/* * This file is part of RawTherapee. * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . * * � 2010 Emil Martinec * */ #include #include #include "curves.h" #include "labimage.h" #include "improcfun.h" #include "array2D.h" #include "rt_math.h" #ifdef _OPENMP #include #endif #define CLIPC(a) ((a)>-32000?((a)<32000?(a):32000):-32000) #define DIRWT_L(i1,j1,i,j) ( rangefn_L[(data_fine->L[i1][j1]-data_fine->L[i][j]+32768)] ) #define DIRWT_AB(i1,j1,i,j) ( rangefn_ab[(data_fine->a[i1][j1]-data_fine->a[i][j]+32768)] * \ rangefn_ab[(data_fine->L[i1][j1]-data_fine->L[i][j]+32768)] * \ rangefn_ab[(data_fine->b[i1][j1]-data_fine->b[i][j]+32768)] ) //#define NRWT_L(a) (nrwt_l[a] ) #define NRWT_AB (nrwt_ab[(hipass[1]+32768)] * nrwt_ab[(hipass[2]+32768)]) #define med3(a,b,c) (a(b)) {temp=(a);(a)=(b);(b)=temp;} } #define med3x3(a0,a1,a2,a3,a4,a5,a6,a7,a8,median) { \ p[0]=a0; p[1]=a1; p[2]=a2; p[3]=a3; p[4]=a4; p[5]=a5; p[6]=a6; p[7]=a7; p[8]=a8; \ PIX_SORT(p[1],p[2]); PIX_SORT(p[4],p[5]); PIX_SORT(p[7],p[8]); \ PIX_SORT(p[0],p[1]); PIX_SORT(p[3],p[4]); PIX_SORT(p[6],p[7]); \ PIX_SORT(p[1],p[2]); PIX_SORT(p[4],p[5]); PIX_SORT(p[7],p[8]); \ PIX_SORT(p[0],p[3]); PIX_SORT(p[5],p[8]); PIX_SORT(p[4],p[7]); \ PIX_SORT(p[3],p[6]); PIX_SORT(p[1],p[4]); PIX_SORT(p[2],p[5]); \ PIX_SORT(p[4],p[7]); PIX_SORT(p[4],p[2]); PIX_SORT(p[6],p[4]); \ PIX_SORT(p[4],p[2]); median=p[4];} //a4 is the median namespace rtengine { static const int maxlevel = 4; //sequence of scales //static const int scales[8] = {1,2,4,8,16,32,64,128}; //sequence of pitches //static const int pitches[8] = {1,1,1,1,1,1,1,1}; //sequence of scales //static const int scales[8] = {1,1,1,1,1,1,1,1}; //sequence of pitches //static const int pitches[8] = {2,2,2,2,2,2,2,2}; //sequence of scales //static const int scales[8] = {1,1,2,2,4,4,8,8}; //sequence of pitches //static const int pitches[8] = {2,1,2,1,2,1,2,1}; //sequence of scales static const int scales[8] = {1, 1, 2, 4, 8, 16, 32, 64}; //sequence of pitches static const int pitches[8] = {2, 1, 1, 1, 1, 1, 1, 1}; //pitch is spacing of subsampling //scale is spacing of directional averaging weights //example 1: no subsampling at any level -- pitch=1, scale=2^n //example 2: subsampling by 2 every level -- pitch=2, scale=1 at each level //example 3: no subsampling at first level, subsampling by 2 thereafter -- // pitch =1, scale=1 at first level; pitch=2, scale=2 thereafter void ImProcFunctions :: dirpyrLab_denoise(LabImage * src, LabImage * dst, const procparams::DirPyrDenoiseParams & dnparams ) { float gam = dnparams.gamma / 3.0; //float gam = 2.0;//min(3.0, 0.1*fabs(c[4])/3.0+0.001); float gamthresh = 0.03; float gamslope = exp(log((double)gamthresh) / gam) / gamthresh; LUTf gamcurve(65536, 0); //DiagonalCurve* lumacurve = new DiagonalCurve (dnparams.lumcurve, CURVES_MIN_POLY_POINTS); //DiagonalCurve* chromacurve = new DiagonalCurve (dnparams.chromcurve, CURVES_MIN_POLY_POINTS); //LUTf Lcurve(65536); //LUTf abcurve(65536); for (int i = 0; i < 65536; i++) { int g = (int)(CurveFactory::gamma((double)i / 65535.0, gam, gamthresh, gamslope, 1.0, 0.0) * 65535.0); gamcurve[i] = CLIP(g); /*float val = (float)i/65535.0; float Lval = (2*(lumacurve->getVal(val))); float abval = (2*(chromacurve->getVal(val))); Lcurve[i] = SQR(Lval); abcurve[i] = SQR(abval); if (i % 1000 ==0) printf("%d Lmult=%f abmult=%f \n",i,Lcurve[i],abcurve[i]);*/ } //delete lumacurve; //delete chromacurve; //#pragma omp parallel for if (multiThread) for (int i = 0; i < src->H; i++) { for (int j = 0; j < src->W; j++) { //src->L[i][j] = CurveFactory::flinterp(gamcurve,src->L[i][j]); src->L[i][j] = gamcurve[src->L[i][j]]; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LUTf rangefn_L(65536); LUTf nrwt_l(65536); LUTf rangefn_ab(65536); LUTf nrwt_ab(65536); //set up NR weight functions //gamma correction for chroma in shadows float nrwtl_norm = ((CurveFactory::gamma((double)65535.0 / 65535.0, gam, gamthresh, gamslope, 1.0, 0.0)) - (CurveFactory::gamma((double)75535.0 / 65535.0, gam, gamthresh, gamslope, 1.0, 0.0))); for (int i = 0; i < 65536; i++) { nrwt_l[i] = ((CurveFactory::gamma((double)i / 65535.0, gam, gamthresh, gamslope, 1.0, 0.0) - CurveFactory::gamma((double)(i + 10000) / 65535.0, gam, gamthresh, gamslope, 1.0, 0.0)) ) / nrwtl_norm; //if (i % 100 ==0) printf("%d %f \n",i,nrwt_l[i]); } float tonefactor = nrwt_l[32768]; float noise_L = 10.0 * dnparams.luma; float noisevar_L = SQR(noise_L); float noise_ab = 100.0 * dnparams.chroma; float noisevar_ab = SQR(noise_ab); //set up range functions for (int i = 0; i < 65536; i++) { rangefn_L[i] = (( exp(-(double)fabs(i - 32768) * tonefactor / (1.0 + noise_L)) * (1.0 + noisevar_L) / ((double)(i - 32768) * (double)(i - 32768) + noisevar_L + 1.0))); } for (int i = 0; i < 65536; i++) { rangefn_ab[i] = (( exp(-(double)fabs(i - 32768) * tonefactor / (1.0 + 3 * noise_ab)) * (1.0 + noisevar_ab) / ((double)(i - 32768) * (double)(i - 32768) + noisevar_ab + 1.0))); } for (int i = 0; i < 65536; i++) { nrwt_ab[i] = ((1.0 + abs(i - 32768) / (1.0 + 8 * noise_ab)) * exp(-(double)fabs(i - 32768) / (1.0 + 8 * noise_ab) ) ); } //for (int i=0; i<65536; i+=100) printf("%d %d \n",i,gamcurve[i]); //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% int level; LabImage * dirpyrLablo[maxlevel]; int w = (int)((src->W - 1) / pitches[0]) + 1; int h = (int)((src->H - 1) / pitches[0]) + 1; dirpyrLablo[0] = new LabImage(w, h); for (level = 1; level < maxlevel; level++) { w = (int)((w - 1) / pitches[level]) + 1; h = (int)((h - 1) / pitches[level]) + 1; dirpyrLablo[level] = new LabImage(w, h); }; ////////////////////////////////////////////////////////////////////////////// // c[0] = luma = noise_L // c[1] = chroma = noise_ab // c[2] decrease of noise var with scale // c[3] radius of domain blur at each level // c[4] shadow smoothing // c[5] edge preservation level = 0; int scale = scales[level]; int pitch = pitches[level]; //int thresh = 10 * c[8]; //impulse_nr (src, src, m_w1, m_h1, thresh, noisevar); dirpyr(src, dirpyrLablo[0], 0, rangefn_L, rangefn_ab, pitch, scale, dnparams.luma, dnparams.chroma ); level = 1; while(level < maxlevel) { scale = scales[level]; pitch = pitches[level]; dirpyr(dirpyrLablo[level - 1], dirpyrLablo[level], level, rangefn_L, rangefn_ab, pitch, scale, dnparams.luma, dnparams.chroma ); level ++; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for(int level = maxlevel - 1; level > 0; level--) { int scale = scales[level]; int pitch = pitches[level]; idirpyr(dirpyrLablo[level], dirpyrLablo[level - 1], level, rangefn_L, nrwt_l, nrwt_ab, pitch, scale, dnparams.luma, dnparams.chroma/*, Lcurve, abcurve*/ ); } scale = scales[0]; pitch = pitches[0]; // freeing as much memory as possible since the next call to idirpyr will need lots for(int i = 1; i < maxlevel; i++) { delete dirpyrLablo[i]; } idirpyr(dirpyrLablo[0], dst, 0, rangefn_L, nrwt_l, nrwt_ab, pitch, scale, dnparams.luma, dnparams.chroma/*, Lcurve, abcurve*/ ); // freeing the last bunch of memory delete dirpyrLablo[0]; //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% float igam = 1 / gam; float igamthresh = gamthresh * gamslope; float igamslope = 1 / gamslope; for (int i = 0; i < 65536; i++) { gamcurve[i] = (CurveFactory::gamma((float)i / 65535.0, igam, igamthresh, igamslope, 1.0, 0.0) * 65535.0); } if (dnparams.luma > 0) { for (int i = 0; i < dst->H; i++) for (int j = 0; j < dst->W; j++) { dst->L[i][j] = gamcurve[dst->L[i][j]]; } } else { for (int i = 0; i < dst->H; i++) for (int j = 0; j < dst->W; j++) { dst->L[i][j] = gamcurve[src->L[i][j]]; } } } void ImProcFunctions::dirpyr(LabImage* data_fine, LabImage* data_coarse, int level, LUTf & rangefn_L, LUTf & rangefn_ab, int pitch, int scale, const int luma, const int chroma ) { //pitch is spacing of subsampling //scale is spacing of directional averaging weights //example 1: no subsampling at any level -- pitch=1, scale=2^n //example 2: subsampling by 2 every level -- pitch=2, scale=1 at each level //example 3: no subsampling at first level, subsampling by 2 thereafter -- // pitch =1, scale=1 at first level; pitch=2, scale=2 thereafter //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // calculate weights, compute directionally weighted average int width = data_fine->W; int height = data_fine->H; //generate domain kernel int halfwin = 3;//min(ceil(2*sig),3); int scalewin = halfwin * scale; #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i += pitch ) { int i1 = i / pitch; for(int j = 0, j1 = 0; j < width; j += pitch, j1++) { float dirwt_l, dirwt_ab, norm_l, norm_ab; //float lops,aops,bops; float Lout, aout, bout; norm_l = norm_ab = 0;//if we do want to include the input pixel in the sum Lout = 0; aout = 0; bout = 0; for(int inbr = (i - scalewin); inbr <= (i + scalewin); inbr += scale) { if (inbr < 0 || inbr > height - 1) { continue; } for (int jnbr = (j - scalewin); jnbr <= (j + scalewin); jnbr += scale) { if (jnbr < 0 || jnbr > width - 1) { continue; } dirwt_l = DIRWT_L(inbr, jnbr, i, j); dirwt_ab = DIRWT_AB(inbr, jnbr, i, j); Lout += dirwt_l * data_fine->L[inbr][jnbr]; aout += dirwt_ab * data_fine->a[inbr][jnbr]; bout += dirwt_ab * data_fine->b[inbr][jnbr]; norm_l += dirwt_l; norm_ab += dirwt_ab; } } //lops = Lout/norm;//diagnostic //aops = aout/normab;//diagnostic //bops = bout/normab;//diagnostic data_coarse->L[i1][j1] = Lout / norm_l; //low pass filter data_coarse->a[i1][j1] = aout / norm_ab; data_coarse->b[i1][j1] = bout / norm_ab; /*if (level<2 && i>0 && i0 && jL[i-1][j-1], data_fine->L[i-1][j], data_fine->L[i-1][j+1], \ data_fine->L[i][j-1], data_fine->L[i][j], data_fine->L[i][j+1], \ data_fine->L[i+1][j-1], data_fine->L[i+1][j], data_fine->L[i+1][j+1]); //med3x3(data_fine->L[i-1][j-1], data_fine->L[i-1][j], data_fine->L[i-1][j+1], \ data_fine->L[i][j-1], data_fine->L[i][j], data_fine->L[i][j+1], \ data_fine->L[i+1][j-1], data_fine->L[i+1][j], data_fine->L[i+1][j+1],Lmed); data_coarse->L[i1][j1] = Lhmf; }*/ } } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void ImProcFunctions::idirpyr(LabImage* data_coarse, LabImage* data_fine, int level, LUTf &rangefn_L, LUTf & nrwt_l, LUTf & nrwt_ab, int pitch, int scale, const int luma, const int chroma/*, LUTf & Lcurve, LUTf & abcurve*/ ) { int width = data_fine->W; int height = data_fine->H; array2D nrfactorL (width, height); //float eps = 0.0; // c[0] noise_L // c[1] noise_ab (relative to noise_L) // c[2] decrease of noise var with scale // c[3] radius of domain blur at each level // c[4] shadow smoothing float noisevar_L = 4 * SQR(25.0 * luma); float noisevar_ab = 2 * SQR(100.0 * chroma); float scalefactor = 1.0 / pow(2.0, (level + 1) * 2); //change the last 2 to 1 for longer tail of higher scale NR noisevar_L *= scalefactor; // for coarsest level, take non-subsampled lopass image and subtract from lopass_fine to generate hipass image // denoise hipass image, add back into lopass_fine to generate denoised image at fine scale // now iterate: // (1) take denoised image at level n, expand and smooth using gradient weights from lopass image at level n-1 // the result is the smoothed image at level n-1 // (2) subtract smoothed image at level n-1 from lopass image at level n-1 to make hipass image at level n-1 // (3) denoise the hipass image at level n-1 // (4) add the denoised image at level n-1 to the smoothed image at level n-1 to make the denoised image at level n-1 // note that the coarsest level amounts to skipping step (1) and doing (2,3,4). // in other words, skip step one if pitch=1 // step (1) if (pitch == 1) { // step (1-2-3-4) #ifdef _OPENMP #pragma omp parallel #endif { #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++) for(int j = 0; j < width; j++) { float hipass[3], hpffluct[3], tonefactor, nrfactor; tonefactor = (nrwt_l[data_coarse->L[i][j]]); hipass[1] = data_fine->a[i][j] - data_coarse->a[i][j]; hipass[2] = data_fine->b[i][j] - data_coarse->b[i][j]; //Wiener filter //luma if (level < 2) { hipass[0] = data_fine->L[i][j] - data_coarse->L[i][j]; hpffluct[0] = SQR(hipass[0]) + SQR(hipass[1]) + SQR(hipass[2]) + 0.001; nrfactorL[i][j] = (1.0 + hpffluct[0]) / (1.0 + hpffluct[0] + noisevar_L /* * Lcurve[data_coarse->L[i][j]]*/); //hipass[0] *= hpffluct[0]/(hpffluct[0]+noisevar_L); //data_fine->L[i][j] = CLIP(hipass[0]+data_coarse->L[i][j]); } //chroma //hipass[1] = data_fine->a[i][j]-data_coarse->a[i][j]; //hipass[2] = data_fine->b[i][j]-data_coarse->b[i][j]; hpffluct[1] = SQR(hipass[1] * tonefactor) + 0.001; hpffluct[2] = SQR(hipass[2] * tonefactor) + 0.001; nrfactor = (hpffluct[1] + hpffluct[2]) / ((hpffluct[1] + hpffluct[2]) + noisevar_ab * NRWT_AB); hipass[1] *= nrfactor; hipass[2] *= nrfactor; data_fine->a[i][j] = hipass[1] + data_coarse->a[i][j]; data_fine->b[i][j] = hipass[2] + data_coarse->b[i][j]; } if (level < 2) { #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++) for(int j = 0; j < width; j++) { float dirwt_l, norm_l; float nrfctrave = 0; norm_l = 0;//if we do want to include the input pixel in the sum for(int inbr = max(0, i - 1); inbr <= min(height - 1, i + 1); inbr++) { for (int jnbr = max(0, j - 1); jnbr <= min(width - 1, j + 1); jnbr++) { dirwt_l = DIRWT_L(inbr, jnbr, i, j); nrfctrave += dirwt_l * nrfactorL[inbr][jnbr]; norm_l += dirwt_l; } } nrfctrave /= norm_l; //nrfctrave = nrfactorL[i][j]; //nrfctrave=1; float hipass[3]; //luma /*if (i>0 && i0 && jL[i][j] - data_coarse->L[i][j]); //hipass[0] = median*(data_fine->L[i][j]-data_coarse->L[i][j]); //hipass[0] = nrfactorL[i][j]*(data_fine->L[i][j]-data_coarse->L[i][j]); data_fine->L[i][j] = CLIP(hipass[0] + data_coarse->L[i][j]); //chroma //hipass[1] = nrfactorab[i][j]*(data_fine->a[i][j]-data_coarse->a[i][j]); //hipass[2] = nrfactorab[i][j]*(data_fine->b[i][j]-data_coarse->b[i][j]); //data_fine->a[i][j] = hipass[1]+data_coarse->a[i][j]; //data_fine->b[i][j] = hipass[2]+data_coarse->b[i][j]; } }//end of luminance correction }//end of pitch=1 } else {//pitch>1 LabImage* smooth; smooth = new LabImage(width, height); #ifdef _OPENMP #pragma omp parallel #endif { #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i += pitch) { int ix = i / pitch; for(int j = 0, jx = 0; j < width; j += pitch, jx++) { //copy common pixels smooth->L[i][j] = data_coarse->L[ix][jx]; smooth->a[i][j] = data_coarse->a[ix][jx]; smooth->b[i][j] = data_coarse->b[ix][jx]; } } //if (pitch>1) {//pitch=2; step (1) expand coarse image, fill in missing data #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height - 1; i += 2) for(int j = 0; j < width - 1; j += 2) { //do midpoint first double norm = 0.0, wtdsum[3] = {0.0, 0.0, 0.0}; //wtdsum[0]=wtdsum[1]=wtdsum[2]=0.0; for(int ix = i; ix < min(height, i + 3); ix += 2) for (int jx = j; jx < min(width, j + 3); jx += 2) { wtdsum[0] += smooth->L[ix][jx]; wtdsum[1] += smooth->a[ix][jx]; wtdsum[2] += smooth->b[ix][jx]; norm++; } norm = 1 / norm; smooth->L[i + 1][j + 1] = wtdsum[0] * norm; smooth->a[i + 1][j + 1] = wtdsum[1] * norm; smooth->b[i + 1][j + 1] = wtdsum[2] * norm; } #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height - 1; i += 2) for(int j = 0; j < width - 1; j += 2) { //now right neighbor if (j + 1 == width) { continue; } double norm = 0.0, wtdsum[3] = {0.0, 0.0, 0.0}; for (int jx = j; jx < min(width, j + 3); jx += 2) { wtdsum[0] += smooth->L[i][jx]; wtdsum[1] += smooth->a[i][jx]; wtdsum[2] += smooth->b[i][jx]; norm++; } for (int ix = max(0, i - 1); ix < min(height, i + 2); ix += 2) { wtdsum[0] += smooth->L[ix][j + 1]; wtdsum[1] += smooth->a[ix][j + 1]; wtdsum[2] += smooth->b[ix][j + 1]; norm++; } norm = 1 / norm; smooth->L[i][j + 1] = wtdsum[0] * norm; smooth->a[i][j + 1] = wtdsum[1] * norm; smooth->b[i][j + 1] = wtdsum[2] * norm; //now down neighbor if (i + 1 == height) { continue; } norm = 0.0; wtdsum[0] = wtdsum[1] = wtdsum[2] = 0.0; for (int ix = i; ix < min(height, i + 3); ix += 2) { wtdsum[0] += smooth->L[ix][j]; wtdsum[1] += smooth->a[ix][j]; wtdsum[2] += smooth->b[ix][j]; norm++; } for (int jx = max(0, j - 1); jx < min(width, j + 2); jx += 2) { wtdsum[0] += smooth->L[i + 1][jx]; wtdsum[1] += smooth->a[i + 1][jx]; wtdsum[2] += smooth->b[i + 1][jx]; norm++; } norm = 1 / norm; smooth->L[i + 1][j] = wtdsum[0] * norm; smooth->a[i + 1][j] = wtdsum[1] * norm; smooth->b[i + 1][j] = wtdsum[2] * norm; } #ifdef _OPENMP #pragma omp for #endif // step (2-3-4) for( int i = 0; i < height; i++) for(int j = 0; j < width; j++) { float tonefactor = (nrwt_l[smooth->L[i][j]]); //double wtdsum[3], norm; float hipass[3], hpffluct[3], nrfactor; hipass[1] = data_fine->a[i][j] - smooth->a[i][j]; hipass[2] = data_fine->b[i][j] - smooth->b[i][j]; //Wiener filter //luma if (level < 2) { hipass[0] = data_fine->L[i][j] - smooth->L[i][j]; hpffluct[0] = SQR(hipass[0]) + SQR(hipass[1]) + SQR(hipass[2]) + 0.001; nrfactorL[i][j] = (1.0 + hpffluct[0]) / (1.0 + hpffluct[0] + noisevar_L /* * Lcurve[smooth->L[i][j]]*/); //hipass[0] *= hpffluct[0]/(hpffluct[0]+noisevar_L); //data_fine->L[i][j] = CLIP(hipass[0]+smooth->L[i][j]); } //chroma //hipass[1] = data_fine->a[i][j]-smooth->a[i][j]; //hipass[2] = data_fine->b[i][j]-smooth->b[i][j]; hpffluct[1] = SQR(hipass[1] * tonefactor) + 0.001; hpffluct[2] = SQR(hipass[2] * tonefactor) + 0.001; nrfactor = (hpffluct[1] + hpffluct[2]) / ((hpffluct[1] + hpffluct[2]) + noisevar_ab * NRWT_AB /* * abcurve[smooth->L[i][j]]*/); hipass[1] *= nrfactor; hipass[2] *= nrfactor; data_fine->a[i][j] = hipass[1] + smooth->a[i][j]; data_fine->b[i][j] = hipass[2] + smooth->b[i][j]; } if (level < 2) { #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++) for(int j = 0; j < width; j++) { float dirwt_l, norm_l; float nrfctrave = 0; norm_l = 0;//if we do want to include the input pixel in the sum for(int inbr = (i - pitch); inbr <= (i + pitch); inbr += pitch) { if (inbr < 0 || inbr > height - 1) { continue; } for (int jnbr = (j - pitch); jnbr <= (j + pitch); jnbr += pitch) { if (jnbr < 0 || jnbr > width - 1) { continue; } dirwt_l = DIRWT_L(inbr, jnbr, i, j); nrfctrave += dirwt_l * nrfactorL[inbr][jnbr]; norm_l += dirwt_l; } } nrfctrave /= norm_l; //nrfctrave = nrfactorL[i][j]; //nrfctrave=1; float hipass[3]; //luma /*if (i>0 && i0 && jL[i][j] - smooth->L[i][j]); //hipass[0] = median*(data_fine->L[i][j]-smooth->L[i][j]); //hipass[0] = nrfactorL[i][j]*(data_fine->L[i][j]-data_coarse->L[i][j]); data_fine->L[i][j] = CLIP(hipass[0] + smooth->L[i][j]); //chroma //hipass[1] = nrfactorab[i][j]*(data_fine->a[i][j]-data_coarse->a[i][j]); //hipass[2] = nrfactorab[i][j]*(data_fine->b[i][j]-data_coarse->b[i][j]); //data_fine->a[i][j] = hipass[1]+data_coarse->a[i][j]; //data_fine->b[i][j] = hipass[2]+data_coarse->b[i][j]; } }//end of luminance correction } // end parallel delete smooth; }//end of pitch>1 } #undef DIRWT_L #undef DIRWT_AB //#undef NRWT_L #undef NRWT_AB }