/* * This file is part of RawTherapee. * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . * * © 2010 Emil Martinec * */ #include #include #include "curves.h" #include "labimage.h" #include "improcfun.h" #include "rawimagesource.h" #include "rt_math.h" #ifdef _OPENMP #include #endif #define CLIPC(a) ((a)>-32000?((a)<32000?(a):32000):-32000) #define DIRWT(i1,j1,i,j) (rangefn[abs((int)data_fine->L[i1][j1]-data_fine->L[i][j])+abs((int)data_fine->a[i1][j1]-data_fine->a[i][j])+abs((int)data_fine->b[i1][j1]-data_fine->b[i][j])] ) namespace rtengine { static const int maxlevel = 4; //sequence of scales static const int scales[8] = {1, 2, 4, 8, 16, 32, 64, 128}; //sequence of pitches static const int pitches[8] = {1, 1, 1, 1, 1, 1, 1, 1}; //sequence of scales //static const int scales[8] = {1,1,1,1,1,1,1,1}; //sequence of pitches //static const int pitches[8] = {2,2,2,2,2,2,2,2}; //sequence of scales //static const int scales[8] = {1,3,6,10,15,21,28,36}; //sequence of pitches //static const int pitches[8] = {1,1,1,1,1,1,1,1}; //sequence of scales //static const int scales[8] = {1,1,2,4,8,16,32,64}; //sequence of pitches //static const int pitches[8] = {2,1,1,1,1,1,1,1}; //pitch is spacing of subsampling //scale is spacing of directional averaging weights //example 1: no subsampling at any level -- pitch=1, scale=2^n //example 2: subsampling by 2 every level -- pitch=2, scale=1 at each level //example 3: no subsampling at first level, subsampling by 2 thereafter -- // pitch =1, scale=1 at first level; pitch=2, scale=2 thereafter void ImProcFunctions :: dirpyrLab_equalizer(LabImage * src, LabImage * dst, /*float luma, float chroma, float gamma*/ const double * mult ) { //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LUTf rangefn(0x20000); //set up weights float noise = 1500; //set up range functions for (int i = 0; i < 0x20000; i++) { rangefn[i] = (int)((noise / ((double)i + noise))); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% int level; int ** buffer[3]; LabImage * dirpyrLablo[maxlevel]; int w = src->W; int h = src->H; buffer[0] = allocArray (w + 128, h + 128); buffer[1] = allocArray (w + 128, h + 128); buffer[2] = allocArray (w + 128, h + 128); for (int i = 0; i < h + 128; i++) for (int j = 0; j < w + 128; j++) { for (int c = 0; c < 3; c++) { buffer[c][i][j] = 0; } } w = (int)((w - 1) / pitches[0]) + 1; h = (int)((h - 1) / pitches[0]) + 1; dirpyrLablo[0] = new LabImage(w, h); for (level = 1; level < maxlevel; level++) { w = (int)((w - 1) / pitches[level]) + 1; h = (int)((h - 1) / pitches[level]) + 1; dirpyrLablo[level] = new LabImage(w, h); }; ////////////////////////////////////////////////////////////////////////////// // c[0] = luma = noise_L // c[1] = chroma = noise_ab // c[2] decrease of noise var with scale // c[3] radius of domain blur at each level // c[4] shadow smoothing // c[5] edge preservation level = 0; int scale = scales[level]; int pitch = pitches[level]; //int thresh = 10 * c[8]; //impulse_nr (src, src, m_w1, m_h1, thresh, noisevar); dirpyr_eq(src, dirpyrLablo[0], rangefn, 0, pitch, scale, mult ); level = 1; int totalpitch = pitches[0]; while(level < maxlevel) { scale = scales[level]; pitch = pitches[level]; dirpyr_eq(dirpyrLablo[level - 1], dirpyrLablo[level], rangefn, level, pitch, scale, mult ); level ++; totalpitch *= pitch; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //initiate buffer for final image for(int i = 0, i1 = 0; i < src->H; i += totalpitch, i1++) for(int j = 0, j1 = 0; j < src->W; j += totalpitch, j1++) { //copy pixels buffer[0][i][j] = dirpyrLablo[maxlevel - 1]->L[i1][j1]; buffer[1][i][j] = dirpyrLablo[maxlevel - 1]->a[i1][j1]; buffer[2][i][j] = dirpyrLablo[maxlevel - 1]->b[i1][j1]; } //if we are not subsampling, this is lots faster but does the typecasting work??? //memcpy(buffer[0],dirpyrLablo[maxlevel-1]->L,sizeof(buffer[0])); //memcpy(buffer[1],dirpyrLablo[maxlevel-1]->a,sizeof(buffer[1])); //memcpy(buffer[2],dirpyrLablo[maxlevel-1]->b,sizeof(buffer[2])); //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for(int level = maxlevel - 1; level > 0; level--) { //int scale = scales[level]; int pitch = pitches[level]; totalpitch /= pitch; idirpyr_eq(dirpyrLablo[level], dirpyrLablo[level - 1], buffer, level, pitch, totalpitch, mult ); } scale = scales[0]; pitch = pitches[0]; totalpitch /= pitch; idirpyr_eq(dirpyrLablo[0], dst, buffer, 0, pitch, totalpitch, mult ); //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for (int i = 0; i < dst->H; i++) for (int j = 0; j < dst->W; j++) { // TODO: Is integer cast necessary here? dst->L[i][j] = CLIP((int)( buffer[0][i][j] )); dst->a[i][j] = CLIPC((int)( buffer[1][i][j] )); dst->b[i][j] = CLIPC((int)( buffer[2][i][j] )); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for(int i = 0; i < maxlevel; i++) { delete dirpyrLablo[i]; } for (int c = 0; c < 3; c++) { freeArray(buffer[c], h + 128); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% } void ImProcFunctions::dirpyr_eq(LabImage* data_fine, LabImage* data_coarse, LUTf & rangefn, int level, int pitch, int scale, const double * mult ) { //pitch is spacing of subsampling //scale is spacing of directional averaging weights //example 1: no subsampling at any level -- pitch=1, scale=2^n //example 2: subsampling by 2 every level -- pitch=2, scale=1 at each level //example 3: no subsampling at first level, subsampling by 2 thereafter -- // pitch =1, scale=1 at first level; pitch=2, scale=2 thereafter //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // calculate weights, compute directionally weighted average int width = data_fine->W; int height = data_fine->H; //generate domain kernel int halfwin = 1;//min(ceil(2*sig),3); int scalewin = halfwin * scale; #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i += pitch) { int i1 = i / pitch; for(int j = 0, j1 = 0; j < width; j += pitch, j1++) { float Lout, aout, bout; float norm; norm = 0;//if we do want to include the input pixel in the sum Lout = 0; aout = 0; bout = 0; for(int inbr = max(0, i - scalewin); inbr <= min(height - 1, i + scalewin); inbr += scale) { for (int jnbr = max(0, j - scalewin); jnbr <= min(width - 1, j + scalewin); jnbr += scale) { float dirwt = DIRWT(inbr, jnbr, i, j); Lout += dirwt * data_fine->L[inbr][jnbr]; aout += dirwt * data_fine->a[inbr][jnbr]; bout += dirwt * data_fine->b[inbr][jnbr]; norm += dirwt; } } data_coarse->L[i1][j1] = Lout / norm; //low pass filter data_coarse->a[i1][j1] = aout / norm; data_coarse->b[i1][j1] = bout / norm; } } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void ImProcFunctions::idirpyr_eq(LabImage* data_coarse, LabImage* data_fine, int *** buffer, int level, int pitch, int scale, const double * mult ) { int width = data_fine->W; int height = data_fine->H; float lumamult[4], chromamult[4]; for (int i = 0; i < 4; i++) { lumamult[i] = mult[i]; chromamult[i] = mult[i + 4]; } float wtdsum[6], norm, dirwt; float hipass[3]; int i1, j1; // for coarsest level, take non-subsampled lopass image and subtract from lopass_fine to generate hipass image // denoise hipass image, add back into lopass_fine to generate denoised image at fine scale // now iterate: // (1) take denoised image at level n, expand and smooth using gradient weights from lopass image at level n-1 // the result is the smoothed image at level n-1 // (2) subtract smoothed image at level n-1 from lopass image at level n-1 to make hipass image at level n-1 // (3) denoise the hipass image at level n-1 // (4) add the denoised image at level n-1 to the smoothed image at level n-1 to make the denoised image at level n-1 // note that the coarsest level amounts to skipping step (1) and doing (2,3,4). // in other words, skip step one if pitch=1 if (pitch == 1) { // step (1-2-3-4) #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i++) for(int j = 0; j < width; j++) { //luma float hipass0 = (float)data_fine->L[i][j] - data_coarse->L[i][j]; buffer[0][i * scale][j * scale] += hipass0 * lumamult[level]; //*luma; //chroma float hipass1 = data_fine->a[i][j] - data_coarse->a[i][j]; float hipass2 = data_fine->b[i][j] - data_coarse->b[i][j]; buffer[1][i * scale][j * scale] += hipass1 * chromamult[level]; //*chroma; buffer[2][i * scale][j * scale] += hipass2 * chromamult[level]; //*chroma; } } else { // step (1) //if (pitch>1), pitch=2; expand coarse image, fill in missing data LabImage* smooth; smooth = new LabImage(width, height); #ifdef _OPENMP #pragma omp parallel #endif { #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i += pitch) { int i2 = i / pitch; for(int j = 0, j2 = 0; j < width; j += pitch, j2++) { //copy common pixels smooth->L[i][j] = data_coarse->L[i2][j2]; smooth->a[i][j] = data_coarse->a[i2][j2]; smooth->b[i][j] = data_coarse->b[i2][j2]; } } #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height - 1; i += 2) for(int j = 0; j < width - 1; j += 2) { //do midpoint first norm = dirwt = 0; wtdsum[0] = wtdsum[1] = wtdsum[2] = wtdsum[3] = wtdsum[4] = wtdsum[5] = 0.0; for(i1 = i; i1 < min(height, i + 3); i1 += 2) for (j1 = j; j1 < min(width, j + 3); j1 += 2) { dirwt = 1;//IDIRWT(i1, j1, i, j); wtdsum[0] += dirwt * smooth->L[i1][j1]; wtdsum[1] += dirwt * smooth->a[i1][j1]; wtdsum[2] += dirwt * smooth->b[i1][j1]; wtdsum[3] += dirwt * buffer[0][i1 * scale][j1 * scale]; // not completely right if j1*scale or i1*scale is out of bounds of original image ??? wtdsum[4] += dirwt * buffer[1][i1 * scale][j1 * scale]; // also should we use directional average? wtdsum[5] += dirwt * buffer[2][i1 * scale][j1 * scale]; norm += dirwt; } norm = 1 / norm; smooth->L[i + 1][j + 1] = wtdsum[0] * norm; smooth->a[i + 1][j + 1] = wtdsum[1] * norm; smooth->b[i + 1][j + 1] = wtdsum[2] * norm; buffer[0][(i + 1)*scale][(j + 1)*scale] = wtdsum[3] * norm; buffer[1][(i + 1)*scale][(j + 1)*scale] = wtdsum[4] * norm; buffer[2][(i + 1)*scale][(j + 1)*scale] = wtdsum[5] * norm; } #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height - 1; i += 2) for(int j = 0; j < width - 1; j += 2) { //now right neighbor if (j + 1 == width) { continue; } norm = dirwt = 0; wtdsum[0] = wtdsum[1] = wtdsum[2] = wtdsum[3] = wtdsum[4] = wtdsum[5] = 0.0; for (j1 = j; j1 < min(width, j + 3); j1 += 2) { dirwt = 1;//IDIRWT(i, j1, i, j); wtdsum[0] += dirwt * smooth->L[i][j1]; wtdsum[1] += dirwt * smooth->a[i][j1]; wtdsum[2] += dirwt * smooth->b[i][j1]; wtdsum[3] += dirwt * buffer[0][i * scale][j1 * scale]; wtdsum[4] += dirwt * buffer[1][i * scale][j1 * scale]; wtdsum[5] += dirwt * buffer[2][i * scale][j1 * scale]; norm += dirwt; } for (i1 = max(0, i - 1); i1 < min(height, i + 2); i1 += 2) { dirwt = 1;//IDIRWT(i1, j+1, i, j); wtdsum[0] += dirwt * smooth->L[i1][j + 1]; wtdsum[1] += dirwt * smooth->a[i1][j + 1]; wtdsum[2] += dirwt * smooth->b[i1][j + 1]; wtdsum[3] += dirwt * buffer[0][i1 * scale][(j + 1) * scale]; wtdsum[4] += dirwt * buffer[1][i1 * scale][(j + 1) * scale]; wtdsum[5] += dirwt * buffer[2][i1 * scale][(j + 1) * scale]; norm += dirwt; } norm = 1 / norm; smooth->L[i][j + 1] = wtdsum[0] * norm; smooth->a[i][j + 1] = wtdsum[1] * norm; smooth->b[i][j + 1] = wtdsum[2] * norm; buffer[0][i][(j + 1)*scale] = wtdsum[3] * norm; buffer[1][i][(j + 1)*scale] = wtdsum[4] * norm; buffer[2][i][(j + 1)*scale] = wtdsum[5] * norm; //now down neighbor if (i + 1 == height) { continue; } norm = 0; wtdsum[0] = wtdsum[1] = wtdsum[2] = wtdsum[3] = wtdsum[4] = wtdsum[5] = 0.0; for (i1 = i; i1 < min(height, i + 3); i1 += 2) { dirwt = 1;//IDIRWT(i1, j, i, j); wtdsum[0] += dirwt * smooth->L[i1][j]; wtdsum[1] += dirwt * smooth->a[i1][j]; wtdsum[2] += dirwt * smooth->b[i1][j]; wtdsum[3] += dirwt * buffer[0][i1 * scale][j * scale]; wtdsum[4] += dirwt * buffer[1][i1 * scale][j * scale]; wtdsum[5] += dirwt * buffer[2][i1 * scale][j * scale]; norm += dirwt; } for (j1 = max(0, j - 1); j1 < min(width, j + 2); j1 += 2) { dirwt = 1;//IDIRWT(i+1, j1, i, j); wtdsum[0] += dirwt * smooth->L[i + 1][j1]; wtdsum[1] += dirwt * smooth->a[i + 1][j1]; wtdsum[2] += dirwt * smooth->b[i + 1][j1]; wtdsum[3] += dirwt * buffer[0][(i + 1) * scale][j1 * scale]; wtdsum[4] += dirwt * buffer[1][(i + 1) * scale][j1 * scale]; wtdsum[5] += dirwt * buffer[2][(i + 1) * scale][j1 * scale]; norm += dirwt; } norm = 1 / norm; smooth->L[i + 1][j] = wtdsum[0] * norm; smooth->a[i + 1][j] = wtdsum[1] * norm; smooth->b[i + 1][j] = wtdsum[2] * norm; buffer[0][(i + 1)*scale][j * scale] = wtdsum[3] * norm; buffer[1][(i + 1)*scale][j * scale] = wtdsum[4] * norm; buffer[2][(i + 1)*scale][j * scale] = wtdsum[5] * norm; } // step (2-3-4) #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++) for(int j = 0; j < width; j++) { //luma hipass[0] = (float)data_fine->L[i][j] - smooth->L[i][j]; buffer[0][i * scale][j * scale] += hipass[0] * lumamult[level]; //*luma; //chroma hipass[1] = data_fine->a[i][j] - smooth->a[i][j]; hipass[2] = data_fine->b[i][j] - smooth->b[i][j]; buffer[1][i * scale][j * scale] += hipass[1] * chromamult[level]; //*chroma; buffer[2][i * scale][j * scale] += hipass[2] * chromamult[level]; //*chroma; } } // end parallel delete smooth; } } #undef DIRWT_L #undef DIRWT_AB #undef NRWT_L #undef NRWT_AB }