/* * This file is part of RawTherapee. * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . * * 2010 Ilya Popov * 2012 Emil Martinec * 2014 Ingo Weyrich */ #ifndef CPLX_WAVELET_LEVEL_H_INCLUDED #define CPLX_WAVELET_LEVEL_H_INCLUDED #include #include "rt_math.h" #include "opthelper.h" #include "stdio.h" namespace rtengine { template class wavelet_level { // level of decomposition int lvl; // whether to subsample the output bool subsamp_out; int numThreads; // spacing of filter taps int skip; bool bigBlockOfMemory; // allocation and destruction of data storage T ** create(int n); void destroy(T ** subbands); // load a row/column of input data, possibly with padding void AnalysisFilterHaarVertical (const T * const srcbuffer, T * dstLo, T * dstHi, const int width, const int height, const int row); void AnalysisFilterHaarHorizontal (const T * const srcbuffer, T * dstLo, T * dstHi, const int width, const int row); void SynthesisFilterHaarHorizontal (const T * const srcLo, const T * const srcHi, T * dst, const int width, const int height); void SynthesisFilterHaarVertical (const T * const srcLo, const T * const srcHi, T * dst, const int width, const int height); void AnalysisFilterSubsampHorizontal (T * srcbuffer, T * dstLo, T * dstHi, float *filterLo, float *filterHi, const int taps, const int offset, const int srcwidth, const int dstwidth, const int row); #ifdef __SSE2__ void AnalysisFilterSubsampVertical (T * srcbuffer, T * dstLo, T * dstHi, float (*filterLo)[4], float (*filterHi)[4], const int taps, const int offset, const int width, const int height, const int row); #else void AnalysisFilterSubsampVertical (T * srcbuffer, T * dstLo, T * dstHi, float *filterLo, float *filterHi, int const taps, const int offset, const int width, const int height, const int row); #endif void SynthesisFilterSubsampHorizontal (T * srcLo, T * srcHi, T * dst, float *filterLo, float *filterHi, const int taps, const int offset, const int scrwidth, const int dstwidth, const int height); #ifdef __SSE2__ void SynthesisFilterSubsampVertical (T * srcLo, T * srcHi, T * dst, float (*filterLo)[4], float (*filterHi)[4], const int taps, const int offset, const int width, const int srcheight, const int dstheight, const float blend); #else void SynthesisFilterSubsampVertical (T * srcLo, T * srcHi, T * dst, float *filterLo, float *filterHi, const int taps, const int offset, const int width, const int srcheight, const int dstheight, const float blend); #endif public: bool memoryAllocationFailed; T ** wavcoeffs; // full size int m_w, m_h; // size of low frequency part int m_w2, m_h2; template wavelet_level(E * src, E * dst, int level, int subsamp, int w, int h, float *filterV, float *filterH, int len, int offset, int skipcrop, int numThreads) : lvl(level), subsamp_out((subsamp >> level) & 1), numThreads(numThreads), skip(1 << level), bigBlockOfMemory(true), memoryAllocationFailed(false), wavcoeffs(nullptr), m_w(w), m_h(h), m_w2(w), m_h2(h) { if (subsamp) { skip = 1; for (int n = 0; n < level; n++) { skip *= 2 - ((subsamp >> n) & 1); } skip /= skipcrop; if(skip < 1) { skip = 1; } } m_w2 = (subsamp_out ? (w + 1) / 2 : w); m_h2 = (subsamp_out ? (h + 1) / 2 : h); wavcoeffs = create((m_w2) * (m_h2)); if(!memoryAllocationFailed) { decompose_level(src, dst, filterV, filterH, len, offset); } } ~wavelet_level() { destroy(wavcoeffs); } T ** subbands() const { return wavcoeffs; } T * lopass() const { return wavcoeffs[0]; } int width() const { return m_w2; } int height() const { return m_h2; } int stride() const { return skip; } bool bigBlockOfMemoryUsed() const { return bigBlockOfMemory; } template void decompose_level(E *src, E *dst, float *filterV, float *filterH, int len, int offset); template void reconstruct_level(E* tmpLo, E* tmpHi, E *src, E *dst, float *filterV, float *filterH, int taps, int offset, const float blend = 1.f); }; template T ** wavelet_level::create(int n) { T * data = new (std::nothrow) T[3 * n]; if(data == nullptr) { bigBlockOfMemory = false; } T ** subbands = new T*[4]; for(int j = 1; j < 4; j++) { if(bigBlockOfMemory) { subbands[j] = data + n * (j - 1); } else { subbands[j] = new (std::nothrow) T[n]; if(subbands[j] == nullptr) { printf("Couldn't allocate memory in level %d of wavelet\n", lvl); memoryAllocationFailed = true; } } } return subbands; } template void wavelet_level::destroy(T ** subbands) { if(subbands) { if(bigBlockOfMemory) { delete[] subbands[1]; } else { for(int j = 1; j < 4; j++) { if(subbands[j] != nullptr) { delete[] subbands[j]; } } } delete[] subbands; } } template void wavelet_level::AnalysisFilterHaarHorizontal (const T * const RESTRICT srcbuffer, T * RESTRICT dstLo, T * RESTRICT dstHi, const int width, const int row) { /* Basic convolution code * Applies a Haar filter */ for(int i = 0; i < (width - skip); i++) { dstLo[row * width + i] = (srcbuffer[i] + srcbuffer[i + skip]); dstHi[row * width + i] = (srcbuffer[i] - srcbuffer[i + skip]); } for(int i = max(width - skip, skip); i < (width); i++) { dstLo[row * width + i] = (srcbuffer[i] + srcbuffer[i - skip]); dstHi[row * width + i] = (srcbuffer[i] - srcbuffer[i - skip]); } } template void wavelet_level::AnalysisFilterHaarVertical (const T * const RESTRICT srcbuffer, T * RESTRICT dstLo, T * RESTRICT dstHi, const int width, const int height, const int row) { /* Basic convolution code * Applies a Haar filter */ if(row < (height - skip)) { for(int j = 0; j < width; j++) { dstLo[j] = 0.25f * (srcbuffer[row * width + j] + srcbuffer[(row + skip) * width + j]); dstHi[j] = 0.25f * (srcbuffer[row * width + j] - srcbuffer[(row + skip) * width + j]); } } else if(row >= max(height - skip, skip)) { for(int j = 0; j < width; j++) { dstLo[j] = 0.25f * (srcbuffer[row * width + j] + srcbuffer[(row - skip) * width + j]); dstHi[j] = 0.25f * (srcbuffer[row * width + j] - srcbuffer[(row - skip) * width + j]); } } } // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% template void wavelet_level::SynthesisFilterHaarHorizontal (const T * const RESTRICT srcLo, const T * const RESTRICT srcHi, T * RESTRICT dst, const int width, const int height) { /* Basic convolution code * Applies a Haar filter * */ #ifdef _OPENMP #pragma omp parallel for num_threads(numThreads) if(numThreads>1) #endif for (int k = 0; k < height; k++) { for(int i = 0; i < skip; i++) { dst[k * width + i] = (srcLo[k * width + i] + srcHi[k * width + i]); } for(int i = skip; i < width; i++) { dst[k * width + i] = 0.5f * (srcLo[k * width + i] + srcHi[k * width + i] + srcLo[k * width + i - skip] - srcHi[k * width + i - skip]); } } } template void wavelet_level::SynthesisFilterHaarVertical (const T * const RESTRICT srcLo, const T * const RESTRICT srcHi, T * RESTRICT dst, const int width, const int height) { /* Basic convolution code * Applies a Haar filter * */ #ifdef _OPENMP #pragma omp parallel num_threads(numThreads) if(numThreads>1) #endif { #ifdef _OPENMP #pragma omp for nowait #endif for(int i = 0; i < skip; i++) { for(int j = 0; j < width; j++) { dst[width * i + j] = (srcLo[i * width + j] + srcHi[i * width + j]); } } #ifdef _OPENMP #pragma omp for #endif for(int i = skip; i < height; i++) { for(int j = 0; j < width; j++) { dst[width * i + j] = 0.5f * (srcLo[i * width + j] + srcHi[i * width + j] + srcLo[(i - skip) * width + j] - srcHi[(i - skip) * width + j]); } } } } template void wavelet_level::AnalysisFilterSubsampHorizontal (T * RESTRICT srcbuffer, T * RESTRICT dstLo, T * RESTRICT dstHi, float * RESTRICT filterLo, float *RESTRICT filterHi, const int taps, const int offset, const int srcwidth, const int dstwidth, const int row) { /* Basic convolution code * Applies an FIR filter 'filter' with filter length 'taps', * aligning the 'offset' element of the filter with * the input pixel, and skipping 'skip' pixels between taps * Output is subsampled by two */ // calculate coefficients for(int i = 0; i < srcwidth; i += 2) { float lo = 0.f, hi = 0.f; if (LIKELY(i > skip * taps && i < srcwidth - skip * taps)) { //bulk for (int j = 0, l = -skip * offset; j < taps; j++, l += skip) { float src = srcbuffer[i - l]; lo += filterLo[j] * src;//lopass channel hi += filterHi[j] * src;//hipass channel } } else { for (int j = 0; j < taps; j++) { int arg = max(0, min(i + skip * (offset - j), srcwidth - 1)); //clamped BC's lo += filterLo[j] * srcbuffer[arg];//lopass channel hi += filterHi[j] * srcbuffer[arg];//hipass channel } } dstLo[row * dstwidth + ((i / 2))] = lo; dstHi[row * dstwidth + ((i / 2))] = hi; } } #ifdef __SSE2__ template void wavelet_level::AnalysisFilterSubsampVertical (T * RESTRICT srcbuffer, T * RESTRICT dstLo, T * RESTRICT dstHi, float (* RESTRICT filterLo)[4], float (* RESTRICT filterHi)[4], const int taps, const int offset, const int width, const int height, const int row) { /* Basic convolution code * Applies an FIR filter 'filter' with filter length 'taps', * aligning the 'offset' element of the filter with * the input pixel, and skipping 'skip' pixels between taps * Output is subsampled by two */ // calculate coefficients if (LIKELY(row > skip * taps && row < height - skip * taps)) { //bulk int k; for (k = 0; k < width - 3; k += 4) { __m128 lov = _mm_setzero_ps(); __m128 hiv = _mm_setzero_ps(); for (int j = 0, l = -skip * offset; j < taps; j++, l += skip) { __m128 srcv = LVFU(srcbuffer[(row - l) * width + k]); lov += LVF(filterLo[j][0]) * srcv;//lopass channel hiv += LVF(filterHi[j][0]) * srcv;//hipass channel } STVF(dstLo[k], lov); STVF(dstHi[k], hiv); } for (; k < width; k++) { float lo = 0.f, hi = 0.f; for (int j = 0, l = -skip * offset; j < taps; j++, l += skip) { lo += filterLo[j][0] * srcbuffer[(row - l) * width + k]; //lopass channel hi += filterHi[j][0] * srcbuffer[(row - l) * width + k]; //hipass channel } dstLo[k] = lo; dstHi[k] = hi; } } else {//boundary int k; for (k = 0; k < width - 3; k += 4) { __m128 lov = _mm_setzero_ps(); __m128 hiv = _mm_setzero_ps(); for (int j = 0; j < taps; j++) { int arg = max(0, min(row + skip * (offset - j), height - 1)) * width + k; //clamped BC's __m128 srcv = LVFU(srcbuffer[arg]); lov += LVF(filterLo[j][0]) * srcv;//lopass channel hiv += LVF(filterHi[j][0]) * srcv;//hipass channel } STVF(dstLo[k], lov); STVF(dstHi[k], hiv); } for (; k < width; k++) { float lo = 0.f, hi = 0.f; for (int j = 0; j < taps; j++) { int arg = max(0, min(row + skip * (offset - j), height - 1)) * width + k; //clamped BC's lo += filterLo[j][0] * srcbuffer[arg];//lopass channel hi += filterHi[j][0] * srcbuffer[arg];//hipass channel } dstLo[k] = lo; dstHi[k] = hi; } } } #else template void wavelet_level::AnalysisFilterSubsampVertical (T * RESTRICT srcbuffer, T * RESTRICT dstLo, T * RESTRICT dstHi, float * RESTRICT filterLo, float * RESTRICT filterHi, const int taps, const int offset, const int width, const int height, const int row) { /* Basic convolution code * Applies an FIR filter 'filter' with filter length 'taps', * aligning the 'offset' element of the filter with * the input pixel, and skipping 'skip' pixels between taps * Output is subsampled by two */ // calculate coefficients if (LIKELY(row > skip * taps && row < height - skip * taps)) { //bulk for (int k = 0; k < width; k++) { float lo = 0.f, hi = 0.f; for (int j = 0, l = -skip * offset; j < taps; j++, l += skip) { lo += filterLo[j] * srcbuffer[(row - l) * width + k]; //lopass channel hi += filterHi[j] * srcbuffer[(row - l) * width + k]; //hipass channel } dstLo[k] = lo; dstHi[k] = hi; } } else {//boundary for (int k = 0; k < width; k++) { float lo = 0.f, hi = 0.f; for (int j = 0; j < taps; j++) { int arg = max(0, min(row + skip * (offset - j), height - 1)) * width + k; //clamped BC's lo += filterLo[j] * srcbuffer[arg];//lopass channel hi += filterHi[j] * srcbuffer[arg];//hipass channel } dstLo[k] = lo; dstHi[k] = hi; } } } #endif template void wavelet_level::SynthesisFilterSubsampHorizontal (T * RESTRICT srcLo, T * RESTRICT srcHi, T * RESTRICT dst, float * RESTRICT filterLo, float * RESTRICT filterHi, const int taps, const int offset, const int srcwidth, const int dstwidth, const int height) { /* Basic convolution code * Applies an FIR filter 'filter' with filter length 'taps', * aligning the 'offset' element of the filter with * the input pixel, and skipping 'skip' pixels between taps * Output is subsampled by two */ // calculate coefficients int shift = skip * (taps - offset - 1); //align filter with data #ifdef _OPENMP #pragma omp parallel for num_threads(numThreads) if(numThreads>1) #endif for (int k = 0; k < height; k++) { int i; for(i = 0; i <= min(skip * taps, dstwidth); i++) { float tot = 0.f; //TODO: this is correct only if skip=1; otherwise, want to work with cosets of length 'skip' int i_src = (i + shift) / 2; int begin = (i + shift) % 2; for (int j = begin, l = 0; j < taps; j += 2, l += skip) { int arg = max(0, min((i_src - l), srcwidth - 1)); //clamped BC's tot += ((filterLo[j] * srcLo[k * srcwidth + arg] + filterHi[j] * srcHi[k * srcwidth + arg])); } dst[k * dstwidth + i] = tot; } for(; i < min(dstwidth - skip * taps, dstwidth); i++) { float tot = 0.f; //TODO: this is correct only if skip=1; otherwise, want to work with cosets of length 'skip' int i_src = (i + shift) / 2; int begin = (i + shift) % 2; for (int j = begin, l = 0; j < taps; j += 2, l += skip) { tot += ((filterLo[j] * srcLo[k * srcwidth + i_src - l] + filterHi[j] * srcHi[k * srcwidth + i_src - l])); } dst[k * dstwidth + i] = tot; } for(; i < dstwidth; i++) { float tot = 0.f; //TODO: this is correct only if skip=1; otherwise, want to work with cosets of length 'skip' int i_src = (i + shift) / 2; int begin = (i + shift) % 2; for (int j = begin, l = 0; j < taps; j += 2, l += skip) { int arg = max(0, min((i_src - l), srcwidth - 1)); //clamped BC's tot += ((filterLo[j] * srcLo[k * srcwidth + arg] + filterHi[j] * srcHi[k * srcwidth + arg])); } dst[k * dstwidth + i] = tot; } } } #ifdef __SSE2__ template void wavelet_level::SynthesisFilterSubsampVertical (T * RESTRICT srcLo, T * RESTRICT srcHi, T * RESTRICT dst, float (* RESTRICT filterLo)[4], float (* RESTRICT filterHi)[4], const int taps, const int offset, const int width, const int srcheight, const int dstheight, const float blend) { /* Basic convolution code * Applies an FIR filter 'filter' with filter length 'taps', * aligning the 'offset' element of the filter with * the input pixel, and skipping 'skip' pixels between taps * Output is subsampled by two */ const float srcFactor = 1.f - blend; // calculate coefficients int shift = skip * (taps - offset - 1); //align filter with data __m128 fourv = _mm_set1_ps(4.f); __m128 srcFactorv = _mm_set1_ps(srcFactor); __m128 dstFactorv = _mm_set1_ps(blend); #ifdef _OPENMP #pragma omp parallel for num_threads(numThreads) if(numThreads>1) #endif for(int i = 0; i < dstheight; i++) { int i_src = (i + shift) / 2; int begin = (i + shift) % 2; //TODO: this is correct only if skip=1; otherwise, want to work with cosets of length 'skip' if (LIKELY(i > skip * taps && i < (dstheight - skip * taps))) { //bulk int k; for (k = 0; k < width - 3; k += 4) { __m128 totv = _mm_setzero_ps(); for (int j = begin, l = 0; j < taps; j += 2, l += skip) { totv += ((LVF(filterLo[j][0]) * LVFU(srcLo[(i_src - l) * width + k]) + LVF(filterHi[j][0]) * LVFU(srcHi[(i_src - l) * width + k]))); } _mm_storeu_ps(&dst[width * i + k], LVFU(dst[width * i + k]) * srcFactorv + dstFactorv * fourv * totv); } for (; k < width; k++) { float tot = 0.f; for (int j = begin, l = 0; j < taps; j += 2, l += skip) { tot += ((filterLo[j][0] * srcLo[(i_src - l) * width + k] + filterHi[j][0] * srcHi[(i_src - l) * width + k])); } dst[width * i + k] = dst[width * i + k] * srcFactor + blend * 4.f * tot; } } else {//boundary int k; for (k = 0; k < width - 3; k += 4) { __m128 totv = _mm_setzero_ps(); for (int j = begin, l = 0; j < taps; j += 2, l += skip) { int arg = max(0, min((i_src - l), srcheight - 1)) * width + k; //clamped BC's totv += ((LVF(filterLo[j][0]) * LVFU(srcLo[arg]) + LVF(filterHi[j][0]) * LVFU(srcHi[arg]))); } _mm_storeu_ps(&dst[width * i + k], LVFU(dst[width * i + k]) * srcFactorv + dstFactorv * fourv * totv); } for (; k < width; k++) { float tot = 0.f; for (int j = begin, l = 0; j < taps; j += 2, l += skip) { int arg = max(0, min((i_src - l), srcheight - 1)) * width + k; //clamped BC's tot += ((filterLo[j][0] * srcLo[arg] + filterHi[j][0] * srcHi[arg])); } dst[width * i + k] = dst[width * i + k] * srcFactor + blend * 4.f * tot; } } } } #else template void wavelet_level::SynthesisFilterSubsampVertical (T * RESTRICT srcLo, T * RESTRICT srcHi, T * RESTRICT dst, float * RESTRICT filterLo, float * RESTRICT filterHi, const int taps, const int offset, const int width, const int srcheight, const int dstheight, const float blend) { /* Basic convolution code * Applies an FIR filter 'filter' with filter length 'taps', * aligning the 'offset' element of the filter with * the input pixel, and skipping 'skip' pixels between taps * Output is subsampled by two */ const float srcFactor = 1.f - blend; // calculate coefficients int shift = skip * (taps - offset - 1); //align filter with data #ifdef _OPENMP #pragma omp parallel for num_threads(numThreads) if(numThreads>1) #endif for(int i = 0; i < dstheight; i++) { int i_src = (i + shift) / 2; int begin = (i + shift) % 2; //TODO: this is correct only if skip=1; otherwise, want to work with cosets of length 'skip' if (LIKELY(i > skip * taps && i < (dstheight - skip * taps))) { //bulk for (int k = 0; k < width; k++) { float tot = 0.f; for (int j = begin, l = 0; j < taps; j += 2, l += skip) { tot += ((filterLo[j] * srcLo[(i_src - l) * width + k] + filterHi[j] * srcHi[(i_src - l) * width + k])); } dst[width * i + k] = dst[width * i + k] * srcFactor + blend * 4.f * tot; } } else {//boundary for (int k = 0; k < width; k++) { float tot = 0.f; for (int j = begin, l = 0; j < taps; j += 2, l += skip) { int arg = max(0, min((i_src - l), srcheight - 1)) * width + k; //clamped BC's tot += ((filterLo[j] * srcLo[arg] + filterHi[j] * srcHi[arg])); } dst[width * i + k] = dst[width * i + k] * srcFactor + blend * 4.f * tot; } } } } #endif #ifdef __SSE2__ template template void wavelet_level::decompose_level(E *src, E *dst, float *filterV, float *filterH, int taps, int offset) { /* filter along rows and columns */ float filterVarray[2 * taps][4] ALIGNED64; if(subsamp_out) { for(int i = 0; i < 2 * taps; i++) { for(int j = 0; j < 4; j++) { filterVarray[i][j] = filterV[i]; } } } #ifdef _OPENMP #pragma omp parallel num_threads(numThreads) if(numThreads>1) #endif { T tmpLo[m_w] ALIGNED64; T tmpHi[m_w] ALIGNED64; if(subsamp_out) { #ifdef _OPENMP #pragma omp for #endif for(int row = 0; row < m_h; row += 2) { AnalysisFilterSubsampVertical (src, tmpLo, tmpHi, filterVarray, filterVarray + taps, taps, offset, m_w, m_h, row); AnalysisFilterSubsampHorizontal (tmpLo, dst, wavcoeffs[1], filterH, filterH + taps, taps, offset, m_w, m_w2, row / 2); AnalysisFilterSubsampHorizontal (tmpHi, wavcoeffs[2], wavcoeffs[3], filterH, filterH + taps, taps, offset, m_w, m_w2, row / 2); } } else { #ifdef _OPENMP #pragma omp for #endif for(int row = 0; row < m_h; row++) { AnalysisFilterHaarVertical (src, tmpLo, tmpHi, m_w, m_h, row); AnalysisFilterHaarHorizontal (tmpLo, dst, wavcoeffs[1], m_w, row); AnalysisFilterHaarHorizontal (tmpHi, wavcoeffs[2], wavcoeffs[3], m_w, row); } } } } #else template template void wavelet_level::decompose_level(E *src, E *dst, float *filterV, float *filterH, int taps, int offset) { #ifdef _OPENMP #pragma omp parallel num_threads(numThreads) if(numThreads>1) #endif { T tmpLo[m_w] ALIGNED64; T tmpHi[m_w] ALIGNED64; /* filter along rows and columns */ if(subsamp_out) { #ifdef _OPENMP #pragma omp for #endif for(int row = 0; row < m_h; row += 2) { AnalysisFilterSubsampVertical (src, tmpLo, tmpHi, filterV, filterV + taps, taps, offset, m_w, m_h, row); AnalysisFilterSubsampHorizontal (tmpLo, dst, wavcoeffs[1], filterH, filterH + taps, taps, offset, m_w, m_w2, row / 2); AnalysisFilterSubsampHorizontal (tmpHi, wavcoeffs[2], wavcoeffs[3], filterH, filterH + taps, taps, offset, m_w, m_w2, row / 2); } } else { #ifdef _OPENMP #pragma omp for #endif for(int row = 0; row < m_h; row++) { AnalysisFilterHaarVertical (src, tmpLo, tmpHi, m_w, m_h, row); AnalysisFilterHaarHorizontal (tmpLo, dst, wavcoeffs[1], m_w, row); AnalysisFilterHaarHorizontal (tmpHi, wavcoeffs[2], wavcoeffs[3], m_w, row); } } } } #endif #ifdef __SSE2__ template template void wavelet_level::reconstruct_level(E* tmpLo, E* tmpHi, E * src, E *dst, float *filterV, float *filterH, int taps, int offset, const float blend) { if(memoryAllocationFailed) { return; } /* filter along rows and columns */ if (subsamp_out) { float filterVarray[2 * taps][4] ALIGNED64; for(int i = 0; i < 2 * taps; i++) { for(int j = 0; j < 4; j++) { filterVarray[i][j] = filterV[i]; } } SynthesisFilterSubsampHorizontal (wavcoeffs[2], wavcoeffs[3], tmpHi, filterH, filterH + taps, taps, offset, m_w2, m_w, m_h2); SynthesisFilterSubsampHorizontal (src, wavcoeffs[1], tmpLo, filterH, filterH + taps, taps, offset, m_w2, m_w, m_h2); SynthesisFilterSubsampVertical (tmpLo, tmpHi, dst, filterVarray, filterVarray + taps, taps, offset, m_w, m_h2, m_h, blend); } else { SynthesisFilterHaarHorizontal (wavcoeffs[2], wavcoeffs[3], tmpHi, m_w, m_h2); SynthesisFilterHaarHorizontal (src, wavcoeffs[1], tmpLo, m_w, m_h2); SynthesisFilterHaarVertical (tmpLo, tmpHi, dst, m_w, m_h); } } #else template template void wavelet_level::reconstruct_level(E* tmpLo, E* tmpHi, E * src, E *dst, float *filterV, float *filterH, int taps, int offset, const float blend) { if(memoryAllocationFailed) { return; } /* filter along rows and columns */ if (subsamp_out) { SynthesisFilterSubsampHorizontal (wavcoeffs[2], wavcoeffs[3], tmpHi, filterH, filterH + taps, taps, offset, m_w2, m_w, m_h2); SynthesisFilterSubsampHorizontal (src, wavcoeffs[1], tmpLo, filterH, filterH + taps, taps, offset, m_w2, m_w, m_h2); SynthesisFilterSubsampVertical (tmpLo, tmpHi, dst, filterV, filterV + taps, taps, offset, m_w, m_h2, m_h, blend); } else { SynthesisFilterHaarHorizontal (wavcoeffs[2], wavcoeffs[3], tmpHi, m_w, m_h2); SynthesisFilterHaarHorizontal (src, wavcoeffs[1], tmpLo, m_w, m_h2); SynthesisFilterHaarVertical (tmpLo, tmpHi, dst, m_w, m_h); } } #endif } #endif