//////////////////////////////////////////////////////////////// // // CFA denoise by wavelet transform, FT filtering // // copyright (c) 2008-2012 Emil Martinec // // // code dated: March 9, 2012 // // FTblockDN.cc is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // //////////////////////////////////////////////////////////////// #include #include #include "../rtgui/threadutils.h" //#include "bilateral2.h" #include "gauss.h" #include "rtengine.h" #include "improcfun.h" #include "LUT.h" #include "array2D.h" #include "iccmatrices.h" #include "boxblur.h" #include "rt_math.h" #include "mytime.h" #include "sleef.c" #include "opthelper.h" #ifdef _OPENMP #include #endif #include "cplx_wavelet_dec.h" //#define MIN(a,b) ((a) < (b) ? (a) : (b)) //#define MAX(a,b) ((a) > (b) ? (a) : (b)) //#define LIM(x,min,max) MAX(min,MIN(x,max)) //#define ULIM(x,y,z) ((y) < (z) ? LIM(x,y,z) : LIM(x,z,y)) //#define CLIP(x) LIM(x,0,65535) #define TS 64 // Tile size #define offset 25 // shift between tiles #define fTS ((TS/2+1)) // second dimension of Fourier tiles #define blkrad 1 // radius of block averaging #define epsilon 0.001f/(TS*TS) //tolerance namespace rtengine { // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /* Structure of the algorithm: 1. Compute an initial denoise of the image via undecimated wavelet transform and universal thresholding modulated by user input. 2. Decompose the residual image into TSxTS size tiles, shifting by 'offset' each step (so roughly each pixel is in (TS/offset)^2 tiles); Discrete Cosine transform the tiles. 3. Filter the DCT data to pick out patterns missed by the wavelet denoise 4. Inverse DCT the denoised tile data and combine the tiles into a denoised output image. */ //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% extern const Settings* settings; void ImProcFunctions::RGB_denoise(Imagefloat * src, Imagefloat * dst, bool isRAW, const procparams::DirPyrDenoiseParams & dnparams, const procparams::DefringeParams & defringe, const double expcomp) { //#ifdef _DEBUG // MyTime t1e,t2e; // t1e.set(); //#endif static MyMutex FftwMutex; MyMutex::MyLock lock(FftwMutex); //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /*if (plistener) { plistener->setProgressStr ("Denoise..."); plistener->setProgress (0.0); }*/ // volatile double progress = 0.0; //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% const short int imheight=src->height, imwidth=src->width; if (dnparams.luma==0 && dnparams.chroma==0) { //nothing to do; copy src to dst memcpy(dst->data,src->data,dst->width*dst->height*3*sizeof(float)); return; } perf=false; if(dnparams.dmethod=="RGB") perf=true;//RGB mode //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // gamma transform for input data float gam = dnparams.gamma; float gamthresh = 0.001f; if(!isRAW) {//reduce gamma under 1 for Lab mode ==> TIF and JPG if(gam <1.9f) gam=1.f - (1.9f-gam)/3.f;//minimum gamma 0.7 else if (gam >= 1.9f && gam <= 3.f) gam=(1.4f/1.1f)*gam - 1.41818f; } float gamslope = exp(log((double)gamthresh)/gam)/gamthresh; LUTf gamcurve(65536,0); if(perf) { for (int i=0; i<65536; i++) { gamcurve[i] = (Color::gamma((double)i/65535.0, gam, gamthresh, gamslope, 1.0, 0.0)) * 32768.0f; } } else { for (int i=0; i<65536; i++) { gamcurve[i] = (Color::gamman((double)i/65535.0,gam)) * 32768.0f; } } // inverse gamma transform for output data float igam = 1.f/gam; float igamthresh = gamthresh*gamslope; float igamslope = 1.f/gamslope; LUTf igamcurve(65536,0); if(perf) { for (int i=0; i<65536; i++) { igamcurve[i] = (Color::gamma((float)i/32768.0f, igam, igamthresh, igamslope, 1.0, 0.0) * 65535.0f); } } else { for (int i=0; i<65536; i++) { igamcurve[i] = (Color::gamman((float)i/32768.0f,igam) * 65535.0f); } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //srand((unsigned)time(0));//test with random data const float gain = pow (2.0f, float(expcomp)); float incr=1.f; float noisevar_Ldetail = SQR((float)(SQR(100.-dnparams.Ldetail) + 50.*(100.-dnparams.Ldetail)) * TS * 0.5f * incr); bool enhance_denoise = dnparams.enhance; int gamlab = settings->denoiselabgamma;//gamma lab essentialy for Luminance detail if(gamlab > 2) gamlab=2; if(settings->verbose) printf("Denoise Lab=%i\n",gamlab); array2D tilemask_in(TS,TS); array2D tilemask_out(TS,TS); const int border = MAX(2,TS/16); #ifdef _OPENMP #pragma omp parallel for #endif for (int i=0; iTS/2 ? i-TS+1 : i)); float vmask = (i1TS/2 ? j-TS+1 : j)); tilemask_in[i][j] = (vmask * (j1data[n] = 0; const int tilesize = 1024; const int overlap = 128; int numtiles_W, numtiles_H, tilewidth, tileheight, tileWskip, tileHskip; if (imwidth 0) numthreads = MIN(numthreads,options.rgbDenoiseThreadLimit); // Issue 1887, overide setting of 1, if more than one thread is available. This way the inner omp-directives should become inactive if(numthreads == 1 && omp_get_max_threads() > 1) numthreads = 2; #pragma omp parallel num_threads(numthreads) #endif { //DCT block data storage float * Lblox; float * fLblox; TMatrix wprof = iccStore->workingSpaceMatrix (params->icm.working); double wp[3][3] = { {wprof[0][0],wprof[0][1],wprof[0][2]}, {wprof[1][0],wprof[1][1],wprof[1][2]}, {wprof[2][0],wprof[2][1],wprof[2][2]} }; TMatrix wiprof = iccStore->workingSpaceInverseMatrix (params->icm.working); //inverse matrix user select double wip[3][3] = { {wiprof[0][0],wiprof[0][1],wiprof[0][2]}, {wiprof[1][0],wiprof[1][1],wiprof[1][2]}, {wiprof[2][0],wiprof[2][1],wiprof[2][2]} }; #ifdef _OPENMP #pragma omp critical #endif { Lblox = (float*) fftwf_malloc(max_numblox_W*TS*TS*sizeof(float)); fLblox = (float*) fftwf_malloc(max_numblox_W*TS*TS*sizeof(float)); } float * nbrwt = new float[TS*TS]; float * blurbuffer = new float[TS*TS]; #ifdef _OPENMP #pragma omp for schedule(dynamic) collapse(2) #endif for (int tiletop=0; tiletop Lin(width,height); //wavelet denoised image LabImage * labdn = new LabImage(width,height); //residual between input and denoised L channel array2D Ldetail(width,height,ARRAY2D_CLEAR_DATA); //pixel weight array2D totwt(width,height,ARRAY2D_CLEAR_DATA);//weight for combining DCT blocks //TODO: implement using AlignedBufferMP //fill tile from image; convert RGB to "luma/chroma" if (isRAW) {//image is raw; use channel differences for chroma channels if(!perf){//lab mode //modification Jacques feb 2013 for (int i=tiletop/*, i1=0*/; ir(i,j); float G_ = gain*src->g(i,j); float B_ = gain*src->b(i,j); //modify arbitrary data for Lab..I have test : nothing, gamma 2.6 11 - gamma 4 5 - gamma 5.5 10 //we can put other as gamma g=2.6 slope=11, etc. // but noting to do with real gamma !!!: it's only for data Lab # data RGB //finally I opted fot gamma55 and with options we can change if (gamlab == 0) {// options 12/2013 R_ = Color::igammatab_26_11[R_]; G_ = Color::igammatab_26_11[G_]; B_ = Color::igammatab_26_11[B_]; } else if (gamlab == 1) { //other new gamma 4 5 R_ = Color::igammatab_4[R_]; G_ = Color::igammatab_4[G_]; B_ = Color::igammatab_4[B_]; } else if (gamlab == 2) { //new gamma 5.5 10 better for detail luminance..it is a compromise...which depends on the image (distribution BL, ML, HL ...) R_ = Color::igammatab_55[R_]; G_ = Color::igammatab_55[G_]; B_ = Color::igammatab_55[B_]; } //apply gamma noise standard (slider) R_ = R_<65535.0f ? gamcurve[R_] : (Color::gamman((double)R_/65535.0, gam)*32768.0f); G_ = G_<65535.0f ? gamcurve[G_] : (Color::gamman((double)G_/65535.0, gam)*32768.0f); B_ = B_<65535.0f ? gamcurve[B_] : (Color::gamman((double)B_/65535.0, gam)*32768.0f); //true conversion xyz=>Lab float L,a,b; float X,Y,Z; Color::rgbxyz(R_,G_,B_,X,Y,Z,wp); //convert to Lab Color::XYZ2Lab(X, Y, Z, L, a, b); labdn->L[i1][j1] = L; labdn->a[i1][j1] = a; labdn->b[i1][j1] = b; Lin[i1][j1] = L; // totwt[i1][j1] = 0; } } } else {//RGB mode for (int i=tiletop/*, i1=0*/; ir(i,j); float Y = gain*src->g(i,j); float Z = gain*src->b(i,j); X = X<65535.0f ? gamcurve[X] : (Color::gamma((double)X/65535.0, gam, gamthresh, gamslope, 1.0, 0.0)*32768.0f); Y = Y<65535.0f ? gamcurve[Y] : (Color::gamma((double)Y/65535.0, gam, gamthresh, gamslope, 1.0, 0.0)*32768.0f); Z = Z<65535.0f ? gamcurve[Z] : (Color::gamma((double)Z/65535.0, gam, gamthresh, gamslope, 1.0, 0.0)*32768.0f); labdn->L[i1][j1] = Y; labdn->a[i1][j1] = (X-Y); labdn->b[i1][j1] = (Y-Z); // Ldetail[i1][j1] = 0; Lin[i1][j1] = Y; // totwt[i1][j1] = 0; } } } } else {//image is not raw; use Lab parametrization for (int i=tiletop/*, i1=0*/; i save TIF with gamma sRGB and re open float rtmp = Color::igammatab_srgb[ src->r(i,j) ]; float gtmp = Color::igammatab_srgb[ src->g(i,j) ]; float btmp = Color::igammatab_srgb[ src->b(i,j) ]; //modification Jacques feb 2013 // gamma slider different from raw rtmp = rtmp<65535.0f ? gamcurve[rtmp] : (Color::gamman((double)rtmp/65535.0, gam)*32768.0f); gtmp = gtmp<65535.0f ? gamcurve[gtmp] : (Color::gamman((double)gtmp/65535.0, gam)*32768.0f); btmp = btmp<65535.0f ? gamcurve[btmp] : (Color::gamman((double)btmp/65535.0, gam)*32768.0f); float X,Y,Z; Color::rgbxyz(rtmp,gtmp,btmp,X,Y,Z,wp); //convert Lab Color::XYZ2Lab(X, Y, Z, L, a, b); labdn->L[i1][j1] = L; labdn->a[i1][j1] = a; labdn->b[i1][j1] = b; // Ldetail[i1][j1] = 0; Lin[i1][j1] = L; // totwt[i1][j1] = 0; } } } //initial impulse denoise if (dnparams.luma>0.01) { impulse_nr (labdn, float(MIN(50.0,dnparams.luma))/20.0f); } int datalen = labdn->W * labdn->H; //now perform basic wavelet denoise //last two arguments of wavelet decomposition are max number of wavelet decomposition levels; //and whether to subsample the image after wavelet filtering. Subsampling is coded as //binary 1 or 0 for each level, eg subsampling = 0 means no subsampling, 1 means subsample //the first level only, 7 means subsample the first three levels, etc. float noisevarL = (float) (SQR((dnparams.luma/125.0)*(1.+ dnparams.luma/25.0))); float interm_med= (float) dnparams.chroma/10.0; float intermred, intermblue; if(dnparams.redchro > 0.) intermred=0.0014f* (float)SQR(dnparams.redchro); else intermred= (float) dnparams.redchro/7.0;//increase slower than linear for more sensit float intermred2=(float) dnparams.redchro/7.0; if(dnparams.bluechro > 0.) intermblue=0.0014f*(float) SQR(dnparams.bluechro); else intermblue= (float)dnparams.bluechro/7.0;//increase slower than linear float intermblue2=(float) dnparams.bluechro/7.0; //adjust noise ab in function of sliders red and blue float realred = interm_med + intermred; if (realred < 0.f) realred=0.01f; float realred2 = interm_med + intermred2; if (realred2 < 0.f) realred2=0.01f; float noisevarab_r = SQR(realred); float realblue = interm_med + intermblue; if (realblue < 0.f) realblue=0.01f; float realblue2 = interm_med + intermblue2; if (realblue2 < 0.f) realblue2=0.01f; float noisevarab_b = SQR(realblue); { // enclosing this code in a block frees about 120 MB before allocating 20 MB after this block (measured with D700 NEF) wavelet_decomposition* Ldecomp; wavelet_decomposition* adecomp; wavelet_decomposition* bdecomp; int levwav=5; float maxreal = max(realred2, realblue2); //increase the level of wavelet if user increase much or very much sliders if( maxreal < 8.f) levwav=5; else if( maxreal < 10.f)levwav=6; else if( maxreal < 15.f)levwav=7; else levwav=8;//maximum ==> I have increase Maxlevel in cplx_wavelet_dec.h from 8 to 9 // if (settings->verbose) printf("levwavelet=%i noisevarA=%f noisevarB=%f \n",levwav, noisevarab_r, noisevarab_b ); Ldecomp = new wavelet_decomposition (labdn->data, labdn->W, labdn->H, levwav/*maxlevels*/, 0/*subsampling*/ ); adecomp = new wavelet_decomposition (labdn->data+datalen, labdn->W, labdn->H,levwav, 1 ); bdecomp = new wavelet_decomposition (labdn->data+2*datalen, labdn->W, labdn->H, levwav, 1 ); if(enhance_denoise) WaveletDenoiseAll_BiShrink(*Ldecomp, *adecomp, *bdecomp, noisevarL, noisevarab_r, noisevarab_b,labdn);//enhance mode else; WaveletDenoiseAll(*Ldecomp, *adecomp, *bdecomp, noisevarL, noisevarab_r, noisevarab_b,labdn);// Ldecomp->reconstruct(labdn->data); delete Ldecomp; adecomp->reconstruct(labdn->data+datalen); delete adecomp; bdecomp->reconstruct(labdn->data+2*datalen); delete bdecomp; } //TODO: at this point wavelet coefficients storage can be freed //Issue 1680: Done now //second impulse denoise if (dnparams.luma>0.01) { impulse_nr (labdn, MIN(50.0f,(float)dnparams.luma)/20.0f); } //PF_correct_RT(dst, dst, defringe.radius, defringe.threshold); //wavelet denoised L channel array2D Lwavdn(width,height); float * Lwavdnptr = Lwavdn; memcpy (Lwavdnptr, labdn->data, width*height*sizeof(float)); //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // now do detail recovery using block DCT to detect // patterns missed by wavelet denoise // blocks are not the same thing as tiles! // calculation for detail recovery blocks const int numblox_W = ceil(((float)(width))/(offset))+2*blkrad; const int numblox_H = ceil(((float)(height))/(offset))+2*blkrad; //const int nrtiles = numblox_W*numblox_H; // end of tiling calc { //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // Main detail recovery algorithm: Block loop AlignedBuffer pBuf(width + TS + 2*blkrad*offset); for (int vblk=0; vblk=height) { rr = MAX(0,2*height-2-row); } for (int j=0; jW; j++) { datarow[j] = (Lin[rr][j]-Lwavdn[rr][j]); } for (int j=-blkrad*offset; j<0; j++) { datarow[j] = datarow[MIN(-j,width-1)]; } for (int j=width; j=0 && top+i=0 && left+jL[i][j] = Lwavdn[i][j] + hpdn; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // transform denoised "Lab" to output RGB //calculate mask for feathering output tile overlaps float * Vmask = new float [height+1]; float * Hmask = new float [width+1]; for (int i=0; i0) Vmask[i] = mask; if (tilebottom0) Hmask[i] = mask; if (tilerightxyz L = labdn->L[i1][j1]; a = labdn->a[i1][j1]; b = labdn->b[i1][j1]; //convert XYZ Color::Lab2XYZ(L, a, b, X, Y, Z); //apply inverse gamma noise float r_,g_,b_; Color::xyz2rgb(X,Y,Z,r_,g_,b_,wip); //inverse gamma standard (slider) r_ = r_<32768.0f ? igamcurve[r_] : (Color::gamman((float)r_/32768.0f, igam) * 65535.0f); g_ = g_<32768.0f ? igamcurve[g_] : (Color::gamman((float)g_/32768.0f, igam) * 65535.0f); b_ = b_<32768.0f ? igamcurve[b_] : (Color::gamman((float)b_/32768.0f, igam) * 65535.0f); //readapt arbitrary gamma (inverse from beginning) if (gamlab == 0) { r_ = Color::gammatab_26_11[r_]; g_ = Color::gammatab_26_11[g_]; b_ = Color::gammatab_26_11[b_]; } else if (gamlab == 1) { r_ = Color::gammatab_4[r_]; g_ = Color::gammatab_4[g_]; b_ = Color::gammatab_4[b_]; } else if (gamlab == 2) { r_ = Color::gammatab_55[r_]; g_ = Color::gammatab_55[g_]; b_ = Color::gammatab_55[b_]; } float factor = Vmask[i1]*Hmask[j1]/gain; dsttmp->r(i,j) += factor*r_; dsttmp->g(i,j) += factor*g_; dsttmp->b(i,j) += factor*b_; } } } else {//RGB mode for (int i=tiletop; iL[i1][j1]; X = (labdn->a[i1][j1]) + Y; Z = Y - (labdn->b[i1][j1]); X = X<32768.0f ? igamcurve[X] : (Color::gamma((float)X/32768.0f, igam, igamthresh, igamslope, 1.0, 0.0) * 65535.0f); Y = Y<32768.0f ? igamcurve[Y] : (Color::gamma((float)Y/32768.0f, igam, igamthresh, igamslope, 1.0, 0.0) * 65535.0f); Z = Z<32768.0f ? igamcurve[Z] : (Color::gamma((float)Z/32768.0f, igam, igamthresh, igamslope, 1.0, 0.0) * 65535.0f); float factor = Vmask[i1]*Hmask[j1]/gain; dsttmp->r(i,j) += factor*X; dsttmp->g(i,j) += factor*Y; dsttmp->b(i,j) += factor*Z; } } } } else { for (int i=tiletop; iL[i1][j1]; a = labdn->a[i1][j1]; b = labdn->b[i1][j1]; Color::Lab2XYZ(L, a, b, X, Y, Z); float factor = Vmask[i1]*Hmask[j1]; float r_,g_,b_; Color::xyz2rgb(X,Y,Z,r_,g_,b_,wip); //gamma slider is different from Raw r_ = r_<32768.0f ? igamcurve[r_] : (Color::gamman((float)r_/32768.0f, igam) * 65535.0f); g_ = g_<32768.0f ? igamcurve[g_] : (Color::gamman((float)g_/32768.0f, igam) * 65535.0f); b_ = b_<32768.0f ? igamcurve[b_] : (Color::gamman((float)b_/32768.0f, igam) * 65535.0f); dsttmp->r(i,j) += factor*r_; dsttmp->g(i,j) += factor*g_; dsttmp->b(i,j) += factor*b_; } } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% delete labdn; // delete noiseh; delete[] Vmask; delete[] Hmask; }//end of tile row }//end of tile loop #ifdef _OPENMP #pragma omp critical #endif { fftwf_free ( Lblox); fftwf_free ( fLblox); } delete [] nbrwt; delete [] blurbuffer; } //copy denoised image to output memcpy (dst->data, dsttmp->data, 3*dst->width*dst->height*sizeof(float)); if (!isRAW) {//restore original image gamma #ifdef _OPENMP #pragma omp parallel for #endif for (int i=0; i<3*dst->width*dst->height; i++) { dst->data[i] = Color::gammatab_srgb[ dst->data[i] ]; } } delete dsttmp; // destroy the plans fftwf_destroy_plan( plan_forward_blox[0] ); fftwf_destroy_plan( plan_backward_blox[0] ); fftwf_destroy_plan( plan_forward_blox[1] ); fftwf_destroy_plan( plan_backward_blox[1] ); fftwf_cleanup(); //#ifdef _DEBUG // if (settings->verbose) { // t2e.set(); // printf("Denoise performed in %d usec:\n", t2e.etime(t1e)); // } //#endif }//end of main RGB_denoise //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SSEFUNCTION void ImProcFunctions::RGBtile_denoise (float * fLblox, int hblproc, float noisevar_Ldetail, float * nbrwt, float * blurbuffer ) //for DCT { int blkstart = hblproc*TS*TS; boxabsblur(fLblox+blkstart, nbrwt, 3, 3, TS, TS, blurbuffer);//blur neighbor weights for more robust estimation //for DCT #ifdef __SSE2__ __m128 tempv; __m128 noisevar_Ldetailv = _mm_set1_ps( noisevar_Ldetail ); __m128 onev = _mm_set1_ps( 1.0f ); for (int n=0; n=0; lvl--) {//for levels less than max, use level diff to make edge mask //for (int lvl=0; lvl edge(Wlvl_L,Hlvl_L); //printf("\n level=%d \n",lvl); for (int dir=1; dir<4; dir++) { float mad_L = madL[lvl][dir-1]; float mad_a = noisevar_abr*mada[lvl][dir-1]; float mad_b = noisevar_abb*madb[lvl][dir-1]; //float mad_Lpar = madL[lvl+1][dir-1]; //float mad_apar = mada[lvl+1][dir-1]; //float mad_bpar = mada[lvl+1][dir-1]; //float skip_ab_ratio = WaveletCoeffs_a.level_stride(lvl+1)/skip_ab; // float skip_L_ratio = WaveletCoeffs_L.level_stride(lvl+1)/skip_L; if (noisevar_abr>0.01f || noisevar_abb>0.01f) { for(int i=0;i2 ? 1 : (coeff_a<1 ? 0 : (coeff_a - 1))); //WavCoeffs_b[dir][coeffloc_ab] *= edgefactor*(coeff_b>2 ? 1 : (coeff_b<1 ? 0 : (coeff_b - 1))); //float satfactor_a = mad_a/(mad_a+0.5*SQR(WavCoeffs_a[0][coeffloc_ab])); //float satfactor_b = mad_b/(mad_b+0.5*SQR(WavCoeffs_b[0][coeffloc_ab])); WavCoeffs_a[dir][coeffloc_ab] *= SQR(1.f-xexpf(-(mag_a/mad_a)-(mag_L/(9.f*mad_L)))/*satfactor_a*/); WavCoeffs_b[dir][coeffloc_ab] *= SQR(1.f-xexpf(-(mag_b/mad_b)-(mag_L/(9.f*mad_L)))/*satfactor_b*/); } }//now chrominance coefficients are denoised #endif } if (noisevar_L>0.01f) { mad_L *= noisevar_L*5.f/(lvl+1); #ifdef __SSE2__ int j; __m128 mad_Lv = _mm_set1_ps(mad_L); __m128 mad_Lm9v = _mm_set1_ps(mad_L * 9.f); __m128 epsv = _mm_set1_ps(eps); __m128 mag_Lv; for (int i=0; i (edge, edge, buffer, Wlvl_L, Hlvl_L, 1<<(lvl+1), false /*multiThread*/); //gaussVertical (edge, edge, buffer, Wlvl_L, Hlvl_L, 1<<(lvl+1), false); boxblur(sfave, sfave, lvl+2, lvl+2, Wlvl_L, Hlvl_L);//increase smoothness by locally averaging shrinkage #ifdef __SSE2__ __m128 tempLv; __m128 tempL2v; __m128 sf_Lv; for (int i=0; i 582=max float mad_b = madb*noisevar_abb; if (noisevar_abr>0.01f || noisevar_abb>0.01f) { for(int i=0;i2*thresh_a ? 1 : (coeff_a2*thresh_b ? 1 : (coeff_b0.01f) { #ifdef __SSE2__ __m128 magv; __m128 mad_Lv = _mm_set1_ps( mad_L ); __m128 ninev = _mm_set1_ps( 9.0f ); __m128 epsv = _mm_set1_ps( eps ); for (int i=0; i