllocalcurve(65536, 0); LUTf cclocalcurve(65536, 0); LUTf sklocalcurve(65536, 0); LUTf hltonecurveloc(65536, 0); LUTf shtonecurveloc(65536, 0); LUTf tonecurveloc(65536, 0); LUTf lightCurveloc(32770, 0); LUTf exlocalcurve(65536, 0); // int maxspot = 1; float** shbuffer = nullptr; for (int sp = 0; sp < params.locallab.nbspot && sp < (int)params.locallab.spots.size(); sp++) { if (params.locallab.spots.at(sp).inverssha) { shbuffer = new float*[fh]; for (int i = 0; i < fh; i++) { shbuffer[i] = new float[fw]; } } // Set local curves of current spot to LUT bool LHutili = false; bool HHutili = false; bool locallutili = false; bool localcutili = false; bool localskutili = false; bool localexutili = false; bool llmasutili = false; bool lcmasexputili = false; bool lhmasexputili = false; bool llmasexputili = false; bool lcmasutili = false; bool lhmasutili = false; locRETgainCurve.Set(params.locallab.spots.at(sp).localTgaincurve); loclhCurve.Set(params.locallab.spots.at(sp).LHcurve, LHutili); lochhCurve.Set(params.locallab.spots.at(sp).HHcurve, HHutili); locccmasCurve.Set(params.locallab.spots.at(sp).CCmaskcurve, lcmasutili); locllmasCurve.Set(params.locallab.spots.at(sp).LLmaskcurve, llmasutili); lochhmasCurve.Set(params.locallab.spots.at(sp).HHmaskcurve, lhmasutili); locccmasexpCurve.Set(params.locallab.spots.at(sp).CCmaskexpcurve, lcmasexputili); locllmasexpCurve.Set(params.locallab.spots.at(sp).LLmaskexpcurve, llmasexputili); lochhmasexpCurve.Set(params.locallab.spots.at(sp).HHmaskexpcurve, lhmasexputili); CurveFactory::curveLocal(locallutili, params.locallab.spots.at(sp).llcurve, lllocalcurve, 1); CurveFactory::curveCCLocal(localcutili, params.locallab.spots.at(sp).cccurve, cclocalcurve, 1); CurveFactory::curveskLocal(localskutili, params.locallab.spots.at(sp).skintonescurve, sklocalcurve, 1); CurveFactory::curveexLocal(localexutili, params.locallab.spots.at(sp).excurve, exlocalcurve, 1); //provisory double ecomp = params.locallab.spots.at(sp).expcomp; double black = params.locallab.spots.at(sp).black; double hlcompr = params.locallab.spots.at(sp).hlcompr; double hlcomprthresh = params.locallab.spots.at(sp).hlcomprthresh; double shcompr = params.locallab.spots.at(sp).shcompr; double br = params.locallab.spots.at(sp).lightness; double cont = params.locallab.spots.at(sp).contrast; // Reference parameters computation double huere, chromare, lumare, huerefblu, chromarefblu, lumarefblu, sobelre; float avg = 0.f; if (params.locallab.spots.at(sp).spotMethod == "exc") { ipf.calc_ref(sp, reservView, reservView, 0, 0, fw, fh, 1, huerefblu, chromarefblu, lumarefblu, huere, chromare, lumare, sobelre, avg); } else { ipf.calc_ref(sp, labView, labView, 0, 0, fw, fh, 1, huerefblu, chromarefblu, lumarefblu, huere, chromare, lumare, sobelre, avg); } CurveFactory::complexCurvelocal(ecomp, black / 65535., hlcompr, hlcomprthresh, shcompr, br, cont, lumare, hltonecurveloc, shtonecurveloc, tonecurveloc, lightCurveloc, avg, 1); // No Locallab mask is shown in exported picture ipf.Lab_Local(2, sp, (float**)shbuffer, labView, labView, reservView, 0, 0, fw, fh, 1, locRETgainCurve, lllocalcurve, locallutili, loclhCurve, lochhCurve, locccmasCurve, lcmasutili, locllmasCurve, llmasutili, lochhmasCurve, lhmasutili, locccmasexpCurve, lcmasexputili, locllmasexpCurve, llmasexputili, lochhmasexpCurve, lhmasexputili, LHutili, HHutili, cclocalcurve, localcutili, localskutili, sklocalcurve, localexutili, exlocalcurve, hltonecurveloc, shtonecurveloc, tonecurveloc, lightCurveloc, huerefblu, chromarefblu, lumarefblu, huere, chromare, lumare, sobelre, 0, 0); // Clear local curves lllocalcurve.clear(); cclocalcurve.clear(); sklocalcurve.clear(); exlocalcurve.clear(); if (params.locallab.spots.at(sp).inverssha) { for (int i = 0; i < fh; i++) { delete [] shbuffer[i]; } delete [] shbuffer; } } t2.set(); if (settings->verbose) { printf("Total local:- %d usec\n", t2.etime(t1)); } } delete reservView; reservView = nullptr; ipf.chromiLuminanceCurve(nullptr, 1, labView, labView, curve1, curve2, satcurve, lhskcurve, clcurve, lumacurve, utili, autili, butili, ccutili, cclutili, clcutili, dummy, dummy); if ((params.colorappearance.enabled && !params.colorappearance.tonecie) || (!params.colorappearance.enabled)) { ipf.EPDToneMap(labView, 5, 1); } ipf.vibrance(labView); ipf.labColorCorrectionRegions(labView); if ((params.colorappearance.enabled && !settings->autocielab) || (!params.colorappearance.enabled)) { ipf.impulsedenoise(labView); } // for all treatments Defringe, Sharpening, Contrast detail ,Microcontrast they are activated if "CIECAM" function are disabled if ((params.colorappearance.enabled && !settings->autocielab) || (!params.colorappearance.enabled)) { ipf.defringe(labView); } if (params.sharpenEdge.enabled) { ipf.MLsharpen(labView); } if (params.sharpenMicro.enabled) { if ((params.colorappearance.enabled && !settings->autocielab) || (!params.colorappearance.enabled)) { ipf.MLmicrocontrast(labView); //!params.colorappearance.sharpcie } } if (((params.colorappearance.enabled && !settings->autocielab) || (!params.colorappearance.enabled)) && params.sharpening.enabled) { ipf.sharpening(labView, params.sharpening); } WaveletParams WaveParams = params.wavelet; WavCurve wavCLVCurve; WavOpacityCurveRG waOpacityCurveRG; WavOpacityCurveBY waOpacityCurveBY; WavOpacityCurveW waOpacityCurveW; WavOpacityCurveWL waOpacityCurveWL; params.wavelet.getCurves(wavCLVCurve, waOpacityCurveRG, waOpacityCurveBY, waOpacityCurveW, waOpacityCurveWL); // directional pyramid wavelet if (params.dirpyrequalizer.cbdlMethod == "aft") { if ((params.colorappearance.enabled && !settings->autocielab) || !params.colorappearance.enabled) { ipf.dirpyrequalizer(labView, 1); //TODO: this is the luminance tonecurve, not the RGB one } } bool wavcontlutili = false; CurveFactory::curveWavContL(wavcontlutili, params.wavelet.wavclCurve, wavclCurve,/* hist16C, dummy,*/ 1); if (params.wavelet.enabled) { ipf.ip_wavelet(labView, labView, 2, WaveParams, wavCLVCurve, waOpacityCurveRG, waOpacityCurveBY, waOpacityCurveW, waOpacityCurveWL, wavclCurve, 1); } wavCLVCurve.Reset(); ipf.softLight(labView); //Colorappearance and tone-mapping associated int f_w = 1, f_h = 1; if (params.colorappearance.tonecie || params.colorappearance.enabled) { f_w = fw; f_h = fh; } CieImage *cieView = new CieImage(f_w, (f_h)); CurveFactory::curveLightBrightColor( params.colorappearance.curve, params.colorappearance.curve2, params.colorappearance.curve3, hist16, dummy, dummy, dummy, customColCurve1, customColCurve2, customColCurve3, 1); if (params.colorappearance.enabled) { double adap; int imgNum = 0; if (imgsrc->getSensorType() == ST_BAYER) { imgNum = params.raw.bayersensor.imageNum; } else if (imgsrc->getSensorType() == ST_FUJI_XTRANS) { //imgNum = params.raw.xtranssensor.imageNum; } float fnum = imgsrc->getMetaData()->getFNumber(imgNum); // F number float fiso = imgsrc->getMetaData()->getISOSpeed(imgNum) ; // ISO float fspeed = imgsrc->getMetaData()->getShutterSpeed(imgNum) ; //speed float fcomp = imgsrc->getMetaData()->getExpComp(imgNum); //compensation + - if (fnum < 0.3f || fiso < 5.f || fspeed < 0.00001f) { adap = 2000.; }//if no exif data or wrong else { float E_V = fcomp + log2((fnum * fnum) / fspeed / (fiso / 100.f)); E_V += params.toneCurve.expcomp;// exposure compensation in tonecurve ==> direct EV E_V += log2(params.raw.expos); // exposure raw white point ; log2 ==> linear to EV adap = powf(2.f, E_V - 3.f); //cd / m2 } LUTf CAMBrightCurveJ; LUTf CAMBrightCurveQ; float CAMMean = NAN; float d, dj, yb; ipf.ciecam_02float(cieView, float (adap), 1, 2, labView, ¶ms, customColCurve1, customColCurve2, customColCurve3, dummy, dummy, CAMBrightCurveJ, CAMBrightCurveQ, CAMMean, 5, 1, true, d, dj, yb, 1); } delete cieView; cieView = nullptr; // end tile processing...??? //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if (pl) { pl->setProgress(0.60); } int imw, imh; double tmpScale = ipf.resizeScale(¶ms, fw, fh, imw, imh); bool labResize = params.resize.enabled && params.resize.method != "Nearest" && (tmpScale != 1.0 || params.prsharpening.enabled); LabImage *tmplab; // crop and convert to rgb16 int cx = 0, cy = 0, cw = labView->W, ch = labView->H; if (params.crop.enabled) { cx = params.crop.x; cy = params.crop.y; cw = params.crop.w; ch = params.crop.h; if (labResize) { // crop lab data tmplab = new LabImage(cw, ch); for (int row = 0; row < ch; row++) { for (int col = 0; col < cw; col++) { tmplab->L[row][col] = labView->L[row + cy][col + cx]; tmplab->a[row][col] = labView->a[row + cy][col + cx]; tmplab->b[row][col] = labView->b[row + cy][col + cx]; } } delete labView; labView = tmplab; cx = 0; cy = 0; } } if (labResize) { // resize lab data if ((labView->W != imw || labView->H != imh) && (params.resize.allowUpscaling || (labView->W >= imw && labView->H >= imh))) { // resize image tmplab = new LabImage(imw, imh); ipf.Lanczos(labView, tmplab, tmpScale); delete labView; labView = tmplab; } cw = labView->W; ch = labView->H; if (params.prsharpening.enabled) { for (int i = 0; i < ch; i++) { for (int j = 0; j < cw; j++) { labView->L[i][j] = labView->L[i][j] < 0.f ? 0.f : labView->L[i][j]; } } ipf.sharpening(labView, params.prsharpening); } } cmsHPROFILE jprof = nullptr; constexpr bool customGamma = false; constexpr bool useLCMS = false; bool bwonly = params.blackwhite.enabled && !params.colorToning.enabled && !autili && !butili && !params.colorappearance.enabled; ///////////// Custom output gamma has been removed, the user now has to create ///////////// a new output profile with the ICCProfileCreator // if Default gamma mode: we use the profile selected in the "Output profile" combobox; // gamma come from the selected profile, otherwise it comes from "Free gamma" tool Imagefloat* readyImg = ipf.lab2rgbOut (labView, cx, cy, cw, ch, params.icm); if (settings->verbose) { printf ("Output profile_: \"%s\"\n", params.icm.outputProfile.c_str()); } delete labView; labView = nullptr; // delete reservView; // reservView = nullptr; if (bwonly) { //force BW r=g=b if (settings->verbose) { printf("Force BW\n"); } for (int ccw = 0; ccw < cw; ccw++) { for (int cch = 0; cch < ch; cch++) { readyImg->r(cch, ccw) = readyImg->g(cch, ccw); readyImg->b(cch, ccw) = readyImg->g(cch, ccw); } } } if (pl) { pl->setProgress(0.70); } if (tmpScale != 1.0 && params.resize.method == "Nearest" && (params.resize.allowUpscaling || (readyImg->getWidth() >= imw && readyImg->getHeight() >= imh))) { // resize rgb data (gamma applied) Imagefloat* tempImage = new Imagefloat(imw, imh); ipf.resize(readyImg, tempImage, tmpScale); delete readyImg; readyImg = tempImage; } switch (params.metadata.mode) { case MetaDataParams::TUNNEL: // Sending back the whole first root, which won't necessarily be the selected frame number // and may contain subframe depending on initial raw's hierarchy readyImg->setMetadata(ii->getMetaData()->getRootExifData()); break; case MetaDataParams::EDIT: // ask for the correct frame number, but may contain subframe depending on initial raw's hierarchy readyImg->setMetadata(ii->getMetaData()->getBestExifData(imgsrc, ¶ms.raw), params.exif, params.iptc); break; default: // case MetaDataParams::STRIP // nothing to do break; } // Setting the output curve to readyImg if (customGamma) { if (!useLCMS) { // use corrected sRGB profile in order to apply a good TRC if present, otherwise use LCMS2 profile generated by lab2rgb16 w/ gamma ProfileContent pc(jprof); readyImg->setOutputProfile(pc.getData().c_str(), pc.getData().size()); } } else { // use the selected output profile if present, otherwise use LCMS2 profile generate by lab2rgb16 w/ gamma if (params.icm.outputProfile != "" && params.icm.outputProfile != ColorManagementParams::NoICMString) { // if ICCStore::getInstance()->getProfile send back an object, then ICCStore::getInstance()->getContent will do too cmsHPROFILE jprof = ICCStore::getInstance()->getProfile (params.icm.outputProfile); //get outProfile if (jprof == nullptr) { if (settings->verbose) { printf ("\"%s\" ICC output profile not found!\n - use LCMS2 substitution\n", params.icm.outputProfile.c_str()); } } else { if (settings->verbose) { printf ("Using \"%s\" output profile\n", params.icm.outputProfile.c_str()); } ProfileContent pc = ICCStore::getInstance()->getContent (params.icm.outputProfile); readyImg->setOutputProfile(pc.getData().c_str(), pc.getData().size()); } } else { // No ICM readyImg->setOutputProfile(nullptr, 0); } } // t2.set(); // if( settings->verbose ) // printf("Total:- %d usec\n", t2.etime(t1)); if (!job->initialImage) { ii->decreaseRef(); } delete job; if (pl) { pl->setProgress(0.75); } /* curve1.reset();curve2.reset(); curve.reset(); satcurve.reset(); lhskcurve.reset(); rCurve.reset(); gCurve.reset(); bCurve.reset(); hist16.reset(); hist16C.reset(); */ return readyImg; } void stage_early_resize() { procparams::ProcParams& params = job->pparams; //ImProcFunctions ipf (¶ms, true); ImProcFunctions &ipf = * (ipf_p.get()); int imw, imh; double scale_factor = ipf.resizeScale(¶ms, fw, fh, imw, imh); std::unique_ptr tmplab(new LabImage(fw, fh)); ipf.rgb2lab (*baseImg, *tmplab, params.icm.workingProfile); if (params.crop.enabled) { int cx = params.crop.x; int cy = params.crop.y; int cw = params.crop.w; int ch = params.crop.h; std::unique_ptr cropped(new LabImage(cw, ch)); for (int row = 0; row < ch; row++) { for (int col = 0; col < cw; col++) { cropped->L[row][col] = tmplab->L[row + cy][col + cx]; cropped->a[row][col] = tmplab->a[row + cy][col + cx]; cropped->b[row][col] = tmplab->b[row + cy][col + cx]; } } tmplab = std::move(cropped); } assert(params.resize.enabled); // resize image if (params.resize.allowUpscaling || (imw <= fw && imh <= fh)) { std::unique_ptr resized(new LabImage(imw, imh)); ipf.Lanczos(tmplab.get(), resized.get(), scale_factor); tmplab = std::move(resized); } adjust_procparams(scale_factor); fw = imw; fh = imh; delete baseImg; baseImg = new Imagefloat(fw, fh); ipf.lab2rgb (*tmplab, *baseImg, params.icm.workingProfile); } void adjust_procparams(double scale_factor) { procparams::ProcParams ¶ms = job->pparams; procparams::ProcParams defaultparams; params.resize.enabled = false; params.crop.enabled = false; if (params.prsharpening.enabled) { params.sharpening = params.prsharpening; } else { params.sharpening.radius *= scale_factor; params.sharpening.deconvradius *= scale_factor; } params.impulseDenoise.thresh *= scale_factor; if (scale_factor < 0.5) { params.impulseDenoise.enabled = false; } params.wavelet.strength *= scale_factor; double noise_factor = (1.0 - scale_factor); params.dirpyrDenoise.luma *= noise_factor; // * scale_factor; //params.dirpyrDenoise.Ldetail += (100 - params.dirpyrDenoise.Ldetail) * scale_factor; auto &lcurve = params.dirpyrDenoise.lcurve; for (size_t i = 2; i < lcurve.size(); i += 4) { lcurve[i] *= min(noise_factor /* * scale_factor*/, 1.0); } noiseLCurve.Set(lcurve); const char *medmethods[] = { "soft", "33", "55soft", "55", "77", "99" }; if (params.dirpyrDenoise.median) { auto &key = params.dirpyrDenoise.methodmed == "RGB" ? params.dirpyrDenoise.rgbmethod : params.dirpyrDenoise.medmethod; for (int i = 1; i < int (sizeof(medmethods) / sizeof(const char *)); ++i) { if (key == medmethods[i]) { int j = i - int (1.0 / scale_factor); if (j < 0) { params.dirpyrDenoise.median = false; } else { key = medmethods[j]; } break; } } } params.epd.scale *= scale_factor; //params.epd.edgeStopping *= scale_factor; const double dirpyreq_scale = min(scale_factor * 1.5, 1.0); for (int i = 0; i < 6; ++i) { adjust_radius(defaultparams.dirpyrequalizer.mult[i], dirpyreq_scale, params.dirpyrequalizer.mult[i]); } params.dirpyrequalizer.threshold *= scale_factor; adjust_radius(defaultparams.defringe.radius, scale_factor, params.defringe.radius); params.sh.radius *= scale_factor; params.localContrast.radius *= scale_factor; if (params.raw.xtranssensor.method == procparams::RAWParams::XTransSensor::getMethodString(procparams::RAWParams::XTransSensor::Method::THREE_PASS)) { params.raw.xtranssensor.method = procparams::RAWParams::XTransSensor::getMethodString(procparams::RAWParams::XTransSensor::Method::ONE_PASS); } if (params.raw.bayersensor.method == procparams::RAWParams::BayerSensor::getMethodString(procparams::RAWParams::BayerSensor::Method::PIXELSHIFT)) { params.raw.bayersensor.method = procparams::RAWParams::BayerSensor::getMethodString(procparams::RAWParams::BayerSensor::Method::RCD); } // Use Rcd instead of Amaze for fast export if (params.raw.bayersensor.method == procparams::RAWParams::BayerSensor::getMethodString(procparams::RAWParams::BayerSensor::Method::AMAZE)) { params.raw.bayersensor.method = procparams::RAWParams::BayerSensor::getMethodString(procparams::RAWParams::BayerSensor::Method::RCD); } } private: ProcessingJobImpl* job; int& errorCode; ProgressListener* pl; bool flush; // internal state std::unique_ptr ipf_p; InitialImage *ii; ImageSource *imgsrc; int fw; int fh; int tr; PreviewProps pp; NoiseCurve noiseLCurve; NoiseCurve noiseCCurve; Imagefloat *calclum; float autoNR; float autoNRmax; int tilesize; int overlap; float *ch_M; float *max_r; float *max_b; float *min_b; float *min_r; float *lumL; float *chromC; float *ry; float *sk; float *pcsk; double expcomp; int bright; int contr; int black; int hlcompr; int hlcomprthresh; ColorTemp currWB; Imagefloat *baseImg; LabImage* labView; LabImage* reservView; LUTu hist16; LUTf curve1; LUTf curve2; LUTf curve; LUTf satcurve; LUTf lhskcurve; LUTf lumacurve; LUTf clcurve; LUTf clToningcurve; LUTf cl2Toningcurve; LUTf wavclCurve; LUTf rCurve; LUTf gCurve; LUTf bCurve; LUTu dummy; ToneCurve customToneCurve1, customToneCurve2; ColorGradientCurve ctColorCurve; OpacityCurve ctOpacityCurve; ColorAppearance customColCurve1, customColCurve2, customColCurve3 ; ToneCurve customToneCurvebw1; ToneCurve customToneCurvebw2; bool autili, butili; }; } // namespace IImagefloat* processImage(ProcessingJob* pjob, int& errorCode, ProgressListener* pl, bool flush) { ImageProcessor proc(pjob, errorCode, pl, flush); return proc(); } void batchProcessingThread(ProcessingJob* job, BatchProcessingListener* bpl) { ProcessingJob* currentJob = job; while (currentJob) { int errorCode; IImagefloat* img = processImage(currentJob, errorCode, bpl, true); if (errorCode) { bpl->error(M("MAIN_MSG_CANNOTLOAD")); currentJob = nullptr; } else { try { currentJob = bpl->imageReady(img); } catch (Glib::Exception& ex) { bpl->error(ex.what()); currentJob = nullptr; } } } } void startBatchProcessing(ProcessingJob* job, BatchProcessingListener* bpl) { if (bpl) { Glib::Thread::create(sigc::bind(sigc::ptr_fun(batchProcessingThread), job, bpl), 0, true, true, Glib::THREAD_PRIORITY_LOW); } } }