/* * This file is part of RawTherapee. * * Copyright (c) 2004-2010 Gabor Horvath * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _OPENMP #include #endif namespace rtengine { extern const Settings* settings; #undef ABS #undef MAX #undef MIN #undef DIST #undef CLIP #define ABS(a) ((a)<0?-(a):(a)) #define MAX(a,b) ((a)<(b)?(b):(a)) #define MIN(a,b) ((a)>(b)?(b):(a)) #define DIST(a,b) (ABS(a-b)) #define MAXVAL 0xffff #define CLIP(a) ((a)>0?((a)(b)) {temp=(a);(a)=(b);(b)=temp;} } #define med3x3(a0,a1,a2,a3,a4,a5,a6,a7,a8,median) { \ p[0]=a0; p[1]=a1; p[2]=a2; p[3]=a3; p[4]=a4; p[5]=a5; p[6]=a6; p[7]=a7; p[8]=a8; \ PIX_SORT(p[1],p[2]); PIX_SORT(p[4],p[5]); PIX_SORT(p[7],p[8]); \ PIX_SORT(p[0],p[1]); PIX_SORT(p[3],p[4]); PIX_SORT(p[6],p[7]); \ PIX_SORT(p[1],p[2]); PIX_SORT(p[4],p[5]); PIX_SORT(p[7],p[8]); \ PIX_SORT(p[0],p[3]); PIX_SORT(p[5],p[8]); PIX_SORT(p[4],p[7]); \ PIX_SORT(p[3],p[6]); PIX_SORT(p[1],p[4]); PIX_SORT(p[2],p[5]); \ PIX_SORT(p[4],p[7]); PIX_SORT(p[4],p[2]); PIX_SORT(p[6],p[4]); \ PIX_SORT(p[4],p[2]); median=p[4];} //a4 is the median RawImageSource::RawImageSource () :ImageSource() ,plistener(NULL) ,green(NULL) ,red(NULL) ,blue(NULL) ,cache(NULL) ,border(4) ,rawData(NULL) ,ri(NULL) { hrmap[0] = NULL; hrmap[1] = NULL; hrmap[2] = NULL; //needhr = NULL; //hpmap = NULL; camProfile = NULL; embProfile = NULL; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RawImageSource::~RawImageSource () { delete idata; if (ri) { delete ri; } if (green) freeArray(green, H); if (red) freeArray(red, H); if (blue) freeArray(blue, H); if(rawData) freeArray(rawData, H); if( cache ) delete [] cache; if (hrmap[0]!=NULL) { int dh = H/HR_SCALE; freeArray(hrmap[0], dh); freeArray(hrmap[1], dh); freeArray(hrmap[2], dh); } //if (needhr) // freeArray(needhr, H); //if (hpmap) // freeArray(hpmap, H); if (camProfile) cmsCloseProfile (camProfile); if (embProfile) cmsCloseProfile (embProfile); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::transformRect (PreviewProps pp, int tran, int &ssx1, int &ssy1, int &width, int &height, int &fw) { pp.x += border; pp.y += border; if (d1x) { if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) { pp.x /= 2; pp.w = pp.w/2+1; } else { pp.y /= 2; pp.h = pp.h/2+1; } } int w = W, h = H; if (fuji) { w = ri->get_FujiWidth() * 2 + 1; h = (H - ri->get_FujiWidth())*2 + 1; } int sw = w, sh = h; if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) { sw = h; sh = w; } if( pp.w > sw-2*border) pp.w = sw-2*border; if( pp.h > sh-2*border) pp.h = sh-2*border; int ppx = pp.x, ppy = pp.y; if (tran & TR_HFLIP) ppx = sw - pp.x - pp.w; if (tran & TR_VFLIP) ppy = sh - pp.y - pp.h; int sx1 = ppx; int sy1 = ppy; int sx2 = ppx + pp.w; int sy2 = ppy + pp.h; if ((tran & TR_ROT) == TR_R180) { sx1 = w - ppx - pp.w; sy1 = h - ppy - pp.h; sx2 = sx1 + pp.w; sy2 = sy1 + pp.h; } else if ((tran & TR_ROT) == TR_R90) { sx1 = ppy; sy1 = h - ppx - pp.w; sx2 = sx1 + pp.h; sy2 = sy1 + pp.w; } else if ((tran & TR_ROT) == TR_R270) { sx1 = w - ppy - pp.h; sy1 = ppx; sx2 = sx1 + pp.h; sy2 = sy1 + pp.w; } if (fuji) { // atszamoljuk a koordinatakat fuji-ra: // recalculate the coordinates fuji-ra: ssx1 = (sx1+sy1) / 2; ssy1 = (sy1 - sx2 ) / 2 + ri->get_FujiWidth(); int ssx2 = (sx2+sy2) / 2 + 1; int ssy2 = (sy2 - sx1) / 2 + ri->get_FujiWidth(); fw = (sx2 - sx1) / 2 / pp.skip; width = (ssx2 - ssx1) / pp.skip + ((ssx2 - ssx1) % pp.skip > 0); height = (ssy2 - ssy1) / pp.skip + ((ssy2 - ssy1) % pp.skip > 0); } else { ssx1 = sx1; ssy1 = sy1; width = (sx2 - sx1) / pp.skip + ((sx2 - sx1) % pp.skip > 0); height = (sy2 - sy1) / pp.skip + ((sy2 - sy1) % pp.skip > 0); } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::getImage (ColorTemp ctemp, int tran, Imagefloat* image, PreviewProps pp, HRecParams hrp, ColorManagementParams cmp, RAWParams raw ) { Glib::Mutex::Lock lock(getImageMutex); tran = defTransform (tran); // compute channel multipliers double r, g, b; float rm, gm, bm; ctemp.getMultipliers (r, g, b); rm = cam_rgb[0][0]*r + cam_rgb[0][1]*g + cam_rgb[0][2]*b; gm = cam_rgb[1][0]*r + cam_rgb[1][1]*g + cam_rgb[1][2]*b; bm = cam_rgb[2][0]*r + cam_rgb[2][1]*g + cam_rgb[2][2]*b; rm = camwb_red / rm; gm = camwb_green / gm; bm = camwb_blue / bm; /*float mul_lum = 0.299*rm + 0.587*gm + 0.114*bm; rm /= mul_lum; gm /= mul_lum; bm /= mul_lum;*/ /*//initialGain=1.0; // in floating point, should keep white point fixed and recover higher values with exposure slider //if (hrp.enabled) */ float min = rm; if (min>gm) min = gm; if (min>bm) min = bm; defGain=0.0;// = log(initialGain) / log(2.0); //printf(" Initial gain=%f defgain=%f min=%f\n",initialGain,defGain,min); //printf(" rm=%f gm=%f bm=%f\n",rm,gm,bm); min/=initialGain; //min=(float)1.0/min; //else { //defGain = 0.0; rm /= min; gm /= min; bm /= min; //} //defGain = 0.0;//no need now for making headroom for highlights??? //printf("initial gain= %e\n",initialGain); //TODO: normalize the gain control //if (hrp.enabled==true && hrp.method=="Color" && hrmap[0]==NULL) // updateHLRecoveryMap_ColorPropagation (); // compute image area to render in order to provide the requested part of the image int sx1, sy1, imwidth, imheight, fw; transformRect (pp, tran, sx1, sy1, imwidth, imheight, fw); // check possible overflows int maximwidth, maximheight; if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) { maximwidth = image->height; maximheight = image->width; } else { maximwidth = image->width; maximheight = image->height; } if (d1x) maximheight /= 2; // correct if overflow (very rare), but not fuji because it is corrected in transline if (!fuji && imwidth>maximwidth) imwidth = maximwidth; if (!fuji && imheight>maximheight) imheight = maximheight; int maxx=this->W,maxy=this->H,skip=pp.skip; //if (sx1+skip*imwidth>maxx) imwidth --; // very hard to fix this situation without an 'if' in the loop. float area=skip*skip; rm/=area; gm/=area; bm/=area; #ifdef _OPENMP #pragma omp parallel { #endif // render the requested image part float* line_red = new float[imwidth]; float* line_grn = new float[imwidth]; float* line_blue = new float[imwidth]; #ifdef _OPENMP #pragma omp for #endif for (int ix=0; ix=maxy-skip) i=maxy-skip-1; // avoid trouble if (ri->isBayer()) { for (int j=0,jx=sx1; j=maxx-skip) jx=maxx-skip-1; // avoid trouble float rtot,gtot,btot; rtot=gtot=btot=0; for (int m=0; mmaxx-skip) jx=maxx-skip-1; float rtot,gtot,btot; rtot=gtot=btot=0; for (int m=0; mwidth%2==0) || ((tran & TR_ROT) == TR_R180 && image->height%2+image->width%2==1) || ((tran & TR_ROT) == TR_R270 && image->height%2==0); // first row for (int j=1+a; jwidth-1; j+=2) { image->r[0][j] = (image->r[1][j] + image->r[0][j+1] + image->r[0][j-1]) / 3; image->g[0][j] = (image->g[1][j] + image->g[0][j+1] + image->g[0][j-1]) / 3; image->b[0][j] = (image->b[1][j] + image->b[0][j+1] + image->b[0][j-1]) / 3; } // other rows for (int i=1; iheight-1; i++) { for (int j=2-(a+i+1)%2; jwidth-1; j+=2) { // edge-adaptive interpolation double dh = (ABS(image->r[i][j+1] - image->r[i][j-1]) + ABS(image->g[i][j+1] - image->g[i][j-1]) + ABS(image->b[i][j+1] - image->b[i][j-1])) / 1.0; double dv = (ABS(image->r[i+1][j] - image->r[i-1][j]) + ABS(image->g[i+1][j] - image->g[i-1][j]) + ABS(image->b[i+1][j] - image->b[i-1][j])) / 1.0; double eh = 1.0 / (1.0 + dh); double ev = 1.0 / (1.0 + dv); image->r[i][j] = (eh * (image->r[i][j+1] + image->r[i][j-1]) + ev * (image->r[i+1][j] + image->r[i-1][j])) / (2.0 * (eh + ev)); image->g[i][j] = (eh * (image->g[i][j+1] + image->g[i][j-1]) + ev * (image->g[i+1][j] + image->g[i-1][j])) / (2.0 * (eh + ev)); image->b[i][j] = (eh * (image->b[i][j+1] + image->b[i][j-1]) + ev * (image->b[i+1][j] + image->b[i-1][j])) / (2.0 * (eh + ev)); } // first pixel if (2-(a+i+1)%2==2) { image->r[i][0] = (image->r[i+1][0] + image->r[i-1][0] + image->r[i][1]) / 3; image->g[i][0] = (image->g[i+1][0] + image->g[i-1][0] + image->g[i][1]) / 3; image->b[i][0] = (image->b[i+1][0] + image->b[i-1][0] + image->b[i][1]) / 3; } // last pixel if (2-(a+i+image->width)%2==2) { image->r[i][image->width-1] = (image->r[i+1][image->width-1] + image->r[i-1][image->width-1] + image->r[i][image->width-2]) / 3; image->g[i][image->width-1] = (image->g[i+1][image->width-1] + image->g[i-1][image->width-1] + image->g[i][image->width-2]) / 3; image->b[i][image->width-1] = (image->b[i+1][image->width-1] + image->b[i-1][image->width-1] + image->b[i][image->width-2]) / 3; } } // last row int b = (a==1 && image->height%2) || (a==0 && image->height%2==0); for (int j=1+b; jwidth-1; j+=2) { image->r[image->height-1][j] = (image->r[image->height-2][j] + image->r[image->height-1][j+1] + image->r[image->height-1][j-1]) / 3; image->g[image->height-1][j] = (image->g[image->height-2][j] + image->g[image->height-1][j+1] + image->g[image->height-1][j-1]) / 3; image->b[image->height-1][j] = (image->b[image->height-2][j] + image->b[image->height-1][j+1] + image->b[image->height-1][j-1]) / 3; } } // Flip if needed if (tran & TR_HFLIP) hflip (image); if (tran & TR_VFLIP) vflip (image); // Color correction (only when running on full resolution) if (ri->isBayer() && pp.skip==1) processFalseColorCorrection (image, raw.ccSteps); // Applying postmul colorSpaceConversion (image, cmp, embProfile, camProfile, xyz_cam, defGain); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /* cfaCleanFromMap: correct raw pixels looking at the bitmap * takes into consideration if there are multiple bad pixels in the neighborhood */ int RawImageSource::cfaCleanFromMap( PixelsMap &bitmapBads ) { float eps=1.0; int counter=0; for( int row = 2; row < H-2; row++ ){ for(int col = 2; col 0.0){ rawData[row][col]= wtdsum / norm;//gradient weighted average counter++; } else { if (tot > 0.1) rawData[row][col] = sum/tot;//backup plan -- simple average } } } return counter; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /* Search for hot or dead pixels in the image and update the map * For each pixel compare its value to the average of similar color surrounding * (Taken from Emil Martinec idea) */ int RawImageSource::findHotDeadPixel( PixelsMap &bpMap, float thresh) { volatile int counter=0; float (*cfablur); cfablur = (float (*)) calloc (H*W, sizeof *cfablur); #pragma omp parallel { #pragma omp for for (int i=0; iH-3) {inext=i-2;} else {inext=i+2;} for (int j=0; jW-3) {jnext=j-2;} else {jnext=j+2;} med3x3(rawData[iprev][jprev],rawData[iprev][j],rawData[iprev][jnext], \ rawData[i][jprev],rawData[i][j],rawData[i][jnext], \ rawData[inext][jprev],rawData[inext][j],rawData[inext][jnext],cfablur[i*W+j]); } } #pragma omp for //cfa pixel heat/death evaluation for (int rr=0; rr < H; rr++) { //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for (int cc=0; cc < W; cc++) { //rawData[rr][cc] = cfablur[rr*W+cc];//diagnostic //evaluate pixel for heat/death float pixdev = fabs(rawData[rr][cc]-cfablur[rr*W+cc]); float hfnbrave=0; int top=MAX(0,rr-2); int bottom=MIN(H-1,rr+2); int left=MAX(0,cc-2); int right=MIN(W-1,cc+2); for (int mm=top; mm<=bottom; mm++) for (int nn=left; nn<=right; nn++) { hfnbrave += fabs(rawData[mm][nn]-cfablur[mm*W+nn]); } hfnbrave = (hfnbrave-pixdev)/((bottom-top+1)*(right-left+1)-1); if (pixdev > thresh*hfnbrave) { // mark the pixel as "bad" bpMap.set(cc,rr ); counter++; } }//end of pixel evaluation } }//end pragma free (cfablur); //printf ("counter %d \n",counter); return counter; } void RawImageSource::rotateLine (float* line, float** channel, int tran, int i, int w, int h) { if ((tran & TR_ROT) == TR_R180) for (int j=0; j=0 && yheight && y>=0 && xwidth) { image->r[image->height-1-y][image->width-1-x] = red[j]; image->g[image->height-1-y][image->width-1-x] = green[j]; image->b[image->height-1-y][image->width-1-x] = blue[j]; } } } else if ((tran & TR_ROT) == TR_R270) { int end = MIN(h+fw-i, w-fw+i); for (int j=start; j=0 && xheight && y>=0 && ywidth) { image->r[image->height-1-x][y] = red[j]; image->g[image->height-1-x][y] = green[j]; image->b[image->height-1-x][y] = blue[j]; } } } else if ((tran & TR_ROT) == TR_R90) { int end = MIN(h+fw-i, w-fw+i); for (int j=start; j=0 && ywidth && y>=0 && xheight) { image->r[x][image->width-1-y] = red[j]; image->g[x][image->width-1-y] = green[j]; image->b[x][image->width-1-y] = blue[j]; } } } else { int end = MIN(h+fw-i, w-fw+i); for (int j=start; j=0 && yheight && y>=0 && xwidth) { image->r[y][x] = red[j]; image->g[y][x] = green[j]; image->b[y][x] = blue[j]; } } } } // Nikon D1X vertical interpolation + coarse rotation else if (d1x) { // copy new pixels if ((tran & TR_ROT) == TR_R180) { for (int j=0; jr[2*imheight-2-2*i][imwidth-1-j] = red[j]; image->g[2*imheight-2-2*i][imwidth-1-j] = green[j]; image->b[2*imheight-2-2*i][imwidth-1-j] = blue[j]; } if (i==1 || i==2) { // linear interpolation int row = 2*imheight-1-2*i; for (int j=0; jr[row][col] = (red[j] + image->r[row+1][col]) /2; image->g[row][col] = (green[j] + image->g[row+1][col]) /2; image->b[row][col] = (blue[j] + image->b[row+1][col]) /2; } } else if (i==imheight-1) { int row = 2*imheight-1-2*i; for (int j=0; jr[row][col] = (red[j] + image->r[row+1][col]) /2; image->g[row][col] = (green[j] + image->g[row+1][col]) /2; image->b[row][col] = (blue[j] + image->b[row+1][col]) /2; } row = 2*imheight-1-2*i+2; for (int j=0; jr[row][col] = (red[j] + image->r[row+1][col]) /2; image->g[row][col] = (green[j] + image->g[row+1][col]) /2; image->b[row][col] = (blue[j] + image->b[row+1][col]) /2; } } else if (i>2 && ir[row][col] = CLIP((int)(-0.0625*red[j] + 0.5625*image->r[row-1][col] + 0.5625*image->r[row+1][col] - 0.0625*image->r[row+3][col])); image->g[row][col] = CLIP((int)(-0.0625*green[j] + 0.5625*image->g[row-1][col] + 0.5625*image->g[row+1][col] - 0.0625*image->g[row+3][col])); image->b[row][col] = CLIP((int)(-0.0625*blue[j] + 0.5625*image->b[row-1][col] + 0.5625*image->b[row+1][col] - 0.0625*image->b[row+3][col])); } } } else if ((tran & TR_ROT) == TR_R90) { for (int j=0; jr[j][2*imheight-2-2*i] = red[j]; image->g[j][2*imheight-2-2*i] = green[j]; image->b[j][2*imheight-2-2*i] = blue[j]; } if (i==1 || i==2) { // linear interpolation int col = 2*imheight-1-2*i; for (int j=0; jr[j][col] = (red[j] + image->r[j][col+1]) /2; image->g[j][col] = (green[j] + image->g[j][col+1]) /2; image->b[j][col] = (blue[j] + image->b[j][col+1]) /2; } } else if (i==imheight-1) { int col = 2*imheight-1-2*i; for (int j=0; jr[j][col] = (red[j] + image->r[j][col+1]) /2; image->g[j][col] = (green[j] + image->g[j][col+1]) /2; image->b[j][col] = (blue[j] + image->b[j][col+1]) /2; } col = 2*imheight-1-2*i+2; for (int j=0; jr[j][col] = (red[j] + image->r[j][col+1]) /2; image->g[j][col] = (green[j] + image->g[j][col+1]) /2; image->b[j][col] = (blue[j] + image->b[j][col+1]) /2; } } else if (i>2 && ir[j][col] = CLIP((int)(-0.0625*red[j] + 0.5625*image->r[j][col-1] + 0.5625*image->r[j][col+1] - 0.0625*image->r[j][col+3])); image->g[j][col] = CLIP((int)(-0.0625*green[j] + 0.5625*image->g[j][col-1] + 0.5625*image->g[j][col+1] - 0.0625*image->g[j][col+3])); image->b[j][col] = CLIP((int)(-0.0625*blue[j] + 0.5625*image->b[j][col-1] + 0.5625*image->b[j][col+1] - 0.0625*image->b[j][col+3])); } } } else if ((tran & TR_ROT) == TR_R270) { for (int j=0; jr[imwidth-1-j][2*i] = red[j]; image->g[imwidth-1-j][2*i] = green[j]; image->b[imwidth-1-j][2*i] = blue[j]; } if (i==1 || i==2) { // linear interpolation for (int j=0; jr[row][2*i-1] = (red[j] + image->r[row][2*i-2]) /2; image->g[row][2*i-1] = (green[j] + image->g[row][2*i-2]) /2; image->b[row][2*i-1] = (blue[j] + image->b[row][2*i-2]) /2; } } else if (i==imheight-1) { for (int j=0; jr[row][2*i-1] = (red[j] + image->r[row][2*i-2]) /2; image->g[row][2*i-1] = (green[j] + image->g[row][2*i-2]) /2; image->b[row][2*i-1] = (blue[j] + image->b[row][2*i-2]) /2; image->r[row][2*i-3] = (image->r[row][2*i-2] + image->r[row][2*i-4]) /2; image->g[row][2*i-3] = (image->g[row][2*i-2] + image->g[row][2*i-4]) /2; image->b[row][2*i-3] = (image->b[row][2*i-2] + image->b[row][2*i-4]) /2; } } else if (i>0 && ir[row][2*i-3] = CLIP((int)(-0.0625*red[j] + 0.5625*image->r[row][2*i-2] + 0.5625*image->r[row][2*i-4] - 0.0625*image->r[row][2*i-6])); image->g[row][2*i-3] = CLIP((int)(-0.0625*green[j] + 0.5625*image->g[row][2*i-2] + 0.5625*image->g[row][2*i-4] - 0.0625*image->g[row][2*i-6])); image->b[row][2*i-3] = CLIP((int)(-0.0625*blue[j] + 0.5625*image->b[row][2*i-2] + 0.5625*image->b[row][2*i-4] - 0.0625*image->b[row][2*i-6])); } } } else { rotateLine (red, image->r, tran, 2*i, imwidth, imheight); rotateLine (green, image->g, tran, 2*i, imwidth, imheight); rotateLine (blue, image->b, tran, 2*i, imwidth, imheight); if (i==1 || i==2) { // linear interpolation for (int j=0; jr[2*i-1][j] = (red[j] + image->r[2*i-2][j]) /2; image->g[2*i-1][j] = (green[j] + image->g[2*i-2][j]) /2; image->b[2*i-1][j] = (blue[j] + image->b[2*i-2][j]) /2; } } else if (i==imheight-1) { for (int j=0; jr[2*i-3][j] = (image->r[2*i-4][j] + image->r[2*i-2][j]) /2; image->g[2*i-3][j] = (image->g[2*i-4][j] + image->g[2*i-2][j]) /2; image->b[2*i-3][j] = (image->b[2*i-4][j] + image->b[2*i-2][j]) /2; image->r[2*i-1][j] = (red[j] + image->r[2*i-2][j]) /2; image->g[2*i-1][j] = (green[j] + image->g[2*i-2][j]) /2; image->b[2*i-1][j] = (blue[j] + image->b[2*i-2][j]) /2; } } else if (i>2 && ir[2*i-3][j] = CLIP((int)(-0.0625*red[j] + 0.5625*image->r[2*i-2][j] + 0.5625*image->r[2*i-4][j] - 0.0625*image->r[2*i-6][j])); image->g[2*i-3][j] = CLIP((int)(-0.0625*green[j] + 0.5625*image->g[2*i-2][j] + 0.5625*image->g[2*i-4][j] - 0.0625*image->g[2*i-6][j])); image->b[2*i-3][j] = CLIP((int)(-0.0625*blue[j] + 0.5625*image->b[2*i-2][j] + 0.5625*image->b[2*i-4][j] - 0.0625*image->b[2*i-6][j])); } } } } // other (conventional) CCD coarse rotation else { rotateLine (red, image->r, tran, i, imwidth, imheight); rotateLine (green, image->g, tran, i, imwidth, imheight); rotateLine (blue, image->b, tran, i, imwidth, imheight); } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::getFullSize (int& w, int& h, int tr) { tr = defTransform (tr); if (fuji) { w = ri->get_FujiWidth() * 2 + 1; h = (H - ri->get_FujiWidth())*2 + 1; } else if (d1x) { w = W; h = 2*H-1; } else { w = W; h = H; } if ((tr & TR_ROT) == TR_R90 || (tr & TR_ROT) == TR_R270) { int tmp = w; w = h; h = tmp; } w -= 2 * border; h -= 2 * border; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::getSize (int tran, PreviewProps pp, int& w, int& h) { tran = defTransform (tran); // if (fuji) { // return; // } // else if (d1x) { // return; // } // else { w = pp.w / pp.skip + (pp.w % pp.skip > 0); h = pp.h / pp.skip + (pp.h % pp.skip > 0); // } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::hflip (Imagefloat* image) { int width = image->width; int height = image->height; float* rowr = new float[width]; float* rowg = new float[width]; float* rowb = new float[width]; for (int i=0; ir[i][width-1-j]; rowg[j] = image->g[i][width-1-j]; rowb[j] = image->b[i][width-1-j]; } memcpy (image->r[i], rowr, width*sizeof(float)); memcpy (image->g[i], rowg, width*sizeof(float)); memcpy (image->b[i], rowb, width*sizeof(float)); } delete [] rowr; delete [] rowg; delete [] rowb; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::vflip (Imagefloat* image) { int width = image->width; int height = image->height; register float tmp; for (int i=0; ir[i][j]; image->r[i][j] = image->r[height-1-i][j]; image->r[height-1-i][j] = tmp; tmp = image->g[i][j]; image->g[i][j] = image->g[height-1-i][j]; image->g[height-1-i][j] = tmp; tmp = image->b[i][j]; image->b[i][j] = image->b[height-1-i][j]; image->b[height-1-i][j] = tmp; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% int RawImageSource::load (Glib::ustring fname, bool batch) { MyTime t1,t2; t1.set(); fileName = fname; if (plistener) { plistener->setProgressStr ("Decoding..."); plistener->setProgress (0.0); } ri = new RawImage(fname); int errCode = ri->loadRaw (); if (errCode) return errCode; ri->compress_image(); if (plistener) { plistener->setProgress (0.8); } /***** Copy once constant data extracted from raw *******/ W = ri->get_width(); H = ri->get_height(); fuji = ri->get_FujiWidth()!=0; for (int i=0; i<3; i++) for (int j=0; j<3; j++) rgb_cam[i][j] = ri->get_rgb_cam(i,j); // compute inverse of the color transformation matrix // first arg is matrix, second arg is inverse inverse33 (rgb_cam, cam_rgb); d1x = ! ri->get_model().compare("D1X"); if (d1x) border = 8; if ( ri->get_profile() ) embProfile = cmsOpenProfileFromMem (ri->get_profile(), ri->get_profileLen()); // create profile memset (xyz_cam, 0, sizeof(xyz_cam)); for (int i=0; i<3; i++) for (int j=0; j<3; j++) for (int k=0; k<3; k++) xyz_cam[i][j] += xyz_sRGB[i][k] * rgb_cam[k][j]; camProfile = iccStore->createFromMatrix (xyz_cam, false, "Camera"); inverse33 (xyz_cam, cam_xyz); float pre_mul[4]; ri->get_colorsCoeff( pre_mul, scale_mu_l, c_black);//modify for black level camwb_red = ri->get_pre_mul(0) / pre_mul[0]; camwb_green = ri->get_pre_mul(1) / pre_mul[1]; camwb_blue = ri->get_pre_mul(2) / pre_mul[2]; initialGain = 1.0 / MIN(MIN(pre_mul[0],pre_mul[1]),pre_mul[2]); double cam_r = rgb_cam[0][0]*camwb_red + rgb_cam[0][1]*camwb_green + rgb_cam[0][2]*camwb_blue; double cam_g = rgb_cam[1][0]*camwb_red + rgb_cam[1][1]*camwb_green + rgb_cam[1][2]*camwb_blue; double cam_b = rgb_cam[2][0]*camwb_red + rgb_cam[2][1]*camwb_green + rgb_cam[2][2]*camwb_blue; wb = ColorTemp (cam_r, cam_g, cam_b); ri->set_prefilters(); //Load complete Exif informations RawMetaDataLocation rml; rml.exifBase = ri->get_exifBase(); rml.ciffBase = ri->get_ciffBase(); rml.ciffLength = ri->get_ciffLen(); idata = new ImageData (fname, &rml); green = allocArray(W,H); red = allocArray(W,H); blue = allocArray(W,H); //hpmap = allocArray(W, H); if (plistener) { plistener->setProgress (1.0); } plistener=NULL; // This must be reset, because only load() is called through progressConnector t2.set(); if( settings->verbose ) printf("Load %s: %d µsec\n",fname.c_str(), t2.etime(t1)); return 0; // OK! } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::preprocess (const RAWParams &raw, HRecParams hrp) { MyTime t1,t2; t1.set(); Glib::ustring newDF = raw.dark_frame; RawImage *rid=NULL; if (!raw.df_autoselect) { if( raw.dark_frame.size()>0) rid = dfm.searchDarkFrame( raw.dark_frame ); } else { rid = dfm.searchDarkFrame( ri->get_maker(), ri->get_model(), ri->get_ISOspeed(), ri->get_shutter(), ri->get_timestamp()); } if( rid && settings->verbose){ printf( "Subtracting Darkframe:%s\n",rid->get_filename().c_str()); } //copyOriginalPixels(ri, rid); //FLATFIELD start Glib::ustring newFF = raw.ff_file; RawImage *rif=NULL; if (!raw.ff_AutoSelect) { if( raw.ff_file.size()>0) rif = ffm.searchFlatField( raw.ff_file ); } else { rif = ffm.searchFlatField( idata->getMake(), idata->getModel(),idata->getLens(),idata->getFocalLen(), idata->getFNumber(), idata->getDateTimeAsTS()); } if( rif && settings->verbose) { printf( "Flat Field Correction:%s\n",rif->get_filename().c_str()); } copyOriginalPixels(raw, ri, rid, rif); //FLATFIELD end PixelsMap bitmapBads(W,H); int totBP=0; // Hold count of bad pixels to correct // Always correct camera badpixels std::list *bp = dfm.getBadPixels( ri->get_maker(), ri->get_model(), std::string("") ); if( bp ){ totBP+=bitmapBads.set( *bp ); if( settings->verbose ){ std::cout << "Correcting " << bp->size() << " pixels from .badpixels" << std::endl; } } // If darkframe selected, correct hotpixels found on darkframe bp = 0; if( raw.df_autoselect ){ bp = dfm.getHotPixels( ri->get_maker(), ri->get_model(), ri->get_ISOspeed(), ri->get_shutter(), ri->get_timestamp()); }else if( raw.dark_frame.size()>0 ) bp = dfm.getHotPixels( raw.dark_frame ); if(bp){ totBP+=bitmapBads.set( *bp ); if( settings->verbose && bp->size()>0){ std::cout << "Correcting " << bp->size() << " hotpixels from darkframe" << std::endl; } } scaleColors( 0,0, W, H, raw);//+ + raw parameters for black level(raw.blackxx) defGain = 0.0;//log(initialGain) / log(2.0); if ( raw.hotdeadpix_filt>0 ) { if (plistener) { plistener->setProgressStr ("Hot/Dead Pixel Filter..."); plistener->setProgress (0.0); } float varthresh = (20.0*((float)raw.hotdeadpix_thresh/100.0) + 1.0 ); int nFound =findHotDeadPixel( bitmapBads, varthresh ); totBP += nFound; if( settings->verbose && nFound>0){ printf( "Correcting %d hot/dead pixels found inside image\n",nFound ); } } if( totBP ) cfaCleanFromMap( bitmapBads ); // check if it is an olympus E camera, if yes, compute G channel pre-compensation factors if ( raw.greenthresh || (((idata->getMake().size()>=7 && idata->getMake().substr(0,7)=="OLYMPUS" && idata->getModel()[0]=='E') || (idata->getMake().size()>=9 && idata->getMake().substr(0,7)=="Panasonic")) && raw.dmethod != RAWParams::methodstring[ RAWParams::vng4] && ri->isBayer()) ) { // global correction int ng1=0, ng2=0, i=0; double avgg1=0., avgg2=0.; #pragma omp parallel for default(shared) private(i) reduction(+: ng1, ng2, avgg1, avgg2) for (i=border; iISGREEN(i,j)) { if (i&1) { avgg2 += rawData[i][j]; ng2++; } else { avgg1 += rawData[i][j]; ng1++; } } double corrg1 = ((double)avgg1/ng1 + (double)avgg2/ng2) / 2.0 / ((double)avgg1/ng1); double corrg2 = ((double)avgg1/ng1 + (double)avgg2/ng2) / 2.0 / ((double)avgg2/ng2); #pragma omp parallel for default(shared) for (int i=border; iISGREEN(i,j)) { float currData; currData = (float)(rawData[i][j] * ((i&1) ? corrg2 : corrg1)); rawData[i][j] = (currData); } } if ( raw.greenthresh >0) { if (plistener) { plistener->setProgressStr ("Green equilibrate..."); plistener->setProgress (0.0); } green_equilibrate(0.01*(raw.greenthresh)); } if ( raw.linenoise >0 ) { if (plistener) { plistener->setProgressStr ("Line Denoise..."); plistener->setProgress (0.0); } cfa_linedn(0.00002*(raw.linenoise)); } if ( raw.ca_autocorrect || fabs(raw.cared)>0.001 || fabs(raw.cablue)>0.001 ) { if (plistener) { plistener->setProgressStr ("CA Auto Correction..."); plistener->setProgress (0.0); } CA_correct_RT(raw.cared, raw.cablue); } if ( raw.expos !=1 ) processRawWhitepoint(raw.expos, raw.preser); t2.set(); if( settings->verbose ) printf("Preprocessing: %d usec\n", t2.etime(t1)); return; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::demosaic(const RAWParams &raw, HRecParams hrp ) { if (ri->isBayer()) { MyTime t1,t2; t1.set(); if ( raw.dmethod == RAWParams::methodstring[RAWParams::hphd] ) hphd_demosaic (); else if (raw.dmethod == RAWParams::methodstring[RAWParams::vng4] ) vng4_demosaic (); else if (raw.dmethod == RAWParams::methodstring[RAWParams::ahd] ) ahd_demosaic (0,0,W,H); else if (raw.dmethod == RAWParams::methodstring[RAWParams::amaze] ) amaze_demosaic_RT (0,0,W,H); else if (raw.dmethod == RAWParams::methodstring[RAWParams::dcb] ) dcb_demosaic(raw.dcb_iterations, raw.dcb_enhance); else if (raw.dmethod == RAWParams::methodstring[RAWParams::eahd]) eahd_demosaic (); else if (raw.dmethod == RAWParams::methodstring[RAWParams::fast] ) fast_demosaic (0,0,W,H); //nodemosaic();//for testing else nodemosaic(); t2.set(); if( settings->verbose ) printf("Demosaicing: %s - %d usec\n",raw.dmethod.c_str(), t2.etime(t1)); } if (plistener) { plistener->setProgressStr ("Ready."); plistener->setProgress (1.0); } //color propagation highlight recovery if (hrp.enabled && hrp.method=="Color") HLRecovery_inpaint (red,green,blue); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /* Copy original pixel data and * subtract dark frame (if present) from current image and apply flat field correction (if present) */ void RawImageSource::copyOriginalPixels(const RAWParams &raw, RawImage *src, RawImage *riDark, RawImage *riFlatFile ) { if (ri->isBayer()) { if (!rawData) rawData = allocArray(W,H); if (riDark && W == riDark->get_width() && H == riDark->get_height()) { for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { rawData[row][col] = MAX (src->data[row][col]+ri->get_black() - riDark->data[row][col], 0); } } }else{ for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { rawData[row][col] = src->data[row][col]; } } } if (riFlatFile && W == riFlatFile->get_width() && H == riFlatFile->get_height()) { //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% float (*cfablur); cfablur = (float (*)) calloc (H*W, sizeof *cfablur); //#define BS 32 int BS = raw.ff_BlurRadius; if (BS&1) BS++; //function call to cfabloxblur if (raw.ff_BlurType == RAWParams::ff_BlurTypestring[RAWParams::v_ff]) cfaboxblur(riFlatFile, cfablur, 2*BS, 0); else if (raw.ff_BlurType == RAWParams::ff_BlurTypestring[RAWParams::h_ff]) cfaboxblur(riFlatFile, cfablur, 0, 2*BS); else if (raw.ff_BlurType == RAWParams::ff_BlurTypestring[RAWParams::vh_ff]) //slightly more complicated blur if trying to correct both vertical and horizontal anomalies cfaboxblur(riFlatFile, cfablur, BS, BS);//first do area blur to correct vignette else //(raw.ff_BlurType == RAWParams::ff_BlurTypestring[RAWParams::area_ff]) cfaboxblur(riFlatFile, cfablur, BS, BS); float refctrval,reflocval,refcolor[2][2],vignettecorr,colorcastcorr; //find center ave values by channel for (int m=0; m<2; m++) for (int n=0; n<2; n++) { refcolor[m][n] = MAX(0,cfablur[(2*(H>>2)+m)*W+2*(W>>2)+n] - ri->get_black()); } for (int m=0; m<2; m++) for (int n=0; n<2; n++) { for (int row = 0; row+m < H; row+=2) for (int col = 0; col+n < W; col+=2) { vignettecorr = ( refcolor[m][n]/MAX(1e-5,cfablur[(row+m)*W+col+n]-ri->get_black()) ); rawData[row+m][col+n] = (rawData[row+m][col+n] * vignettecorr); } } if (raw.ff_BlurType == RAWParams::ff_BlurTypestring[RAWParams::vh_ff]) { float (*cfablur1); cfablur1 = (float (*)) calloc (H*W, sizeof *cfablur1); float (*cfablur2); cfablur2 = (float (*)) calloc (H*W, sizeof *cfablur2); //slightly more complicated blur if trying to correct both vertical and horizontal anomalies cfaboxblur(riFlatFile, cfablur1, 0, 2*BS);//now do horizontal blur cfaboxblur(riFlatFile, cfablur2, 2*BS, 0);//now do vertical blur float vlinecorr, hlinecorr; for (int m=0; m<2; m++) for (int n=0; n<2; n++) { for (int row = 0; row+m < H; row+=2) for (int col = 0; col+n < W; col+=2) { hlinecorr = ( MAX(1e-5,cfablur[(row+m)*W+col+n]-ri->get_black())/MAX(1e-5,cfablur1[(row+m)*W+col+n]-ri->get_black()) ); vlinecorr = ( MAX(1e-5,cfablur[(row+m)*W+col+n]-ri->get_black())/MAX(1e-5,cfablur2[(row+m)*W+col+n]-ri->get_black()) ); rawData[row+m][col+n] = (rawData[row+m][col+n] * hlinecorr * vlinecorr); } } free (cfablur1); free (cfablur2); } free (cfablur); //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //#undef BS } } } void RawImageSource::cfaboxblur(RawImage *riFlatFile, float* cfablur, int boxH, int boxW ) { float (*temp); temp = (float (*)) calloc (H*W, sizeof *temp); //box blur cfa image; box size = BS //horizontal blur for (int row = 0; row < H; row++) { int len = boxW/2 + 1; temp[row*W+0] = (float)riFlatFile->data[row][0]/len; temp[row*W+1] = (float)riFlatFile->data[row][1]/len; for (int j=2; j<=boxW; j+=2) { temp[row*W+0] += (float)riFlatFile->data[row][j]/len; temp[row*W+1] += (float)riFlatFile->data[row][j+1]/len; } for (int col=2; col<=boxW; col+=2) { temp[row*W+col] = (temp[row*W+col-2]*len + riFlatFile->data[row][col+boxW])/(len+1); temp[row*W+col+1] = (temp[row*W+col-1]*len + riFlatFile->data[row][col+boxW+1])/(len+1); len ++; } for (int col = boxW+2; col < W-boxW; col++) { temp[row*W+col] = temp[row*W+col-2] + ((float)(riFlatFile->data[row][col+boxW] - riFlatFile->data[row][col-boxW-2]))/len; } for (int col=W-boxW; coldata[row][col-boxW-2])/(len-1); if (col+1data[row][col-boxW-1])/(len-1); len --; } } //vertical blur for (int col = 0; col < W; col++) { int len = boxH/2 + 1; cfablur[0*W+col] = temp[0*W+col]/len; cfablur[1*W+col] = temp[1*W+col]/len; for (int i=2; iisBayer() ) { black_lev[0]=raw.blackzero;//G1 black_lev[1]=raw.blackone;//R black_lev[2]=raw.blacktwo;//B black_lev[3]=raw.blackthree;//G2 } else { black_lev[0]=raw.blackone;//R black_lev[1]=raw.blackzero;//G black_lev[2]=raw.blacktwo;//B black_lev[3]= raw.blackzero; } for(int i=0; i<4; i++) { scale_mul[i]=scale_mu_l[i];} if( c_black[0]+black_lev[1] >0) cblacksom[0]=c_black[0]+black_lev[1]; else cblacksom[0]=0;// adjust black level if( c_black[3]+black_lev[3] >0) cblacksom[3]=c_black[3]+black_lev[3]; else cblacksom[3]=0;// adjust black level if( c_black[2]+black_lev[2] >0) cblacksom[2]=c_black[2]+black_lev[2]; else cblacksom[2]=0;// adjust black level if( c_black[1]+black_lev[0] >0) cblacksom[1]=c_black[1]+black_lev[0]; else cblacksom[1]=0;// adjust black level // this seems strange, but it works // scale image colors if( ri->isBayer() ){ for (int row = winy; row < winy+winh; row ++){ for (int col = winx; col < winx+winw; col++) { float val = rawData[row][col]; int c = FC(row, col); if (ri->ISGREEN(row,col)) { if (row&1) { val-=cblacksom[1]; val *= scale_mul[1]; } else { val-=cblacksom[3]; val *= scale_mul[3]; } } else if (ri->ISRED(row,col)) { val-=cblacksom[0]; val*=scale_mul[0];} else if (ri->ISBLUE(row,col)) { val-=cblacksom[2]; val*=scale_mul[2];} rawData[row][col] = (val); chmax[c] = MAX(chmax[c],val); } } }else{ // i don't know how it's run... for (int row = winy; row < winy+winh; row ++){ for (int col = winx; col < winx+winw; col++) { float val = rawData[row][3*col+0]; if (val){ val -= cblack[0]; val *= scale_mul[0]; rawData[row][3*col+0] = (val); chmax[0] = MAX(chmax[0],val); } val = rawData[row][3*col+1]; if (val){ val -= cblack[1]; val *= scale_mul[1]; rawData[row][3*col+1] = (val); chmax[1] = MAX(chmax[1],val); } val = rawData[row][3*col+2]; if (val){ val -= cblack[2]; val *= scale_mul[2]; rawData[row][3*col+2] = (val); chmax[2] = MAX(chmax[2],val); } } } chmax[3]=chmax[1]; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% int RawImageSource::defTransform (int tran) { int deg = ri->get_rotateDegree(); if ((tran & TR_ROT) == TR_R180) deg += 180; else if ((tran & TR_ROT) == TR_R90) deg += 90; else if ((tran & TR_ROT) == TR_R270) deg += 270; deg %= 360; int ret = 0; if (deg==90) ret |= TR_R90; else if (deg==180) ret |= TR_R180; else if (deg==270) ret |= TR_R270; if (tran & TR_HFLIP) ret |= TR_HFLIP; if (tran & TR_VFLIP) ret |= TR_VFLIP; return ret; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // Thread called part void RawImageSource::processFalseColorCorrectionThread (Imagefloat* im, int row_from, int row_to) { int W = im->width; array2D rbconv_Y (W,3); array2D rbconv_I (W,3); array2D rbconv_Q (W,3); array2D rbout_I (W,3); array2D rbout_Q (W,3); float* row_I = new float[W]; float* row_Q = new float[W]; float* pre1_I = new float[3]; float* pre2_I = new float[3]; float* post1_I = new float[3]; float* post2_I = new float[3]; float middle_I[6]; float* pre1_Q = new float[3]; float* pre2_Q = new float[3]; float* post1_Q = new float[3]; float* post2_Q = new float[3]; float middle_Q[6]; float* tmp; int ppx=0, px=(row_from-1)%3, cx=row_from%3, nx=0; convert_row_to_YIQ (im->r[row_from-1], im->g[row_from-1], im->b[row_from-1], rbconv_Y[px], rbconv_I[px], rbconv_Q[px], W); convert_row_to_YIQ (im->r[row_from], im->g[row_from], im->b[row_from], rbconv_Y[cx], rbconv_I[cx], rbconv_Q[cx], W); for (int j=0; jr[i+1], im->g[i+1], im->b[i+1], rbconv_Y[nx], rbconv_I[nx], rbconv_Q[nx], W); SORT3(rbconv_I[px][0],rbconv_I[cx][0],rbconv_I[nx][0],pre1_I[0],pre1_I[1],pre1_I[2]); SORT3(rbconv_I[px][1],rbconv_I[cx][1],rbconv_I[nx][1],pre2_I[0],pre2_I[1],pre2_I[2]); SORT3(rbconv_Q[px][0],rbconv_Q[cx][0],rbconv_Q[nx][0],pre1_Q[0],pre1_Q[1],pre1_Q[2]); SORT3(rbconv_Q[px][1],rbconv_Q[cx][1],rbconv_Q[nx][1],pre2_Q[0],pre2_Q[1],pre2_Q[2]); // median I channel for (int j=1; jrow_from) { for (int j=1; jr[i-1], im->g[i-1], im->b[i-1], rbconv_Y[px], row_I, row_Q, W); } } // blur last 3 row and finalize H-1th row for (int j=1; jr[row_to-1], im->g[row_to-1], im->b[row_to-1], rbconv_Y[cx], row_I, row_Q, W); delete [] row_I; delete [] row_Q; delete [] pre1_I; delete [] pre2_I; delete [] post1_I; delete [] post2_I; delete [] pre1_Q; delete [] pre2_Q; delete [] post1_Q; delete [] post2_Q; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // correction_YIQ_LQ void RawImageSource::processFalseColorCorrection (Imagefloat* im, int steps) { if (im->height<4) return; for (int t=0; theight-2)/nthreads; if (tidheight - 1); } #else processFalseColorCorrectionThread (im, 1 , im->height - 1); #endif } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::colorSpaceConversion (Imagefloat* im, ColorManagementParams cmp, cmsHPROFILE embedded, cmsHPROFILE camprofile, double camMatrix[3][3], double& defgain) { //camMatrix is cam2xyz = xyz_cam if (cmp.input == "(none)") return; MyTime t1, t2, t3; t1.set (); cmsHPROFILE in; cmsHPROFILE out; Glib::ustring inProfile = cmp.input; if (inProfile=="(embedded)") { if (embedded) in = embedded; else in = camprofile; } else if (inProfile=="(camera)" || inProfile=="") in = camprofile; else { in = iccStore->getProfile (inProfile); if (in==NULL) inProfile = "(camera)"; } if (inProfile=="(camera)" || inProfile=="" || (inProfile=="(embedded)" && !embedded)) { // use default profiles supplied by dcraw // in this case we avoid using the slllllooooooowwww lcms // out = iccStore->workingSpace (wProfile); // hTransform = cmsCreateTransform (in, (FLOAT_SH(1)|COLORSPACE_SH(PT_RGB)|CHANNELS_SH(3)|BYTES_SH(4)|PLANAR_SH(1)), out, (FLOAT_SH(1)|COLORSPACE_SH(PT_RGB)|CHANNELS_SH(3)|BYTES_SH(4)|PLANAR_SH(1)), settings->colorimetricIntent, cmsFLAGS_MATRIXINPUT | cmsFLAGS_MATRIXOUTPUT);//cmsFLAGS_MATRIXINPUT | cmsFLAGS_MATRIXOUTPUT); // cmsDoTransform (hTransform, im->data, im->data, im->planestride/2); // cmsDeleteTransform(hTransform); TMatrix work = iccStore->workingSpaceInverseMatrix (cmp.working); float mat[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; for (int i=0; i<3; i++) for (int j=0; j<3; j++) for (int k=0; k<3; k++) mat[i][j] += work[i][k] * camMatrix[k][j]; // rgb_xyz * xyz_cam #pragma omp parallel for for (int i=0; iheight; i++) for (int j=0; jwidth; j++) { float newr = mat[0][0]*im->r[i][j] + mat[0][1]*im->g[i][j] + mat[0][2]*im->b[i][j]; float newg = mat[1][0]*im->r[i][j] + mat[1][1]*im->g[i][j] + mat[1][2]*im->b[i][j]; float newb = mat[2][0]*im->r[i][j] + mat[2][1]*im->g[i][j] + mat[2][2]*im->b[i][j]; im->r[i][j] = (newr); im->g[i][j] = (newg); im->b[i][j] = (newb); } } else { // use supplied input profile // color space transform is expecting data in the range (0,1) for ( int h = 0; h < im->height; ++h ) for ( int w = 0; w < im->width; ++w ) { im->r[h][w] /= 65535.0f ; im->g[h][w] /= 65535.0f ; im->b[h][w] /= 65535.0f ; } out = iccStore->workingSpace (cmp.working); // out = iccStore->workingSpaceGamma (wProfile); lcmsMutex->lock (); cmsHTRANSFORM hTransform = cmsCreateTransform (in, (FLOAT_SH(1)|COLORSPACE_SH(PT_RGB)|CHANNELS_SH(3)|BYTES_SH(4)|PLANAR_SH(1)), out, (FLOAT_SH(1)|COLORSPACE_SH(PT_RGB)|CHANNELS_SH(3)|BYTES_SH(4)|PLANAR_SH(1)), settings->colorimetricIntent, settings->LCMSSafeMode ? 0 : cmsFLAGS_NOCACHE ); // NOCACHE is important for thread safety lcmsMutex->unlock (); if (hTransform) { // there is an input profile if (cmp.gammaOnInput) { float gd = pow (2.0, defgain); defgain = 0.0; // Writeback defgain to be 0.0 #pragma omp parallel for for (int i=0; iheight; i++) for (int j=0; jwidth; j++) { //TODO: extend beyond 65535 im->r[i][j] = CurveFactory::gamma (CLIP(gd*im->r[i][j])); im->g[i][j] = CurveFactory::gamma (CLIP(gd*im->g[i][j])); im->b[i][j] = CurveFactory::gamma (CLIP(gd*im->b[i][j])); } } im->ExecCMSTransform(hTransform, settings->LCMSSafeMode); } else { // create the profile from camera lcmsMutex->lock (); hTransform = cmsCreateTransform (camprofile, (FLOAT_SH(1)|COLORSPACE_SH(PT_RGB)|CHANNELS_SH(3)|BYTES_SH(4)|PLANAR_SH(1)), out, (FLOAT_SH(1)|COLORSPACE_SH(PT_RGB)|CHANNELS_SH(3)|BYTES_SH(4)|PLANAR_SH(1)), settings->colorimetricIntent, settings->LCMSSafeMode ? cmsFLAGS_NOOPTIMIZE : cmsFLAGS_NOOPTIMIZE | cmsFLAGS_NOCACHE ); // NOCACHE is important for thread safety lcmsMutex->unlock (); im->ExecCMSTransform(hTransform, settings->LCMSSafeMode); } cmsDeleteTransform(hTransform); // restore normalization to the range (0,65535) #pragma omp parallel for for ( int h = 0; h < im->height; ++h ) for ( int w = 0; w < im->width; ++w ) { im->r[h][w] *= 65535.0 ; im->g[h][w] *= 65535.0 ; im->b[h][w] *= 65535.0 ; } } t3.set (); // printf ("ICM TIME: %d\n", t3.etime(t1)); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::colorSpaceConversion16 (Image16* im, ColorManagementParams cmp, cmsHPROFILE embedded, cmsHPROFILE camprofile, double camMatrix[3][3], double& defgain) { //camMatrix is cam2xyz = xyz_cam if (cmp.input == "(none)") return; //MyTime t1, t2, t3; //t1.set (); cmsHPROFILE in; cmsHPROFILE out; Glib::ustring inProfile = cmp.input; if (inProfile=="(embedded)") { if (embedded) in = embedded; else in = camprofile; } else if (inProfile=="(camera)" || inProfile=="") in = camprofile; else { in = iccStore->getProfile (inProfile); if (in==NULL) inProfile = "(camera)"; } if (inProfile=="(camera)" || inProfile=="" || (inProfile=="(embedded)" && !embedded)) { /* out = iccStore->workingSpace (cmp.working); lcmsMutex->lock (); cmsHTRANSFORM hTransform = cmsCreateTransform (in, TYPE_RGB_16_PLANAR, out, TYPE_RGB_16_PLANAR, settings->colorimetricIntent, cmsFLAGS_NOCACHE); //cmsFLAGS_MATRIXINPUT | cmsFLAGS_MATRIXOUTPUT);//cmsFLAGS_MATRIXINPUT | cmsFLAGS_MATRIXOUTPUT); lcmsMutex->unlock (); im->ExecCMSTransform(hTransform, settings->LCMSSafeMode); cmsDeleteTransform(hTransform); */ // in this case we avoid using the slllllooooooowwww lcms TMatrix work = iccStore->workingSpaceInverseMatrix (cmp.working); double mat[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; for (int i=0; i<3; i++) for (int j=0; j<3; j++) for (int k=0; k<3; k++) mat[i][j] += work[i][k] * camMatrix[k][j]; // rgb_xyz * xyz_cam #pragma omp parallel for for (int i=0; iheight; i++) for (int j=0; jwidth; j++) { float newr = mat[0][0]*im->r[i][j] + mat[0][1]*im->g[i][j] + mat[0][2]*im->b[i][j]; float newg = mat[1][0]*im->r[i][j] + mat[1][1]*im->g[i][j] + mat[1][2]*im->b[i][j]; float newb = mat[2][0]*im->r[i][j] + mat[2][1]*im->g[i][j] + mat[2][2]*im->b[i][j]; im->r[i][j] = CLIP((int)newr); im->g[i][j] = CLIP((int)newg); im->b[i][j] = CLIP((int)newb); } } else { out = iccStore->workingSpace (cmp.working); // out = iccStore->workingSpaceGamma (wProfile); lcmsMutex->lock (); cmsHTRANSFORM hTransform = cmsCreateTransform (in, TYPE_RGB_16_PLANAR, out, TYPE_RGB_16_PLANAR, settings->colorimetricIntent, settings->LCMSSafeMode ? 0 : cmsFLAGS_NOCACHE); // NOCACHE is important for thread safety lcmsMutex->unlock (); if (hTransform) { if (cmp.gammaOnInput) { float gd = pow (2.0, defgain); defgain = 0.0; #pragma omp parallel for for (int i=0; iheight; i++) for (int j=0; jwidth; j++) { im->r[i][j] = CurveFactory::gamma ((gd*im->r[i][j])); im->g[i][j] = CurveFactory::gamma ((gd*im->g[i][j])); im->b[i][j] = CurveFactory::gamma ((gd*im->b[i][j])); } } im->ExecCMSTransform(hTransform, settings->LCMSSafeMode); } else { lcmsMutex->lock (); hTransform = cmsCreateTransform (camprofile, TYPE_RGB_16_PLANAR, out, TYPE_RGB_16_PLANAR, settings->colorimetricIntent, settings->LCMSSafeMode ? 0 : cmsFLAGS_NOCACHE); lcmsMutex->unlock (); im->ExecCMSTransform(hTransform, settings->LCMSSafeMode); } cmsDeleteTransform(hTransform); } //t3.set (); // printf ("ICM TIME: %d\n", t3.etime(t1)); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // derived from Dcraw "blend_highlights()" // very effective to reduce (or remove) the magenta, but with levels of grey ! void RawImageSource::HLRecovery_blend(float* rin, float* gin, float* bin, int width, float maxval, float* pre_mul, const RAWParams &raw) { const int ColorCount=3; int clip=INT_MAX; // Transform matrixes rgb>lab and back static const float trans[2][ColorCount][ColorCount] = { { { 1,1,1 }, { 1.7320508,-1.7320508,0 }, { -1,-1,2 } }, { { 1,1,1 }, { 1,-1,1 }, { 1,1,-1 } } }; static const float itrans[2][ColorCount][ColorCount] = { { { 1,0.8660254,-0.5 }, { 1,-0.8660254,-0.5 }, { 1,0,1 } }, { { 1,1,1 }, { 1,-1,1 }, { 1,1,-1 } } }; #define FOREACHCOLOR for (int c=0; c < ColorCount; c++) #define SQR(x) ((x)*(x)) // Determine the maximum level (clip) of all channels int i; FOREACHCOLOR if (clip > (i = (int) maxval * pre_mul[c] * raw.expos)) clip = i; #pragma omp parallel for for (int col=0; col clip) break; } if (c == ColorCount) continue; // Initialize cam with raw input [0] and potentially clipped input [1] FOREACHCOLOR { cam[0][c] = rgb[c]; cam[1][c] = MIN(cam[0][c],clip); } // Calculate the lightness correction ration (chratio) for (int i=0; i<2; i++) { FOREACHCOLOR { lab[i][c]=0; for (int j=0; j < ColorCount; j++) lab[i][c] += trans[ColorCount-3][c][j] * cam[i][j]; } sum[i]=0; for (int c=1; c < ColorCount; c++) sum[i] += SQR(lab[i][c]); } chratio = sqrt(sum[1]/sum[0]); // Apply ratio to lightness in lab space for (int c=1; c < ColorCount; c++) lab[0][c] *= chratio; // Transform back from lab to RGB FOREACHCOLOR { cam[0][c]=0; for (int j=0; j < ColorCount; j++) { cam[0][c] += itrans[ColorCount-3][c][j] * lab[0][j]; } } FOREACHCOLOR rgb[c] = cam[0][c] / ColorCount; // Copy converted pixel back rin[col]=rgb[0]; gin[col]=rgb[1]; bin[col]=rgb[2]; } } void RawImageSource::HLRecovery_Luminance (float* rin, float* gin, float* bin, float* rout, float* gout, float* bout, int width, float maxval) { for (int i=0; imaxval || g>maxval || b>maxval) { float ro = MIN (r, maxval); float go = MIN (g, maxval); float bo = MIN (b, maxval); double L = r + g + b; double C = 1.732050808 * (r - g); double H = 2 * b - r - g; double Co = 1.732050808 * (ro - go); double Ho = 2 * bo - ro - go; if (r!=g && g!=b) { double ratio = sqrt ((Co*Co+Ho*Ho) / (C*C+H*H)); C *= ratio; H *= ratio; } float rr = L / 3.0 - H / 6.0 + C / 3.464101615; float gr = L / 3.0 - H / 6.0 - C / 3.464101615; float br = L / 3.0 + H / 3.0; rout[i] = rr; gout[i] = gr; bout[i] = br; } else { rout[i] = rin[i]; gout[i] = gin[i]; bout[i] = bin[i]; } } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::HLRecovery_CIELab (float* rin, float* gin, float* bin, float* rout, float* gout, float* bout, \ int width, float maxval, double xyz_cam[3][3], double cam_xyz[3][3]) { //static bool crTableReady = false; // lookup table for Lab conversion // perhaps should be centralized, universally defined so we don't keep remaking it??? ImProcFunctions::cachef; /*for (int ix=0; ix < 0x10000; ix++) { float rx = ix / 65535.0; fv[ix] = rx > 0.008856 ? exp(1.0/3 * log(rx)) : 7.787*rx + 16/116.0; }*/ //crTableReady = true; for (int i=0; imaxval || g>maxval || b>maxval) { float ro = MIN (r, maxval); float go = MIN (g, maxval); float bo = MIN (b, maxval); float yy = xyz_cam[1][0]*r + xyz_cam[1][1]*g + xyz_cam[1][2]*b; float fy = (yy<65535.0 ? ImProcFunctions::cachef[yy]/327.68 : (exp(log(yy/MAXVAL)/3.0 ))); // compute LCH decompostion of the clipped pixel (only color information, thus C and H will be used) float x = xyz_cam[0][0]*ro + xyz_cam[0][1]*go + xyz_cam[0][2]*bo; float y = xyz_cam[1][0]*ro + xyz_cam[1][1]*go + xyz_cam[1][2]*bo; float z = xyz_cam[2][0]*ro + xyz_cam[2][1]*go + xyz_cam[2][2]*bo; x = (x<65535.0 ? ImProcFunctions::cachef[x]/327.68 : (exp(log(x/MAXVAL)/3.0 ))); y = (y<65535.0 ? ImProcFunctions::cachef[y]/327.68 : (exp(log(y/MAXVAL)/3.0 ))); z = (z<65535.0 ? ImProcFunctions::cachef[z]/327.68 : (exp(log(z/MAXVAL)/3.0 ))); // convert back to rgb double fz = fy - y + z; double fx = fy + x - y; double zr = ImProcFunctions::f2xyz(fz); double xr = ImProcFunctions::f2xyz(fx); x = xr*65535.0 ; y = yy; z = zr*65535.0 ; float rr = cam_xyz[0][0]*x + cam_xyz[0][1]*y + cam_xyz[0][2]*z; float gr = cam_xyz[1][0]*x + cam_xyz[1][1]*y + cam_xyz[1][2]*z; float br = cam_xyz[2][0]*x + cam_xyz[2][1]*y + cam_xyz[2][2]*z; rout[i] = (rr); gout[i] = (gr); bout[i] = (br); } else { rout[i] = (rin[i]); gout[i] = (gin[i]); bout[i] = (bin[i]); } } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::hlRecovery (std::string method, float* red, float* green, float* blue, int i, int sx1, int width, int skip,const RAWParams &raw ) { if (method=="Luminance") HLRecovery_Luminance (red, green, blue, red, green, blue, width, 65535.0); else if (method=="CIELab blending") HLRecovery_CIELab (red, green, blue, red, green, blue, width, 65535.0, xyz_cam, cam_xyz); /*else if (method=="Color") HLRecovery_ColorPropagation (red, green, blue, i, sx1, width, skip);*/ else if (method=="Blend") // derived from Dcraw { float pre_mul[4]; for(int c=0;c<4;c++) pre_mul[c]=ri->get_pre_mul(c); HLRecovery_blend(red, green, blue, width, 65535.0, pre_mul, raw );} } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::getAutoExpHistogram (LUTu & histogram, int& histcompr) { histcompr = 3; histogram(65536>>histcompr); histogram.clear(); for (int i=border; iisBayer()) { for (int j=start; jISGREEN(i,j)) histogram[CLIP((int)(camwb_green*rawData[i][j]))>>histcompr]+=4; else if (ri->ISRED(i,j)) histogram[CLIP((int)(camwb_red*rawData[i][j]))>>histcompr]+=4; else if (ri->ISBLUE(i,j)) histogram[CLIP((int)(camwb_blue*rawData[i][j]))>>histcompr]+=4; } } else { for (int j=start; j<3*end; j++) { histogram[CLIP((int)(camwb_red*rawData[i][j+0]))>>histcompr]++; histogram[CLIP((int)(camwb_green*rawData[i][j+1]))>>histcompr]+=2; histogram[CLIP((int)(camwb_blue*rawData[i][j+2]))>>histcompr]++; } } } } // Histogram MUST be 256 in size; gamma is applied, blackpoint and gain also void RawImageSource::getRAWHistogram (LUTu & histRedRaw, LUTu & histGreenRaw, LUTu & histBlueRaw) { histRedRaw.clear(); histGreenRaw.clear(); histBlueRaw.clear(); float mult = 65535.0 / ri->get_white(); #pragma omp parallel for for (int i=border; iisBayer()) { for (int j=start; jISGREEN(i,j)) { if(i &1) idx = CLIP((int)CurveFactory::gamma(mult*(ri->data[i][j]-(cblacksom[1]/*+black_lev[1]*/))));// green 1 else idx = CLIP((int)CurveFactory::gamma(mult*(ri->data[i][j]-(cblacksom[3]/*+black_lev[3]*/))));//green 2 histGreenRaw[idx>>8]++; } else if (ri->ISRED(i,j)) { idx = CLIP((int)CurveFactory::gamma(mult*(ri->data[i][j]-(cblacksom[0]/*+black_lev[0]*/)))); histRedRaw[idx>>8]++; } else if (ri->ISBLUE(i,j)) { idx = CLIP((int)CurveFactory::gamma(mult*(ri->data[i][j]-(cblacksom[2]/*+black_lev[2]*/)))); histBlueRaw[idx>>8]++; } } } else { for (int j=start; j<3*end; j++) { idx = CLIP((int)CurveFactory::gamma(mult*(ri->data[i][j]-cblack[0]))); histRedRaw[idx>>8]++; idx = CLIP((int)CurveFactory::gamma(mult*(ri->data[i][j+1]-cblack[1]))); histGreenRaw[idx>>8]++; idx = CLIP((int)CurveFactory::gamma(mult*(ri->data[i][j+2]-cblack[2]))); histBlueRaw[idx>>8]++; } } } // since there are twice as many greens, correct for it if (ri->isBayer()) for (int i=0;i<256;i++) histGreenRaw[i]>>=1; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::getRowStartEnd (int x, int &start, int &end) { if (fuji) { int fw = ri->get_FujiWidth(); start = ABS(fw-x) + border; end = MIN( H+ W-fw-x, fw+x) - border; } else { start = border; end = W-border; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ColorTemp RawImageSource::getAutoWB () { double avg_r = 0; double avg_g = 0; double avg_b = 0; int rn = 0, gn = 0, bn = 0; if (fuji) { for (int i=32; iget_FujiWidth(); int start = ABS(fw-i) + 32; int end = MIN(H+W-fw-i, fw+i) - 32; for (int j=start; jisBayer()) { double d = CLIP(initialGain*(rawData[i][3*j])); if (d>64000) continue; avg_r += d; rn++; d = CLIP(initialGain*(rawData[i][3*j+1])); if (d>64000) continue; avg_g += d; gn++; d = CLIP(initialGain*(rawData[i][3*j+2])); if (d>64000) continue; avg_b += d; bn++; } else { int c = FC( i, j); double d = CLIP(initialGain*(rawData[i][j])); if (d>64000) continue; double dp = d; if (c==0) { avg_r += dp; rn++; } else if (c==1) { avg_g += dp; gn++; } else if (c==2) { avg_b += dp; bn++; } } } } } else { if (!ri->isBayer()) { for (int i=32; i64000 || dg>64000 || db>64000) continue; avg_r += dr; rn++; avg_g += dg; avg_b += db; } gn = rn; bn=rn; } else { //determine GRBG coset; (ey,ex) is the offset of the R subarray int ey, ex; if (ri->ISGREEN(0,0)) {//first pixel is G if (ri->ISRED(0,1)) {ey=0; ex=1;} else {ey=1; ex=0;} } else {//first pixel is R or B if (ri->ISRED(0,0)) {ey=0; ex=0;} else {ey=1; ex=1;} } double d[2][2]; for (int i=32; i64000 || d[0][1]>64000 || d[1][0]>64000 || d[1][1]>64000 ) continue; avg_r += d[ey][ex]; avg_g += d[1-ey][ex] + d[ey][1-ex]; avg_b += d[1-ey][1-ex]; rn++; } gn = 2*rn; bn = rn; } } if( settings->verbose ) printf ("AVG: %g %g %g\n", avg_r/rn, avg_g/gn, avg_b/bn); // return ColorTemp (pow(avg_r/rn, 1.0/6.0)*img_r, pow(avg_g/gn, 1.0/6.0)*img_g, pow(avg_b/bn, 1.0/6.0)*img_b); double reds = avg_r/rn * camwb_red; double greens = avg_g/gn * camwb_green; double blues = avg_b/bn * camwb_blue; double rm = rgb_cam[0][0]*reds + rgb_cam[0][1]*greens + rgb_cam[0][2]*blues; double gm = rgb_cam[1][0]*reds + rgb_cam[1][1]*greens + rgb_cam[1][2]*blues; double bm = rgb_cam[2][0]*reds + rgb_cam[2][1]*greens + rgb_cam[2][2]*blues; return ColorTemp (rm, gm, bm); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ColorTemp RawImageSource::getSpotWB (std::vector red, std::vector green, std::vector& blue, int tran) { int x; int y; double reds = 0, greens = 0, blues = 0; int rn = 0; if (!ri->isBayer()) { int xmin, xmax, ymin, ymax; int xr, xg, xb, yr, yg, yb; for (int i=0; i52500 || initialGain*(rawData[yg][3*xg+1])>52500 || initialGain*(rawData[yb][3*xb+2])>52500) continue; xmin = MIN(xr,MIN(xg,xb)); xmax = MAX(xr,MAX(xg,xb)); ymin = MIN(yr,MIN(yg,yb)); ymax = MAX(yr,MAX(yg,yb)); if (xmin>=0 && ymin>=0 && xmax=0 && yv>=0 && xv=0 && yv>=0 && xvget_FujiWidth() * 2 + 1; h = (H - ri->get_FujiWidth())*2 + 1; } int sw = w, sh = h; if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) { sw = h; sh = w; } int ppx = x, ppy = y; if (tran & TR_HFLIP) ppx = sw - 1 - x ; if (tran & TR_VFLIP) ppy = sh - 1 - y; int tx = ppx; int ty = ppy; if ((tran & TR_ROT) == TR_R180) { tx = w - 1 - ppx; ty = h - 1 - ppy; } else if ((tran & TR_ROT) == TR_R90) { tx = ppy; ty = h - 1 - ppx; } else if ((tran & TR_ROT) == TR_R270) { tx = w - 1 - ppy; ty = ppx; } if (fuji) { ttx = (tx+ty) / 2; tty = (ty-tx) / 2 + ri->get_FujiWidth(); } else { ttx = tx; tty = ty; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::inverse33 (double (*rgb_cam)[3], double (*cam_rgb)[3]) { double nom = (rgb_cam[0][2]*rgb_cam[1][1]*rgb_cam[2][0] - rgb_cam[0][1]*rgb_cam[1][2]*rgb_cam[2][0] - \ rgb_cam[0][2]*rgb_cam[1][0]*rgb_cam[2][1] + rgb_cam[0][0]*rgb_cam[1][2]*rgb_cam[2][1] + \ rgb_cam[0][1]*rgb_cam[1][0]*rgb_cam[2][2] - rgb_cam[0][0]*rgb_cam[1][1]*rgb_cam[2][2] ); cam_rgb[0][0] = (rgb_cam[1][2]*rgb_cam[2][1]-rgb_cam[1][1]*rgb_cam[2][2]) / nom; cam_rgb[0][1] = -(rgb_cam[0][2]*rgb_cam[2][1]-rgb_cam[0][1]*rgb_cam[2][2]) / nom; cam_rgb[0][2] = (rgb_cam[0][2]*rgb_cam[1][1]-rgb_cam[0][1]*rgb_cam[1][2]) / nom; cam_rgb[1][0] = -(rgb_cam[1][2]*rgb_cam[2][0]-rgb_cam[1][0]*rgb_cam[2][2]) / nom; cam_rgb[1][1] = (rgb_cam[0][2]*rgb_cam[2][0]-rgb_cam[0][0]*rgb_cam[2][2]) / nom; cam_rgb[1][2] = -(rgb_cam[0][2]*rgb_cam[1][0]-rgb_cam[0][0]*rgb_cam[1][2]) / nom; cam_rgb[2][0] = (rgb_cam[1][1]*rgb_cam[2][0]-rgb_cam[1][0]*rgb_cam[2][1]) / nom; cam_rgb[2][1] = -(rgb_cam[0][1]*rgb_cam[2][0]-rgb_cam[0][0]*rgb_cam[2][1]) / nom; cam_rgb[2][2] = (rgb_cam[0][1]*rgb_cam[1][0]-rgb_cam[0][0]*rgb_cam[1][1]) / nom; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //#include "demosaic_algos.cc" //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //Emil's code #include "fast_demo.cc"//fast demosaic #include "amaze_demosaic_RT.cc"//AMaZE demosaic #include "CA_correct_RT.cc"//Emil's CA auto correction #include "cfa_linedn_RT.cc"//Emil's line denoise #include "green_equil_RT.cc"//Emil's green channel equilibration #include "hilite_recon.cc"//Emil's highlight reconstruction #include "expo_before_b.cc"//Jacques's exposure before interpolation //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #undef PIX_SORT #undef med3x3 } /* namespace */ #undef PIX_SORT #undef med3x3