/* * This file is part of RawTherapee. * * Copyright (c) 2019 Alberto Romei * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ #include #include #ifdef _OPENMP #include #endif #include "rawimagesource.h" #include "mytime.h" #include "opthelper.h" #include "procparams.h" #include "rt_algo.h" #include "rtengine.h" //#define BENCHMARK #include "StopWatch.h" namespace rtengine { extern const Settings* settings; } namespace { bool channelsAvg( const rtengine::RawImage* ri, int width, int height, const float* cblacksom, rtengine::Coord spotPos, int spotSize, const rtengine::procparams::FilmNegativeParams& params, std::array& avgs ) { avgs = {}; // Channel averages if (ri->getSensorType() != rtengine::ST_BAYER && ri->getSensorType() != rtengine::ST_FUJI_XTRANS) { return false; } if (rtengine::settings->verbose) { printf("Spot coord: x=%d y=%d\n", spotPos.x, spotPos.y); } const int half_spot_size = spotSize / 2; const int& x1 = spotPos.x - half_spot_size; const int& x2 = spotPos.x + half_spot_size; const int& y1 = spotPos.y - half_spot_size; const int& y2 = spotPos.y + half_spot_size; if (x1 < 0 || x2 > width || y1 < 0 || y2 > height) { return false; // Spot goes outside bounds, bail out. } std::array pxCount = {}; // Per-channel sample counts for (int c = spotPos.x - spotSize; c < spotPos.x + spotSize; ++c) { for (int r = spotPos.y - spotSize; r < spotPos.y + spotSize; ++r) { const int ch = ri->getSensorType() == rtengine::ST_BAYER ? ri->FC(r,c) : ri->XTRANSFC(r,c); ++pxCount[ch]; // Sample the original unprocessed values from RawImage, subtracting black levels. // Scaling is irrelevant, as we are only interested in the ratio between two spots. avgs[ch] += ri->data[r][c] - cblacksom[ch]; } } for (int ch = 0; ch < 3; ++ch) { avgs[ch] /= pxCount[ch]; } return true; } } bool rtengine::RawImageSource::getFilmNegativeExponents(Coord2D spotA, Coord2D spotB, int tran, const FilmNegativeParams ¤tParams, std::array& newExps) { newExps = { static_cast(currentParams.redRatio * currentParams.greenExp), static_cast(currentParams.greenExp), static_cast(currentParams.blueRatio * currentParams.greenExp) }; constexpr int spotSize = 32; // TODO: Make this configurable? Coord spot; std::array clearVals; std::array denseVals; // Sample first spot transformPosition(spotA.x, spotA.y, tran, spot.x, spot.y); if (!channelsAvg(ri, W, H, cblacksom, spot, spotSize, currentParams, clearVals)) { return false; } // Sample second spot transformPosition(spotB.x, spotB.y, tran, spot.x, spot.y); if (!channelsAvg(ri, W, H, cblacksom, spot, spotSize, currentParams, denseVals)) { return false; } // Detect which one is the dense spot, based on green channel if (clearVals[1] < denseVals[1]) { std::swap(clearVals, denseVals); } if (settings->verbose) { printf("Clear film values: R=%g G=%g B=%g\n", clearVals[0], clearVals[1], clearVals[2]); printf("Dense film values: R=%g G=%g B=%g\n", denseVals[0], denseVals[1], denseVals[2]); } const float denseGreenRatio = clearVals[1] / denseVals[1]; // Calculate logarithms in arbitrary base const auto logBase = [](float base, float num) -> float { return std::log(num) / std::log(base); }; // Calculate exponents for each channel, based on the ratio between the bright and dark values, // compared to the ratio in the reference channel (green) for (int ch = 0; ch < 3; ++ch) { if (ch == 1) { newExps[ch] = 1.f; // Green is the reference channel } else { newExps[ch] = CLAMP(logBase(clearVals[ch] / denseVals[ch], denseGreenRatio), 0.3f, 4.f); } } if (settings->verbose) { printf("New exponents: R=%g G=%g B=%g\n", newExps[0], newExps[1], newExps[2]); } return true; } void rtengine::RawImageSource::filmNegativeProcess(const procparams::FilmNegativeParams ¶ms) { // BENCHFUNMICRO if (!params.enabled) { return; } // Exponents are expressed as positive in the parameters, so negate them in order // to get the reciprocals. const std::array exps = { static_cast(-params.redRatio * params.greenExp), static_cast(-params.greenExp), static_cast(-params.blueRatio * params.greenExp) }; MyTime t1, t2, t3,t4, t5; t1.set(); // Channel vectors to calculate medians std::array, 3> cvs; // Sample one every 5 pixels, and push the value in the appropriate channel vector. // Choose an odd step, not a multiple of the CFA size, to get a chance to visit each channel. if (ri->getSensorType() == ST_BAYER) { for (int row = 0; row < H; row += 5) { const int c0 = ri->FC(row, 0); const int c1 = ri->FC(row, 5); int col = 0; for (; col < W - 5; col += 10) { cvs[c0].push_back(rawData[row][col]); cvs[c1].push_back(rawData[row][col + 5]); } if (col < W) { cvs[c0].push_back(rawData[row][col]); } } } else if (ri->getSensorType() == ST_FUJI_XTRANS) { for (int row = 0; row < H; row += 5) { const std::array cs = { ri->XTRANSFC(row, 0), ri->XTRANSFC(row, 5), ri->XTRANSFC(row, 10), ri->XTRANSFC(row, 15), ri->XTRANSFC(row, 20), ri->XTRANSFC(row, 25) }; int col = 0; for (; col < W - 25; col += 30) { for (int c = 0; c < 6; ++c) { cvs[cs[c]].push_back(rawData[row][col + c * 5]); } } for (int c = 0; col < W; col += 5, ++c) { cvs[cs[c]].push_back(rawData[row][col]); } } } constexpr float MAX_OUT_VALUE = 65000.f; t2.set(); if (settings->verbose) { printf("Median vector fill loop time us: %d\n", t2.etime(t1)); } t2.set(); std::array medians; // Channel median values std::array mults = { 1.f, 1.f, 1.f }; // Channel normalization multipliers for (int c = 0; c < 3; ++c) { // Find median values for each channel if (!cvs[c].empty()) { findMinMaxPercentile(cvs[c].data(), cvs[c].size(), 0.5f, medians[c], 0.5f, medians[c], true); medians[c] = pow_F(rtengine::max(medians[c], 1.f), exps[c]); // Determine the channel multiplier so that N times the median becomes 65k. This clips away // the values in the dark border surrounding the negative (due to the film holder, for example), // the reciprocal of which have blown up to stellar values. mults[c] = MAX_OUT_VALUE / (medians[c] * 24.f); } } t3.set(); if (settings->verbose) { printf("Sample count: %zu, %zu, %zu\n", cvs[0].size(), cvs[1].size(), cvs[2].size()); printf("Medians: %g %g %g\n", medians[0], medians[1], medians[2] ); printf("Computed multipliers: %g %g %g\n", mults[0], mults[1], mults[2] ); printf("Median calc time us: %d\n", t3.etime(t2)); } constexpr float CLIP_VAL = 65535.f; t3.set(); if (ri->getSensorType() == ST_BAYER) { #ifdef __SSE2__ const vfloat onev = F2V(1.f); const vfloat clipv = F2V(CLIP_VAL); #endif #ifdef _OPENMP #pragma omp parallel for schedule(dynamic, 16) #endif for (int row = 0; row < H; ++row) { int col = 0; // Avoid trouble with zeroes, minimum pixel value is 1. const float exps0 = exps[FC(row, col)]; const float exps1 = exps[FC(row, col + 1)]; const float mult0 = mults[FC(row, col)]; const float mult1 = mults[FC(row, col + 1)]; #ifdef __SSE2__ const vfloat expsv = _mm_setr_ps(exps0, exps1, exps0, exps1); const vfloat multsv = _mm_setr_ps(mult0, mult1, mult0, mult1); for (; col < W - 3; col += 4) { STVFU(rawData[row][col], vminf(multsv * pow_F(vmaxf(LVFU(rawData[row][col]), onev), expsv), clipv)); } #endif // __SSE2__ for (; col < W - 1; col += 2) { rawData[row][col] = rtengine::min(mult0 * pow_F(rtengine::max(rawData[row][col], 1.f), exps0), CLIP_VAL); rawData[row][col + 1] = rtengine::min(mult1 * pow_F(rtengine::max(rawData[row][col + 1], 1.f), exps1), CLIP_VAL); } if (col < W) { rawData[row][col] = rtengine::min(mult0 * pow_F(rtengine::max(rawData[row][col], 1.f), exps0), CLIP_VAL); } } } else if (ri->getSensorType() == ST_FUJI_XTRANS) { #ifdef __SSE2__ const vfloat onev = F2V(1.f); const vfloat clipv = F2V(CLIP_VAL); #endif #ifdef _OPENMP #pragma omp parallel for schedule(dynamic, 16) #endif for (int row = 0; row < H; row ++) { int col = 0; // Avoid trouble with zeroes, minimum pixel value is 1. const std::array expsc = { exps[ri->XTRANSFC(row, 0)], exps[ri->XTRANSFC(row, 1)], exps[ri->XTRANSFC(row, 2)], exps[ri->XTRANSFC(row, 3)], exps[ri->XTRANSFC(row, 4)], exps[ri->XTRANSFC(row, 5)] }; const std::array multsc = { mults[ri->XTRANSFC(row, 0)], mults[ri->XTRANSFC(row, 1)], mults[ri->XTRANSFC(row, 2)], mults[ri->XTRANSFC(row, 3)], mults[ri->XTRANSFC(row, 4)], mults[ri->XTRANSFC(row, 5)] }; #ifdef __SSE2__ const vfloat expsv0 = _mm_setr_ps(expsc[0], expsc[1], expsc[2], expsc[3]); const vfloat expsv1 = _mm_setr_ps(expsc[4], expsc[5], expsc[0], expsc[1]); const vfloat expsv2 = _mm_setr_ps(expsc[2], expsc[3], expsc[4], expsc[5]); const vfloat multsv0 = _mm_setr_ps(multsc[0], multsc[1], multsc[2], multsc[3]); const vfloat multsv1 = _mm_setr_ps(multsc[4], multsc[5], multsc[0], multsc[1]); const vfloat multsv2 = _mm_setr_ps(multsc[2], multsc[3], multsc[4], multsc[5]); for (; col < W - 11; col += 12) { STVFU(rawData[row][col], vminf(multsv0 * pow_F(vmaxf(LVFU(rawData[row][col]), onev), expsv0), clipv)); STVFU(rawData[row][col + 4], vminf(multsv1 * pow_F(vmaxf(LVFU(rawData[row][col + 4]), onev), expsv1), clipv)); STVFU(rawData[row][col + 8], vminf(multsv2 * pow_F(vmaxf(LVFU(rawData[row][col + 8]), onev), expsv2), clipv)); } #endif // __SSE2__ for (; col < W - 5; col += 6) { for (int c = 0; c < 6; ++c) { rawData[row][col + c] = rtengine::min(multsc[c] * pow_F(rtengine::max(rawData[row][col + c], 1.f), expsc[c]), CLIP_VAL); } } for (int c = 0; col < W; col++, c++) { rawData[row][col + c] = rtengine::min(multsc[c] * pow_F(rtengine::max(rawData[row][col + c], 1.f), expsc[c]), CLIP_VAL); } } } t4.set(); if (settings->verbose) { printf("Pow loop time us: %d\n", t4.etime(t3)); } t4.set(); PixelsMap bitmapBads(W, H); int totBP = 0; // Hold count of bad pixels to correct if (ri->getSensorType() == ST_BAYER) { #ifdef _OPENMP #pragma omp parallel for reduction(+:totBP) schedule(dynamic,16) #endif for (int i = 0; i < H; ++i) { for (int j = 0; j < W; ++j) { if (rawData[i][j] >= MAX_OUT_VALUE) { bitmapBads.set(j, i); ++totBP; } } } if (totBP > 0) { interpolateBadPixelsBayer(bitmapBads, rawData); } } else if (ri->getSensorType() == ST_FUJI_XTRANS) { #ifdef _OPENMP #pragma omp parallel for reduction(+:totBP) schedule(dynamic,16) #endif for (int i = 0; i < H; ++i) { for (int j = 0; j < W; ++j) { if (rawData[i][j] >= MAX_OUT_VALUE) { bitmapBads.set(j, i); totBP++; } } } if (totBP > 0) { interpolateBadPixelsXtrans(bitmapBads); } } t5.set(); if (settings->verbose) { printf("Bad pixels count: %d\n", totBP); printf("Bad pixels interpolation time us: %d\n", t5.etime(t4)); } }