/* * This file is part of RawTherapee. * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . * * © 2010 Emil Martinec * */ //#include #include #include #include #include #include #ifdef _OPENMP #include #endif #define SQR(x) ((x)*(x)) #define CLIPTO(a,b,c) ((a)>(b)?((a)<(c)?(a):(c)):(b)) #define CLIPC(a) ((a)>-32000?((a)<32000?(a):32000):-32000) #define CLIP(a) (CLIPTO(a,0,65535)) #define DIRWT_L(i1,j1,i,j) (/*domker[(i1-i)/scale+halfwin][(j1-j)/scale+halfwin] */ rangefn_L[(int)(data_fine->L[i1][j1]-data_fine->L[i][j]+0x10000)] ) #define DIRWT_AB(i1,j1,i,j) ( /*domker[(i1-i)/scale+halfwin][(j1-j)/scale+halfwin]*/ rangefn_ab[(int)(data_fine->a[i1][j1]-data_fine->a[i][j]+0x10000)] * \ rangefn_ab[(int)(data_fine->L[i1][j1]-data_fine->L[i][j]+0x10000)] * \ rangefn_ab[(int)(data_fine->b[i1][j1]-data_fine->b[i][j]+0x10000)] ) #define NRWT_L(a) (nrwt_l[a] ) #define NRWT_AB (nrwt_ab[(int)((hipass[1]+0x10000))] * nrwt_ab[(int)((hipass[2]+0x10000))]) namespace rtengine { static const int maxlevel = 4; //sequence of scales //static const int scales[8] = {1,2,4,8,16,32,64,128}; //sequence of pitches //static const int pitches[8] = {1,1,1,1,1,1,1,1}; //sequence of scales //static const int scales[8] = {1,1,1,1,1,1,1,1}; //sequence of pitches //static const int pitches[8] = {2,2,2,2,2,2,2,2}; //sequence of scales //static const int scales[8] = {1,1,2,2,4,4,8,8}; //sequence of pitches //static const int pitches[8] = {2,1,2,1,2,1,2,1}; //sequence of scales static const int scales[8] = {1,1,2,4,8,16,32,64}; //sequence of pitches static const int pitches[8] = {2,1,1,1,1,1,1,1}; //pitch is spacing of subsampling //scale is spacing of directional averaging weights //example 1: no subsampling at any level -- pitch=1, scale=2^n //example 2: subsampling by 2 every level -- pitch=2, scale=1 at each level //example 3: no subsampling at first level, subsampling by 2 thereafter -- // pitch =1, scale=1 at first level; pitch=2, scale=2 thereafter void ImProcFunctions :: dirpyrLab_denoise(LabImage * src, LabImage * dst, const int luma, const int chroma, float gam ) { //float gam = 2.0;//MIN(3.0, 0.1*fabs(c[4])/3.0+0.001); float gamthresh = 0.03; float gamslope = exp(log((double)gamthresh)/gam)/gamthresh; unsigned short gamcurve[65536]; for (int i=0; i<65536; i++) { int g = (int)(CurveFactory::gamma((double)i/65535.0, gam, gamthresh, gamslope, 1.0, 0.0) * 65535.0); //if (i<500) printf("%d %d \n",i,g); gamcurve[i] = CLIP(g); } //#pragma omp parallel for if (multiThread) for (int i=0; iH; i++) { for (int j=0; jW; j++) { src->L[i][j] = gamcurve[src->L[i][j] ]; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% int * rangefn_L = new int [0x20000]; float * nrwt_l = new float [0x10000]; int * rangefn_ab = new int [0x20000]; float * nrwt_ab = new float [0x20000]; int intfactor = 1024;//16384; //set up NR weight functions //gamma correction for chroma in shadows float nrwtl_norm = ((CurveFactory::gamma((double)65535.0/65535.0, gam, gamthresh, gamslope, 1.0, 0.0)) - \ (CurveFactory::gamma((double)75535.0/65535.0, gam, gamthresh, gamslope, 1.0, 0.0))); for (int i=0; i<0x10000; i++) { nrwt_l[i] = ((CurveFactory::gamma((double)i/65535.0, gam, gamthresh, gamslope, 1.0, 0.0) - \ CurveFactory::gamma((double)(i+10000)/65535.0, gam, gamthresh, gamslope, 1.0, 0.0)) )/nrwtl_norm; //if (i % 100 ==0) printf("%d %f \n",i,nrwt_l[i]); } float tonefactor = nrwt_l[32768]; float noise_L = 25.0*luma; float noisevar_L = 4*SQR(noise_L); float noise_ab = 25*chroma; float noisevar_ab = SQR(noise_ab); //set up range functions for (int i=0; i<0x20000; i++) rangefn_L[i] = (int)(( exp(-(double)fabs(i-0x10000) * tonefactor / (1+3*noise_L)) * noisevar_L/((double)(i-0x10000)*(double)(i-0x10000) + noisevar_L))*intfactor); for (int i=0; i<0x20000; i++) rangefn_ab[i] = (int)(( exp(-(double)fabs(i-0x10000) * tonefactor / (1+3*noise_ab)) * noisevar_ab/((double)(i-0x10000)*(double)(i-0x10000) + noisevar_ab))*intfactor); for (int i=0; i<0x20000; i++) nrwt_ab[i] = ((1+abs(i-0x10000)/(1+8*noise_ab)) * exp(-(double)fabs(i-0x10000)/ (1+8*noise_ab) ) ); //for (int i=0; i<65536; i+=100) printf("%d %d \n",i,gamcurve[i]); //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% int level; LabImage * dirpyrLablo[maxlevel]; int w = (int)((src->W-1)/pitches[0])+1; int h = (int)((src->H-1)/pitches[0])+1; dirpyrLablo[0] = new LabImage(w, h); for (level=1; level 0; level--) { int scale = scales[level]; int pitch = pitches[level]; idirpyr(dirpyrLablo[level], dirpyrLablo[level-1], level, nrwt_l, nrwt_ab, pitch, scale, luma, chroma ); } scale = scales[0]; pitch = pitches[0]; idirpyr(dirpyrLablo[0], dst, 0, nrwt_l, nrwt_ab, pitch, scale, luma, chroma ); //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% float igam = 1/gam; float igamthresh = gamthresh*gamslope; float igamslope = 1/gamslope; for (int i=0; i<65536; i++) { int g = (int)(CurveFactory::gamma((float)i/65535.0, igam, igamthresh, igamslope, 1.0, 0.0) * 65535.0); gamcurve[i] = CLIP(g); } for (int i=0; iH; i++) for (int j=0; jW; j++) { dst->L[i][j] = gamcurve[CLIP(dst->L[i][j]) ]; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for(int i = 0; i < maxlevel; i++) { delete dirpyrLablo[i]; } delete [] rangefn_L; delete [] rangefn_ab; delete [] nrwt_l; delete [] nrwt_ab; //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }; void ImProcFunctions::dirpyr(LabImage* data_fine, LabImage* data_coarse, int level, int * rangefn_L, int * rangefn_ab, int pitch, int scale, const int luma, const int chroma ) { //pitch is spacing of subsampling //scale is spacing of directional averaging weights //example 1: no subsampling at any level -- pitch=1, scale=2^n //example 2: subsampling by 2 every level -- pitch=2, scale=1 at each level //example 3: no subsampling at first level, subsampling by 2 thereafter -- // pitch =1, scale=1 at first level; pitch=2, scale=2 thereafter //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // calculate weights, compute directionally weighted average int width = data_fine->W; int height = data_fine->H; //generate domain kernel int halfwin = 3;//MIN(ceil(2*sig),3); int scalewin = halfwin*scale; //int intfactor = 16384; /*float domker[7][7]; for (int i=-halfwin; i<=halfwin; i++) for (int j=-halfwin; j<=halfwin; j++) { domker[i+halfwin][j+halfwin] = (int)(exp(-(i*i+j*j)/(2*sig*sig))*intfactor); //or should we use a value that depends on sigma??? }*/ //float domker[5][5] = {{1,1,1,1,1},{1,2,2,2,1},{1,2,4,2,1},{1,2,2,2,1},{1,1,1,1,1}}; #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i+=pitch ) { int i1=i/pitch; for(int j = 0, j1=0; j < width; j+=pitch, j1++) { //norm = DIRWT(i, j, i, j); //Lout = -norm*data_fine->L[i][j];//if we don't want to include the input pixel in the sum //aout = -norm*data_fine->a[i][j]; //bout = -norm*data_fine->b[i][j]; //or float dirwt_l, dirwt_ab, norm_l, norm_ab; //float lops,aops,bops; float Lout, aout, bout; norm_l = norm_ab = 0;//if we do want to include the input pixel in the sum Lout = 0; aout = 0; bout = 0; //normab = 0; for(int inbr=MAX(0,i-scalewin); inbr<=MIN(height-1,i+scalewin); inbr+=scale) { for (int jnbr=MAX(0,j-scalewin); jnbr<=MIN(width-1,j+scalewin); jnbr+=scale) { dirwt_l = DIRWT_L(inbr, jnbr, i, j); dirwt_ab = DIRWT_AB(inbr, jnbr, i, j); Lout += dirwt_l*data_fine->L[inbr][jnbr]; aout += dirwt_ab*data_fine->a[inbr][jnbr]; bout += dirwt_ab*data_fine->b[inbr][jnbr]; norm_l += dirwt_l; norm_ab += dirwt_ab; } } //lops = Lout/norm;//diagnostic //aops = aout/normab;//diagnostic //bops = bout/normab;//diagnostic //data_coarse->L[i1][j1]=0.5*(data_fine->L[i][j]+Lout/norm_l);//low pass filter //data_coarse->a[i1][j1]=0.5*(data_fine->a[i][j]+aout/norm_ab); //data_coarse->b[i1][j1]=0.5*(data_fine->b[i][j]+bout/norm_ab); //or data_coarse->L[i1][j1]=Lout/norm_l;//low pass filter data_coarse->a[i1][j1]=aout/norm_ab; data_coarse->b[i1][j1]=bout/norm_ab; } } }; //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void ImProcFunctions::idirpyr(LabImage* data_coarse, LabImage* data_fine, int level, float * nrwt_l, float * nrwt_ab, int pitch, int scale, const int luma, const int chroma ) { int width = data_fine->W; int height = data_fine->H; //float eps = 0.0; // c[0] noise_L // c[1] noise_ab (relative to noise_L) // c[2] decrease of noise var with scale // c[3] radius of domain blur at each level // c[4] shadow smoothing float noisevar_L = 4*SQR(25.0 * luma); float noisevar_ab = 2*SQR(100.0 * chroma); float scalefactor = 1.0/pow(2.0,(level+1)*2);//change the last 2 to 1 for longer tail of higher scale NR //float recontrast = (1+((float)(c[6])/100.0)); //float resaturate = 10*(1+((float)(c[7])/100.0)); noisevar_L *= scalefactor; //int halfwin = 3;//MIN(ceil(2*sig),3); //int intfactor= 16384; //int winwidth=1+2*halfwin;//this belongs in calling function /*float domker[7][7]; for (int i=-halfwin; i<=halfwin; i++) for (int j=-halfwin; j<=halfwin; j++) { domker[i][j] = (int)(exp(-(i*i+j*j)/(2*sig*sig))*intfactor); //or should we use a value that depends on sigma??? }*/ //float domker[5][5] = {{1,1,1,1,1},{1,2,2,2,1},{1,2,4,2,1},{1,2,2,2,1},{1,1,1,1,1}}; // for coarsest level, take non-subsampled lopass image and subtract from lopass_fine to generate hipass image // denoise hipass image, add back into lopass_fine to generate denoised image at fine scale // now iterate: // (1) take denoised image at level n, expand and smooth using gradient weights from lopass image at level n-1 // the result is the smoothed image at level n-1 // (2) subtract smoothed image at level n-1 from lopass image at level n-1 to make hipass image at level n-1 // (3) denoise the hipass image at level n-1 // (4) add the denoised image at level n-1 to the smoothed image at level n-1 to make the denoised image at level n-1 // note that the coarsest level amounts to skipping step (1) and doing (2,3,4). // in other words, skip step one if pitch=1 // step (1) if (pitch==1) { // step (1-2-3-4) #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i++) for(int j = 0; j < width; j++) { double wtdsum[3], norm; float hipass[3], hpffluct[3], tonefactor, nrfactor; tonefactor = ((NRWT_L(data_coarse->L[i][j]))); //Wiener filter //luma if (level<2) { hipass[0] = data_fine->L[i][j]-data_coarse->L[i][j]; hpffluct[0]=SQR(hipass[0])+0.001; hipass[0] *= hpffluct[0]/(hpffluct[0]+noisevar_L); data_fine->L[i][j] = CLIP(hipass[0]+data_coarse->L[i][j]); } //chroma hipass[1] = data_fine->a[i][j]-data_coarse->a[i][j]; hipass[2] = data_fine->b[i][j]-data_coarse->b[i][j]; hpffluct[1]=SQR(hipass[1]*tonefactor)+0.001; hpffluct[2]=SQR(hipass[2]*tonefactor)+0.001; nrfactor = (hpffluct[1]+hpffluct[2]) /((hpffluct[1]+hpffluct[2]) + noisevar_ab * NRWT_AB); hipass[1] *= nrfactor; hipass[2] *= nrfactor; data_fine->a[i][j] = hipass[1]+data_coarse->a[i][j]; data_fine->b[i][j] = hipass[2]+data_coarse->b[i][j]; } } else { LabImage* smooth; smooth = new LabImage(width, height); #ifdef _OPENMP #pragma omp parallel #endif { #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i+=pitch) { int ix=i/pitch; for(int j = 0, jx=0; j < width; j+=pitch, jx++) { //copy common pixels smooth->L[i][j] = data_coarse->L[ix][jx]; smooth->a[i][j] = data_coarse->a[ix][jx]; smooth->b[i][j] = data_coarse->b[ix][jx]; } } //if (pitch>1) {//pitch=2; step (1) expand coarse image, fill in missing data #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height-1; i+=2) for(int j = 0; j < width-1; j+=2) { //do midpoint first double norm=0.0,wtdsum[3]={0.0,0.0,0.0}; //wtdsum[0]=wtdsum[1]=wtdsum[2]=0.0; for(int ix=i; ixL[ix][jx]; wtdsum[1] += smooth->a[ix][jx]; wtdsum[2] += smooth->b[ix][jx]; norm++; } norm = 1/norm; smooth->L[i+1][j+1]=wtdsum[0]*norm; smooth->a[i+1][j+1]=wtdsum[1]*norm; smooth->b[i+1][j+1]=wtdsum[2]*norm; } #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height-1; i+=2) for(int j = 0; j < width-1; j+=2) { //now right neighbor if (j+1==width) continue; double norm=0.0,wtdsum[3]={0.0,0.0,0.0}; for (int jx=j; jxL[i][jx]; wtdsum[1] += smooth->a[i][jx]; wtdsum[2] += smooth->b[i][jx]; norm++; } for (int ix=MAX(0,i-1); ixL[ix][j+1]; wtdsum[1] += smooth->a[ix][j+1]; wtdsum[2] += smooth->b[ix][j+1]; norm++; } norm = 1/norm; smooth->L[i][j+1]=wtdsum[0]*norm; smooth->a[i][j+1]=wtdsum[1]*norm; smooth->b[i][j+1]=wtdsum[2]*norm; //now down neighbor if (i+1==height) continue; norm=0.0;wtdsum[0]=wtdsum[1]=wtdsum[2]=0.0; for (int ix=i; ixL[ix][j]; wtdsum[1] += smooth->a[ix][j]; wtdsum[2] += smooth->b[ix][j]; norm++; } for (int jx=MAX(0,j-1); jxL[i+1][jx]; wtdsum[1] += smooth->a[i+1][jx]; wtdsum[2] += smooth->b[i+1][jx]; norm++; } norm=1/norm; smooth->L[i+1][j]=wtdsum[0]*norm; smooth->a[i+1][j]=wtdsum[1]*norm; smooth->b[i+1][j]=wtdsum[2]*norm; } #ifdef _OPENMP #pragma omp for #endif // step (2-3-4) for( int i = 0; i < height; i++) for(int j = 0; j < width; j++) { double tonefactor = ((NRWT_L(smooth->L[i][j]))); //double wtdsum[3], norm; float hipass[3], hpffluct[3], nrfactor; //Wiener filter //luma if (level<2) { hipass[0] = data_fine->L[i][j]-smooth->L[i][j]; hpffluct[0]=SQR(hipass[0])+0.001; hipass[0] *= hpffluct[0]/(hpffluct[0]+noisevar_L); data_fine->L[i][j] = CLIP(hipass[0]+smooth->L[i][j]); } //chroma hipass[1] = data_fine->a[i][j]-smooth->a[i][j]; hipass[2] = data_fine->b[i][j]-smooth->b[i][j]; hpffluct[1]=SQR(hipass[1]*tonefactor)+0.001; hpffluct[2]=SQR(hipass[2]*tonefactor)+0.001; nrfactor = (hpffluct[1]+hpffluct[2]) /((hpffluct[1]+hpffluct[2]) + noisevar_ab * NRWT_AB); hipass[1] *= nrfactor; hipass[2] *= nrfactor; data_fine->a[i][j] = hipass[1]+smooth->a[i][j]; data_fine->b[i][j] = hipass[2]+smooth->b[i][j]; } } // end parallel delete smooth; }//end of pitch>1 }; #undef DIRWT_L #undef DIRWT_AB #undef NRWT_L #undef NRWT_AB }