//////////////////////////////////////////////////////////////// // // CFA line denoise by DCT filtering // // copyright (c) 2008-2010 Emil Martinec // // // code dated: June 7, 2010 // // cfa_linedn_RT.cc is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // //////////////////////////////////////////////////////////////// #define TS 512 // Tile size #define CLASS /*#include #include #include #include #include #include #include #include #include */ #include //#include "shrtdct_float.c" #define SQR(x) ((x)*(x)) //#define MIN(a,b) ((a) < (b) ? (a) : (b)) //#define MAX(a,b) ((a) > (b) ? (a) : (b)) //#define LIM(x,min,max) MAX(min,MIN(x,max)) //#define ULIM(x,y,z) ((y) < (z) ? LIM(x,y,z) : LIM(x,z,y)) //#define CLIP(x) LIM(x,0,65535) // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::CLASS cfa_linedn(float noise) { // local variables int height=H, width=W; int top, left, row, col; int rr, cc, indx, i, j; int ex, ey; int verbose=1; const float clip_pt = 0.8*initialGain* 65535.0; float eps=1e-5; //tolerance to avoid dividing by zero float gauss[5] = {0.20416368871516755, 0.18017382291138087, 0.1238315368057753, 0.0662822452863612, 0.02763055063889883}; float rolloff[8] = {0, 0.135335, 0.249352, 0.411112, 0.606531, 0.800737, 0.945959, 1}; //gaussian with sigma=3 float window[8] = {0, .25, .75, 1, 1, .75, .25, 0}; //sine squared float noisevar, linehvar, linevvar, coeffsq; float aarr[8][8], *dctblock[8]; for (i = 0; i < 8; i++) dctblock[i] = aarr[i]; // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if (plistener) { plistener->setProgressStr ("Line Denoise..."); plistener->setProgress (0.0); } // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% noisevar=SQR(3*noise*65535); // _noise_ (as a fraction of saturation) is input to the algorithm float *cfain= new float[TS*TS]; float *cfablur= new float[TS*TS]; float *cfadiff= new float[TS*TS]; float *cfadn= new float[TS*TS]; // Main algorithm: Tile loop for (top=0; top < height-16; top += TS-32) for (left=0; left < width-16; left += TS-32) { int bottom = MIN( top+TS,height); int right = MIN(left+TS, width); int numrows = bottom - top; int numcols = right - left; // load CFA data; data should be in linear gamma space, before white balance multipliers are applied for (rr=top; rr < top+numrows; rr++) for (cc=left, indx=(rr-top)*TS; cc < left+numcols; cc++, indx++) { cfain[indx] = rawData[rr][cc]; } //pad the block to a multiple of 16 on both sides if (numcols < TS) { indx=numcols % 16; for (i=0; i<(16-indx); i++) for (rr=0; rrlinehvar) { for (i=1; i<8; i++) { coeffsq=SQR(dctblock[0][i]); dctblock[0][i] *= coeffsq/(coeffsq+rolloff[i]*noisevar+eps); } } if (noisevar>linevvar) { for (i=1; i<8; i++) { coeffsq=SQR(dctblock[i][0]); dctblock[i][0] *= coeffsq/(coeffsq+rolloff[i]*noisevar+eps); } } ddct8x8s(1, dctblock); //inverse DCT //multiply by window fn and add to output (cfadn) for (i=0; i<8; i++) for (j=0; j<8; j++) { cfadn[(rr+2*i)*TS+cc+2*j] += window[i]*window[j]*dctblock[i][j]; } } // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // copy smoothed results back to image matrix for (rr=16; rr < numrows-16; rr++) { row = rr + top; for (col=16+left, indx=rr*TS+16; indx < rr*TS+numcols-16; indx++, col++) { if (rawData[row][col]setProgress(fabs((float)top/height)); } // clean up delete [] cfain; delete [] cfablur; delete [] cfadiff; delete [] cfadn; } #undef TS //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /* Discrete Cosine Transform Code Copyright(C) 1997 Takuya OOURA (email: ooura@mmm.t.u-tokyo.ac.jp). You may use, copy, modify this code for any purpose and without fee. You may distribute this ORIGINAL package. */ /* Short Discrete Cosine Transform data length :8x8 method :row-column, radix 4 FFT functions ddct8x8s : 8x8 DCT function prototypes void ddct8x8s(int isgn, float **a); */ /* -------- 8x8 DCT (Discrete Cosine Transform) / Inverse of DCT -------- [definition] Normalized 8x8 IDCT C[k1][k2] = (1/4) * sum_j1=0^7 sum_j2=0^7 a[j1][j2] * s[j1] * s[j2] * cos(pi*j1*(k1+1/2)/8) * cos(pi*j2*(k2+1/2)/8), 0<=k1<8, 0<=k2<8 (s[0] = 1/sqrt(2), s[j] = 1, j > 0) Normalized 8x8 DCT C[k1][k2] = (1/4) * s[k1] * s[k2] * sum_j1=0^7 sum_j2=0^7 a[j1][j2] * cos(pi*(j1+1/2)*k1/8) * cos(pi*(j2+1/2)*k2/8), 0<=k1<8, 0<=k2<8 (s[0] = 1/sqrt(2), s[j] = 1, j > 0) [usage] ddct8x8s(1, a); ddct8x8s(-1, a); [parameters] a[0...7][0...7] :input/output data (double **) output data a[k1][k2] = C[k1][k2], 0<=k1<8, 0<=k2<8 */ /* Cn_kR = sqrt(2.0/n) * cos(pi/2*k/n) */ /* Cn_kI = sqrt(2.0/n) * sin(pi/2*k/n) */ /* Wn_kR = cos(pi/2*k/n) */ /* Wn_kI = sin(pi/2*k/n) */ #define C8_1R 0.49039264020161522456 #define C8_1I 0.09754516100806413392 #define C8_2R 0.46193976625564337806 #define C8_2I 0.19134171618254488586 #define C8_3R 0.41573480615127261854 #define C8_3I 0.27778511650980111237 #define C8_4R 0.35355339059327376220 #define W8_4R 0.70710678118654752440 void RawImageSource::ddct8x8s(int isgn, float **a) { int j; float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; float xr, xi; if (isgn < 0) { for (j = 0; j <= 7; j++) { x0r = a[0][j] + a[7][j]; x1r = a[0][j] - a[7][j]; x0i = a[2][j] + a[5][j]; x1i = a[2][j] - a[5][j]; x2r = a[4][j] + a[3][j]; x3r = a[4][j] - a[3][j]; x2i = a[6][j] + a[1][j]; x3i = a[6][j] - a[1][j]; xr = x0r + x2r; xi = x0i + x2i; a[0][j] = C8_4R * (xr + xi); a[4][j] = C8_4R * (xr - xi); xr = x0r - x2r; xi = x0i - x2i; a[2][j] = C8_2R * xr - C8_2I * xi; a[6][j] = C8_2R * xi + C8_2I * xr; xr = W8_4R * (x1i - x3i); x1i = W8_4R * (x1i + x3i); x3i = x1i - x3r; x1i += x3r; x3r = x1r - xr; x1r += xr; a[1][j] = C8_1R * x1r - C8_1I * x1i; a[7][j] = C8_1R * x1i + C8_1I * x1r; a[3][j] = C8_3R * x3r - C8_3I * x3i; a[5][j] = C8_3R * x3i + C8_3I * x3r; } for (j = 0; j <= 7; j++) { x0r = a[j][0] + a[j][7]; x1r = a[j][0] - a[j][7]; x0i = a[j][2] + a[j][5]; x1i = a[j][2] - a[j][5]; x2r = a[j][4] + a[j][3]; x3r = a[j][4] - a[j][3]; x2i = a[j][6] + a[j][1]; x3i = a[j][6] - a[j][1]; xr = x0r + x2r; xi = x0i + x2i; a[j][0] = C8_4R * (xr + xi); a[j][4] = C8_4R * (xr - xi); xr = x0r - x2r; xi = x0i - x2i; a[j][2] = C8_2R * xr - C8_2I * xi; a[j][6] = C8_2R * xi + C8_2I * xr; xr = W8_4R * (x1i - x3i); x1i = W8_4R * (x1i + x3i); x3i = x1i - x3r; x1i += x3r; x3r = x1r - xr; x1r += xr; a[j][1] = C8_1R * x1r - C8_1I * x1i; a[j][7] = C8_1R * x1i + C8_1I * x1r; a[j][3] = C8_3R * x3r - C8_3I * x3i; a[j][5] = C8_3R * x3i + C8_3I * x3r; } } else { for (j = 0; j <= 7; j++) { x1r = C8_1R * a[1][j] + C8_1I * a[7][j]; x1i = C8_1R * a[7][j] - C8_1I * a[1][j]; x3r = C8_3R * a[3][j] + C8_3I * a[5][j]; x3i = C8_3R * a[5][j] - C8_3I * a[3][j]; xr = x1r - x3r; xi = x1i + x3i; x1r += x3r; x3i -= x1i; x1i = W8_4R * (xr + xi); x3r = W8_4R * (xr - xi); xr = C8_2R * a[2][j] + C8_2I * a[6][j]; xi = C8_2R * a[6][j] - C8_2I * a[2][j]; x0r = C8_4R * (a[0][j] + a[4][j]); x0i = C8_4R * (a[0][j] - a[4][j]); x2r = x0r - xr; x2i = x0i - xi; x0r += xr; x0i += xi; a[0][j] = x0r + x1r; a[7][j] = x0r - x1r; a[2][j] = x0i + x1i; a[5][j] = x0i - x1i; a[4][j] = x2r - x3i; a[3][j] = x2r + x3i; a[6][j] = x2i - x3r; a[1][j] = x2i + x3r; } for (j = 0; j <= 7; j++) { x1r = C8_1R * a[j][1] + C8_1I * a[j][7]; x1i = C8_1R * a[j][7] - C8_1I * a[j][1]; x3r = C8_3R * a[j][3] + C8_3I * a[j][5]; x3i = C8_3R * a[j][5] - C8_3I * a[j][3]; xr = x1r - x3r; xi = x1i + x3i; x1r += x3r; x3i -= x1i; x1i = W8_4R * (xr + xi); x3r = W8_4R * (xr - xi); xr = C8_2R * a[j][2] + C8_2I * a[j][6]; xi = C8_2R * a[j][6] - C8_2I * a[j][2]; x0r = C8_4R * (a[j][0] + a[j][4]); x0i = C8_4R * (a[j][0] - a[j][4]); x2r = x0r - xr; x2i = x0i - xi; x0r += xr; x0i += xi; a[j][0] = x0r + x1r; a[j][7] = x0r - x1r; a[j][2] = x0i + x1i; a[j][5] = x0i - x1i; a[j][4] = x2r - x3i; a[j][3] = x2r + x3i; a[j][6] = x2i - x3r; a[j][1] = x2i + x3r; } } }