/* * This file is part of RawTherapee. * * Copyright (c) 2004-2010 Gabor Horvath * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ inline double tightestroot (double L, double a, double b, double r1, double r2, double r3); #ifndef __COLORCLIP__ #define __COLORCLIP__ #include #include "median.h" // gives back the tightest >0 amplification by which color clipping occures inline double tightestroot (double L, double a, double b, double r1, double r2, double r3) { double an = a/500.0, bn = b/200.0, p = (L+16.0)/116.0; double coeff3 = r1*an*an*an - r3*bn*bn*bn; double coeff2 = 3.0 * p * (r1*an*an + r3*bn*bn); double coeff1 = 3.0 * p*p * (r1*an - r3*bn); double coeff0 = p*p*p*(r1+r2+r3) - 1.0; double a1 = coeff2 / coeff3; double a2 = coeff1 / coeff3; double a3 = coeff0 / coeff3; double Q = (a1 * a1 - 3.0 * a2) / 9.0; double R = (2.0 * a1 * a1 * a1 - 9.0 * a1 * a2 + 27.0 * a3) / 54.0; double Qcubed = Q * Q * Q; double d = Qcubed - R * R; // printf ("input L=%g, a=%g, b=%g\n", L, a, b); // printf ("c1=%g, c2=%g, c3=%g, c4=%g\n", coeff3, coeff2, coeff1, coeff0); /* Three real roots */ if (d >= 0) { double theta = acos(R / sqrt(Qcubed)); double sqrtQ = sqrt(Q); double x0 = -2.0 * sqrtQ * cos( theta / 3.0) - a1 / 3.0; double x1 = -2.0 * sqrtQ * cos((theta + 2.0 * M_PI) / 3.0) - a1 / 3.0; double x2 = -2.0 * sqrtQ * cos((theta + 4.0 * M_PI) / 3.0) - a1 / 3.0; // printf ("3 roots: %g, %g, %g\n", x0, x1, x2); SORT3 (x0,x1,x2,a1,a2,a3); if (a1>0) return a1; if (a2>0) return a2; if (a3>0) return a3; return -1; } /* One real root */ else { // double e = pow(sqrt(-d) + fabs(R), 1.0 / 3.0); double e = exp (1.0 / 3.0 * log (sqrt(-d) + fabs(R))); if (R > 0) e = -e; double x0 = (e + Q / e) - a1 / 3.0; // printf ("1 root: %g\n", x0); if (x0<0) return -1; else return x0; } } /******************************************************************************* * FindCubicRoots * -------------- * * Copyright (C) 1997-2001 Ken Turkowski. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * ------------------------------------------------------------------------ * * Solve: * coeff[3] * x^3 + coeff[2] * x^2 + coeff[1] * x + coeff[0] = 0 * * returns: * 3 - 3 real roots * 1 - 1 real root (2 complex conjugate) * *******************************************************************************/ /*long FindCubicRoots(const FLOAT coeff[4], FLOAT x[3]) { FLOAT a1 = coeff[2] / coeff[3]; FLOAT a2 = coeff[1] / coeff[3]; FLOAT a3 = coeff[0] / coeff[3]; double_t Q = (a1 * a1 - 3 * a2) / 9; double_t R = (2 * a1 * a1 * a1 - 9 * a1 * a2 + 27 * a3) / 54; double_t Qcubed = Q * Q * Q; double_t d = Qcubed - R * R; // Three real roots if (d >= 0) { double_t theta = acos(R / sqrt(Qcubed)); double_t sqrtQ = sqrt(Q); x[0] = -2 * sqrtQ * cos( theta / 3) - a1 / 3; x[1] = -2 * sqrtQ * cos((theta + 2 * pi) / 3) - a1 / 3; x[2] = -2 * sqrtQ * cos((theta + 4 * pi) / 3) - a1 / 3; return (3); } // One real root else { double_t e = pow(sqrt(-d) + fabs(R), 1. / 3.); if (R > 0) e = -e; x[0] = (e + Q / e) - a1 / 3.; return (1); } } */ #endif