/* * This file is part of RawTherapee. * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . * * 2010 Ilya Popov * 2012 Emil Martinec */ #ifndef CPLX_WAVELET_LEVEL_H_INCLUDED #define CPLX_WAVELET_LEVEL_H_INCLUDED #include #include #include "array2D.h" namespace rtengine { #define MAX(a,b) ((a) > (b) ? (a) : (b)) /*template class limiter //for limiting output between specified bounds { T min_value, max_value; public: limiter(T min, T max) : min_value(min), max_value(max) {} T operator()(T x) { if(x < min_value) return min_value; if(x > max_value) return max_value; return x; } };*/ /*template class noop { public: T operator()(T x) { return x; } };*/ /*template inline T clip(T x, T min_value, T max_value) { if(x < min_value) return min_value; if(x > max_value) return max_value; return x; }*/ /*template void plane_copy(A ** a, B * b, size_t datalen) { for (size_t i=0; i (0.25f*(a[0][j]+a[1][j]+a[2][j]+a[3][j])) } }*/ ////////////////////////////////////////////////////////////////////////////// template class cplx_wavelet_level { // full size size_t m_w, m_h; // size of low frequency part size_t m_w2, m_h2; // array of pointers to lines of coeffs // actually is a single contiguous data array pointed by m_coeffs[0] //T ** m_coeffs; //array2D wavcoeffs(4,1); //data structure: first label is output channel (LL,LH,HL,HH), second is pixel location in flattened array // weights storage //T ** m_weights_rows; //T ** m_weights_cols; // allocation and destruction of data storage T ** create(size_t n); void destroy(T ** subbands); //void dwt_2d(size_t w, size_t h); //void idwt_2d(size_t w, size_t h, int alpha); void AnalysisFilter (T * src, T * dstLo, T * dstHi, T *buffer, float *filterLo, float *filterHi, int taps, int offset, int pitch, int srclen); void SynthesisFilter (T * srcLo, T * srcHi, T * dst, T *bufferLo, T *bufferHi, float *filterLo, float *filterHi, int taps, int offset, int pitch, int dstlen); public: T ** wavcoeffs; template cplx_wavelet_level(E * src, size_t w, size_t h, float *filterV, float *filterH, int len, int offset) : m_w(w), m_h(h), m_w2((w+1)/2), m_h2((h+1)/2), wavcoeffs(NULL)//,m_coeffs(NULL), m_weights_rows(NULL), m_weights_cols(NULL) { //m_coeffs = create(w, h); //m_weights_rows = create(w + 4, h); //m_weights_cols = create(h + 4, w); //decompose_level(src, w, h, wavcoeffs, float **filterV, float **filterH, int len, int offset); wavcoeffs = create(m_w2*m_h2); decompose_level(src, filterV, filterH, len, offset); } ~cplx_wavelet_level() { //destroy(m_coeffs); //destroy(m_weights_rows); //destroy(m_weights_cols); destroy(wavcoeffs); } T ** subbands() const { return wavcoeffs;//m_coeffs; } T * lopass() const { return wavcoeffs[0];//m_coeffs; } size_t width() const { return m_w2; } size_t height() const { return m_h2; } template void decompose_level(E *src, float *filterV, float *filterH, int len, int offset); template void reconstruct_level(E *dst, float *filterV, float *filterH, int len, int offset); }; ////////////////////////////////////////////////////////////////////////////// /* template void wavelet_level::dwt_2d(size_t w, size_t h) { T * buffer = new T[std::max(w, h) + 4]; for(size_t j = 0; j < h; j++) { //dwt_haar(m_coeffs[j], 1, buffer, w); //dwt_53(m_coeffs[j], 1, buffer, w); dwt_wcdf(m_coeffs[j], 1, buffer, w, m_weights_rows[j]); } for(size_t i = 0; i < w; i++) { //dwt_haar(&m_coeffs[0][i], m_pitch, buffer, h); //dwt_53(&m_coeffs[0][i], w, buffer, h); dwt_wcdf(&m_coeffs[0][i], w, buffer, h, m_weights_cols[i]); } delete[] buffer; } template void wavelet_level::idwt_2d(size_t w, size_t h, int alpha) { T * buffer = new T[std::max(w, h) + 4]; for(size_t i = 0; i < w; i++) { //idwt_haar(&m_coeffs[0][i], m_pitch, buffer, h, alpha); //idwt_53(&m_coeffs[0][i], w, buffer, h, alpha); idwt_wcdf(&m_coeffs[0][i], w, buffer, h, alpha, m_weights_cols[i]); //idwt_noop(&m_coeffs[0][i], w, buffer, h, alpha); } for(size_t j = 0; j < h; j++) { //idwt_haar(m_coeffs[j], 1, buffer, w, alpha); //idwt_53(m_coeffs[j], 1, buffer, w, alpha); idwt_wcdf(m_coeffs[j], 1, buffer, w, alpha, m_weights_rows[j]); //idwt_noop(m_coeffs[j], 1, buffer, w, alpha); } delete[] buffer; } */ template T ** cplx_wavelet_level::create(size_t n) { T * data = new T[4*n]; T ** subbands = new T*[4]; for(size_t j = 0; j < 4; j++) { subbands[j] = data + n * j; } return subbands; } template void cplx_wavelet_level::destroy(T ** subbands) { if(subbands) { delete[] subbands[0]; delete[] subbands; } } /*template template void wavelet_level::decompose(E ** src) { noop l; plane_copy(src, m_coeffs, m_w, m_h, l); dwt_2d(m_w, m_h); } template template void wavelet_level::reconstruct(E ** dst, int alpha, L & l) { idwt_2d(m_w, m_h, alpha); plane_copy(m_coeffs, dst, m_w, m_h, l); }*/ // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% template void cplx_wavelet_level::AnalysisFilter (T * src, T * dstLo, T * dstHi, T *buffer, float *filterLo, float *filterHi, int taps, int offset, int pitch, int srclen) { /* Basic convolution code * Applies an FIR filter 'filter' with 'len' taps, * aligning the 'offset' element of the filter * with the input pixel, and skipping 'pitch' pixels * between taps (eg pitch=1 for horizontal filtering, * pitch=W for vertical, pitch=W+1,W-1 for diagonals. * Currently diagonal filtering is not supported * for the full source array, until a more sophisticated * treatment of mirror BC's is implemented. * * Destination arrays must be initialized to zero. */ T * tmp = buffer + taps;//offset // copy data for(size_t i = 0, j = 0; i < srclen; i++, j += pitch) { tmp[i] = src[j]; } // extend mirror-like for (size_t i=-1; i!=-offset; i--) { tmp[i] = tmp[-i]; } for (size_t i=0; i void cplx_wavelet_level::SynthesisFilter (T * srcLo, T * srcHi, T * dst, T *bufferLo, T *bufferHi, float *filterLo, float *filterHi, int taps, int offset, int pitch, int dstlen) { /* Basic convolution code * Applies an FIR filter 'filter' with 'len' taps, * aligning the 'offset' element of the filter * with the input pixel, and skipping 'pitch' pixels * between taps (eg pitch=1 for horizontal filtering, * pitch=W for vertical, pitch=W+1,W-1 for diagonals. * Currently diagonal filtering is not supported * for the full source array, until a more sophisticated * treatment of mirror BC's is implemented. * * Destination arrays must be initialized to zero. */ T * tmpLo = bufferLo + taps;//offset T * tmpHi = bufferHi + taps;//offset // copy data for(size_t i = 0, j = 0; i < dstlen; i++, j += pitch) { tmpLo[2*i] = srcLo[j]; tmpHi[2*i] = srcHi[j]; } // extend mirror-like for (size_t i=-1; i!=-offset; i--) { tmpLo[2*i] = tmpLo[-i]; tmpHi[2*i] = tmpHi[-i]; } for (size_t i=0; i template void cplx_wavelet_level::decompose_level(E *src, float *filterV, float *filterH, int taps, int offset) { //int hfw = (W+1)/2; //int hfh = (H+1)/2; T *tmpLo = new T(m_w*m_h2); T *tmpHi = new T(m_w*m_h2); T *buffer = new T[MAX(m_w,m_h)+taps]; /* filter along columns */ for (int j=0; j template void cplx_wavelet_level::reconstruct_level(E *dst, float *filterV, float *filterH, int taps, int offset) { //int hfw = (W+1)/2; //int hfh = (H+1)/2; array2D tmpLo(m_w2,m_h); array2D tmpHi(m_w2,m_h); float *bufferLo = new float[MAX(m_w,m_h)+taps]; float *bufferHi = new float[MAX(m_w,m_h)+taps]; //bufferLo = (float (*)) calloc (MAX(m_w,m_h)+taps, sizeof *bufferLo); //bufferHi = (float (*)) calloc (MAX(m_w,m_h)+taps, sizeof *bufferHi); /* filter along columns */ for (int j=0; j