/* * This file is part of RawTherapee. * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . * * 2010 Ilya Popov */ #ifndef WAVELET_H_INCLUDED #define WAVELET_H_INCLUDED ///////////////////////////////////////////////////////////////////////////// // Haar wavelets // ///////////////////////////////////////////////////////////////////////////// // Bad, strong block effect template void dwt_haar(T * data, size_t pitch, T * buffer, size_t n) { size_t n2a = (n + 1) / 2; size_t n2 = n/2; for(size_t i = 0, j = 0; i < n2; i++, j += 2 * pitch) { T a = data[j]; T b = data[j + pitch]; buffer[i] = (a + b) / 2; buffer[n2a + i] = (a - b); } if(n2 < n2a) { buffer[n2] = data[pitch * (n-1)]; } for(size_t k = 0, q = 0; k < n; k++, q += pitch) { data[q] = buffer[k]; } } template void idwt_haar(T * data, size_t pitch, T * buffer, size_t n, int alpha) { size_t n2a = (n + 1) / 2; size_t n2 = n/2; for(size_t i = 0, j = 0; i < n2; i++, j += 2) { T p = data[i * pitch]; T q = (alpha * data[(n2a + i)*pitch]) / 1024; buffer[j] = p + q / 2; buffer[j + 1] = p - q / 2; } if(n2 < n2a) { buffer[n-1] = data[pitch * n2]; } for(size_t k = 0, q = 0; k < n; k++, q += pitch) { data[q] = buffer[k]; } } ///////////////////////////////////////////////////////////////////////////// // CDF 5/3 wavelets // ///////////////////////////////////////////////////////////////////////////// // buffer must be of length (n + 4) template void dwt_53(T * data, size_t pitch, T * buffer, size_t n) { size_t n2 = n/2; size_t n2a = (n + 1) / 2; T * tmp = buffer + 2; // copy data for(size_t i = 0, j = 0; i < n; i++, j += pitch) { tmp[i] = data[j]; } // extend mirror-like tmp[-1] = tmp[1]; tmp[-2] = tmp[2]; tmp[n] = tmp[n-2]; tmp[n+1] = tmp[n-3]; // calculate coefficients for(ptrdiff_t i = -1; i < (ptrdiff_t)n + 1; i += 2) { tmp[i] = tmp[i] - (tmp[i-1] + tmp[i+1]) / 2; } for(ptrdiff_t i = 0; i < (ptrdiff_t)n; i += 2) { tmp[i] = tmp[i] + (tmp[i-1] + tmp[i+1] + 2) / 4; } // copy with reordering for(size_t i = 0, j = 0; i < n; i+=2, j += pitch) { data[j] = tmp[i]; } for(size_t i = 1, j = n2a*pitch; i < n; i+=2, j += pitch) { data[j] = tmp[i]; } } template void idwt_53(T * data, size_t pitch, T * buffer, size_t n, int alpha) { size_t n2 = n/2; size_t n2a = (n + 1) / 2; T * tmp = buffer + 2; // copy with reordering for(size_t i = 0, j = 0; i < n; i+=2, j += pitch) { tmp[i] = data[j]; } for(size_t i = 1, j = n2a*pitch; i < n; i+=2, j += pitch) { tmp[i] = (alpha * data[j]) / 1024; } // extend mirror-like tmp[-1] = tmp[1]; tmp[-2] = tmp[2]; tmp[n] = tmp[n-2]; tmp[n+1] = tmp[n-3]; // calculate coefficients for(ptrdiff_t i = 0; i < (ptrdiff_t)n + 1; i += 2) { tmp[i] = tmp[i] - (tmp[i-1] + tmp[i+1] + 2) / 4; } for(ptrdiff_t i = 1; i < (ptrdiff_t)n; i += 2) { tmp[i] = tmp[i] + (tmp[i-1] + tmp[i+1]) / 2; } // copy data for(size_t i = 0, j = 0; i < n; i++, j += pitch) { data[j] = tmp[i]; } } ///////////////////////////////////////////////////////////////////////////// // Edge-avoiding wavelets // ///////////////////////////////////////////////////////////////////////////// // based on // Edge-Avoiding Wavelets and their Applications // Raanan Fattal , // Hebrew University of Jerusalem, Israel // // WCDF variant from this paper is used here // T must be one of floating-point types ///////////////////////////////////////////////////////////////////////////// template inline T wcdf_weight(T a, T b) { static const T eps = 1; static const T one = 1.0; return one / (fabs(a - b) + eps); } // buffer is a temporary storage // buffer2 must be preserved between dwt and idwt template void dwt_wcdf(T * data, size_t pitch, T * buffer, size_t n, T * buffer2) { size_t n2 = n/2; size_t n2a = (n + 1) / 2; T * tmp = buffer + 2; T * w = buffer2 + 2; // copy data for(size_t i = 0, j = 0; i < n; i++, j += pitch) { tmp[i] = data[j]; } // extend mirror-like tmp[-1] = tmp[1]; tmp[-2] = tmp[2]; tmp[n] = tmp[n-2]; tmp[n+1] = tmp[n-3]; // calculate weights for(ptrdiff_t i = 0; i < (ptrdiff_t)n - 1; i++) { w[i] = wcdf_weight(tmp[i], tmp[i+1]); //w[i] = 1; } w[-1] = w[-2] = (T)0.0; w[n-1] = w[n] = w[n + 1] = (T)0.0; // calculate coefficients for(ptrdiff_t i = 1; i < (ptrdiff_t)n; i += 2) { tmp[i] = tmp[i] - (w[i-1]*tmp[i-1] + w[i]*tmp[i+1]) / (w[i-1] + w[i]); } for(ptrdiff_t i = 0; i < (ptrdiff_t)n; i += 2) { tmp[i] = tmp[i] + (T)0.5 * (w[i-1]*tmp[i-1] + w[i]*tmp[i+1]) / (w[i-1] + w[i]); } // copy with reordering for(size_t i = 0, j = 0; i < n; i+=2, j += pitch) { data[j] = tmp[i]; } for(size_t i = 1, j = n2a*pitch; i < n; i+=2, j += pitch) { data[j] = tmp[i]; } } template void idwt_wcdf(T * data, size_t pitch, T * buffer, size_t n, int alpha, T * buffer2) { size_t n2 = n/2; size_t n2a = (n + 1) / 2; T * tmp = buffer + 2; T * w = buffer2 + 2; // copy with reordering for(size_t i = 0, j = 0; i < n; i+=2, j += pitch) { tmp[i] = data[j]; } for(size_t i = 1, j = n2a*pitch; i < n; i+=2, j += pitch) { tmp[i] = (alpha * data[j]) / 1024; } // extend mirror-like tmp[-1] = tmp[1]; tmp[-2] = tmp[2]; tmp[n] = tmp[n-2]; tmp[n+1] = tmp[n-3]; // calculate coefficients for(ptrdiff_t i = 0; i < (ptrdiff_t)n; i += 2) { tmp[i] = tmp[i] - (T)0.5 * (w[i-1]*tmp[i-1] + w[i]*tmp[i+1]) / (w[i-1] + w[i]); } for(ptrdiff_t i = 1; i < (ptrdiff_t)n; i += 2) { tmp[i] = tmp[i] + (w[i-1]*tmp[i-1] + w[i]*tmp[i+1]) / (w[i-1] + w[i]); } // copy data for(size_t i = 0, j = 0; i < n; i++, j += pitch) { data[j] = tmp[i]; } } ////////////////////////////////////////////////////////////////////////////// #endif