/* * This file is part of RawTherapee. * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . * * © 2010 Emil Martinec * */ #include #include #include "curves.h" #include "labimage.h" #include "color.h" #include "mytime.h" #include "improcfun.h" #include "rawimagesource.h" #include "array2D.h" #include "rt_math.h" #include "opthelper.h" #ifdef _OPENMP #include #endif #define CLIPI(a) ((a)>0 ?((a)<32768 ?(a):32768):0) #define RANGEFN(i) ((1000.0f / (i + 1000.0f))) #define CLIPC(a) ((a)>-32000?((a)<32000?(a):32000):-32000) #define DIRWT(i1,j1,i,j) ( domker[(i1-i)/scale+halfwin][(j1-j)/scale+halfwin] * RANGEFN(fabsf((data_fine[i1][j1]-data_fine[i][j]))) ) namespace rtengine { static const int maxlevel = 6; static const float noise = 2000; //sequence of scales static const int scales[6] = {1, 2, 4, 8, 16, 32}; extern const Settings* settings; //sequence of scales SSEFUNCTION void ImProcFunctions :: dirpyr_equalizer(float ** src, float ** dst, int srcwidth, int srcheight, float ** l_a, float ** l_b, float ** dest_a, float ** dest_b, const double * mult, const double dirpyrThreshold, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r, int choice, int scaleprev) { int lastlevel = maxlevel; if(settings->verbose) { printf("Dirpyr scaleprev=%i\n", scaleprev); } float atten123 = (float) settings->level123_cbdl; if(atten123 > 50.f) { atten123 = 50.f; } if(atten123 < 0.f) { atten123 = 0.f; } float atten0 = (float) settings->level0_cbdl; if(atten0 > 40.f) { atten123 = 40.f; } if(atten0 < 0.f) { atten0 = 0.f; } if((t_r - t_l) < 0.55f) { t_l = t_r + 0.55f; //avoid too small range } while (lastlevel > 0 && fabs(mult[lastlevel - 1] - 1) < 0.001) { lastlevel--; //printf("last level to process %d \n",lastlevel); } if (lastlevel == 0) { return; } int level; float multi[6] = {1.f, 1.f, 1.f, 1.f, 1.f, 1.f}; float scalefl[6]; for(int lv = 0; lv < 6; lv++) { scalefl[lv] = ((float) scales[lv]) / (float) scaleprev; if(lv >= 1) { if(scalefl[lv] < 1.f) { multi[lv] = (atten123 * ((float) mult[lv] - 1.f) / 100.f) + 1.f; //modulate action if zoom < 100% } else { multi[lv] = (float) mult[lv]; } } else { if(scalefl[lv] < 1.f) { multi[lv] = (atten0 * ((float) mult[lv] - 1.f) / 100.f) + 1.f; //modulate action if zoom < 100% } else { multi[lv] = (float) mult[lv]; } } } if(settings->verbose) { printf("CbDL mult0=%f 1=%f 2=%f 3=%f 4=%f 5=%f\n", multi[0], multi[1], multi[2], multi[3], multi[4], multi[5]); } multi_array2D dirpyrlo (srcwidth, srcheight); level = 0; //int thresh = 100 * mult[5]; int scale = (int)(scales[level]) / scaleprev; if(scale < 1) { scale = 1; } dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale); level = 1; while(level < lastlevel) { scale = (int)(scales[level]) / scaleprev; if(scale < 1) { scale = 1; } dirpyr_channel(dirpyrlo[level - 1], dirpyrlo[level], srcwidth, srcheight, level, scale); level ++; } float **tmpHue, **tmpChr; if(skinprot != 0.f) { // precalculate hue and chroma, use SSE, if available // by precalculating these values we can greatly reduce the number of calculations in idirpyr_eq_channel() // but we need two additional buffers for this preprocessing tmpHue = new float*[srcheight]; for (int i = 0; i < srcheight; i++) { tmpHue[i] = new float[srcwidth]; } #ifdef __SSE2__ #pragma omp parallel for for(int i = 0; i < srcheight; i++) { int j; for(j = 0; j < srcwidth - 3; j += 4) { _mm_storeu_ps(&tmpHue[i][j], xatan2f(LVFU(l_b[i][j]), LVFU(l_a[i][j]))); } for(; j < srcwidth; j++) { tmpHue[i][j] = xatan2f(l_b[i][j], l_a[i][j]); } } #else #pragma omp parallel for for(int i = 0; i < srcheight; i++) { for(int j = 0; j < srcwidth; j++) { tmpHue[i][j] = xatan2f(l_b[i][j], l_a[i][j]); } } #endif tmpChr = new float*[srcheight]; for (int i = 0; i < srcheight; i++) { tmpChr[i] = new float[srcwidth]; } #ifdef __SSE2__ #pragma omp parallel { __m128 div = _mm_set1_ps(327.68f); #pragma omp for for(int i = 0; i < srcheight; i++) { int j; for(j = 0; j < srcwidth - 3; j += 4) { _mm_storeu_ps(&tmpChr[i][j], _mm_sqrt_ps(SQRV(LVFU(l_b[i][j])) + SQRV(LVFU(l_a[i][j]))) / div); } for(; j < srcwidth; j++) { tmpChr[i][j] = sqrtf(SQR((l_b[i][j])) + SQR((l_a[i][j]))) / 327.68f; } } } #else #pragma omp parallel for for(int i = 0; i < srcheight; i++) { for(int j = 0; j < srcwidth; j++) { tmpChr[i][j] = sqrtf(SQR((l_b[i][j])) + SQR((l_a[i][j]))) / 327.68f; } } #endif } // with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory float ** buffer = dirpyrlo[lastlevel - 1]; for(int level = lastlevel - 1; level > 0; level--) { idirpyr_eq_channel(dirpyrlo[level], dirpyrlo[level - 1], buffer, srcwidth, srcheight, level, multi, dirpyrThreshold, tmpHue, tmpChr, skinprot, gamutlab, b_l, t_l, t_r, b_r, choice ); } scale = scales[0]; idirpyr_eq_channel(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, multi, dirpyrThreshold, tmpHue, tmpChr, skinprot, gamutlab, b_l, t_l, t_r, b_r, choice ); if(skinprot != 0.f) { for (int i = 0; i < srcheight; i++) { delete [] tmpChr[i]; } delete [] tmpChr; for (int i = 0; i < srcheight; i++) { delete [] tmpHue[i]; } delete [] tmpHue; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #pragma omp parallel for for (int i = 0; i < srcheight; i++) for (int j = 0; j < srcwidth; j++) { dst[i][j] = CLIP(buffer[i][j]); // TODO: Really a clip necessary? } } void ImProcFunctions :: dirpyr_equalizercam (CieImage *ncie, float ** src, float ** dst, int srcwidth, int srcheight, float ** h_p, float ** C_p, const double * mult, const double dirpyrThreshold, const double skinprot, bool execdir, const bool gamutlab, float b_l, float t_l, float t_r, float b_r, int choice, int scaleprev) { int lastlevel = maxlevel; if(settings->verbose) { printf("CAM dirpyr scaleprev=%i\n", scaleprev); } float atten123 = (float) settings->level123_cbdl; if(atten123 > 50.f) { atten123 = 50.f; } if(atten123 < 0.f) { atten123 = 0.f; } // printf("atten=%f\n",atten); float atten0 = (float) settings->level0_cbdl; if(atten0 > 40.f) { atten123 = 40.f; } if(atten0 < 0.f) { atten0 = 0.f; } if((t_r - t_l) < 0.55f) { t_l = t_r + 0.55f; //avoid too small range } while (fabs(mult[lastlevel - 1] - 1) < 0.001 && lastlevel > 0) { lastlevel--; //printf("last level to process %d \n",lastlevel); } if (lastlevel == 0) { return; } int level; float multi[6] = {1.f, 1.f, 1.f, 1.f, 1.f, 1.f}; float scalefl[6]; for(int lv = 0; lv < 6; lv++) { scalefl[lv] = ((float) scales[lv]) / (float) scaleprev; // if(scalefl[lv] < 1.f) multi[lv] = 1.f; else multi[lv]=(float) mult[lv]; if (lv >= 1) { if(scalefl[lv] < 1.f) { multi[lv] = (atten123 * ((float) mult[lv] - 1.f) / 100.f) + 1.f; } else { multi[lv] = (float) mult[lv]; } } else { if(scalefl[lv] < 1.f) { multi[lv] = (atten0 * ((float) mult[lv] - 1.f) / 100.f) + 1.f; } else { multi[lv] = (float) mult[lv]; } } } if(settings->verbose) { printf("CAM CbDL mult0=%f 1=%f 2=%f 3=%f 4=%f 5=%f\n", multi[0], multi[1], multi[2], multi[3], multi[4], multi[5]); } multi_array2D dirpyrlo (srcwidth, srcheight); level = 0; int scale = (int)(scales[level]) / scaleprev; if(scale < 1) { scale = 1; } dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale); level = 1; while(level < lastlevel) { scale = (int)(scales[level]) / scaleprev; if(scale < 1) { scale = 1; } dirpyr_channel(dirpyrlo[level - 1], dirpyrlo[level], srcwidth, srcheight, level, scale); level ++; } // with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory float ** buffer = dirpyrlo[lastlevel - 1]; for(int level = lastlevel - 1; level > 0; level--) { idirpyr_eq_channelcam(dirpyrlo[level], dirpyrlo[level - 1], buffer, srcwidth, srcheight, level, multi, dirpyrThreshold , h_p, C_p, skinprot, b_l, t_l, t_r); } scale = scales[0]; idirpyr_eq_channelcam(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, multi, dirpyrThreshold, h_p, C_p, skinprot, b_l, t_l, t_r); //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if(execdir) { #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for (int i = 0; i < srcheight; i++) for (int j = 0; j < srcwidth; j++) { if(ncie->J_p[i][j] > 8.f && ncie->J_p[i][j] < 92.f) { dst[i][j] = CLIP( buffer[i][j] ); // TODO: Really a clip necessary? } else { dst[i][j] = src[i][j]; } } } else for (int i = 0; i < srcheight; i++) for (int j = 0; j < srcwidth; j++) { dst[i][j] = CLIP( buffer[i][j] ); // TODO: Really a clip necessary? } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% } SSEFUNCTION void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, int width, int height, int level, int scale) { //scale is spacing of directional averaging weights //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // calculate weights, compute directionally weighted average if(level > 1) { //generate domain kernel int domker[5][5] = {{1, 1, 1, 1, 1}, {1, 2, 2, 2, 1}, {1, 2, 2, 2, 1}, {1, 2, 2, 2, 1}, {1, 1, 1, 1, 1}}; // int domker[5][5] = {{1,1,1,1,1},{1,1,1,1,1},{1,1,1,1,1},{1,1,1,1,1},{1,1,1,1,1}}; static const int halfwin = 2; const int scalewin = halfwin * scale; #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ __m128 thousandv = _mm_set1_ps( 1000.0f ); __m128 dirwtv, valv, normv, dftemp1v, dftemp2v; // multiplied each value of domkerv by 1000 to avoid multiplication by 1000 inside the loop float domkerv[5][5][4] ALIGNED16 = {{{1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}}, {{1000, 1000, 1000, 1000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {1000, 1000, 1000, 1000}}, {{1000, 1000, 1000, 1000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {1000, 1000, 1000, 1000}}, {{1000, 1000, 1000, 1000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {1000, 1000, 1000, 1000}}, {{1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}}}; #endif // __SSE2__ int j; #ifdef _OPENMP #pragma omp for //schedule (dynamic,8) #endif for(int i = 0; i < height; i++) { float dirwt; for(j = 0; j < scalewin; j++) { float val = 0.f; float norm = 0.f; for(int inbr = max(0, i - scalewin); inbr <= min(height - 1, i + scalewin); inbr += scale) { for (int jnbr = max(0, j - scalewin); jnbr <= j + scalewin; jnbr += scale) { //printf("i=%d ",(inbr-i)/scale+halfwin); dirwt = DIRWT(inbr, jnbr, i, j); val += dirwt * data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j] = val / norm; //low pass filter } #ifdef __SSE2__ for(; j < width - scalewin - 3; j += 4) { valv = _mm_setzero_ps(); normv = _mm_setzero_ps(); dftemp1v = LVFU(data_fine[i][j]); for(int inbr = MAX(0, i - scalewin); inbr <= MIN(height - 1, i + scalewin); inbr += scale) { int indexihlp = (inbr - i) / scale + halfwin; for (int jnbr = j - scalewin, indexjhlp = 0; jnbr <= j + scalewin; jnbr += scale, indexjhlp++) { dftemp2v = LVFU(data_fine[inbr][jnbr]); dirwtv = LVF(domkerv[indexihlp][indexjhlp]) / (vabsf(dftemp1v - dftemp2v) + thousandv); valv += dirwtv * dftemp2v; normv += dirwtv; } } _mm_storeu_ps( &data_coarse[i][j], valv / normv); //low pass filter } for(; j < width - scalewin; j++) { float val = 0.f; float norm = 0.f; for(int inbr = max(0, i - scalewin); inbr <= min(height - 1, i + scalewin); inbr += scale) { for (int jnbr = j - scalewin; jnbr <= j + scalewin; jnbr += scale) { dirwt = DIRWT(inbr, jnbr, i, j); val += dirwt * data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j] = val / norm; //low pass filter } #else for(; j < width - scalewin; j++) { float val = 0.f; float norm = 0.f; for(int inbr = max(0, i - scalewin); inbr <= min(height - 1, i + scalewin); inbr += scale) { for (int jnbr = j - scalewin; jnbr <= j + scalewin; jnbr += scale) { dirwt = DIRWT(inbr, jnbr, i, j); val += dirwt * data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j] = val / norm; //low pass filter } #endif for(; j < width; j++) { float val = 0.f; float norm = 0.f; for(int inbr = max(0, i - scalewin); inbr <= min(height - 1, i + scalewin); inbr += scale) { for (int jnbr = j - scalewin; jnbr <= min(width - 1, j + scalewin); jnbr += scale) { dirwt = DIRWT(inbr, jnbr, i, j); val += dirwt * data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j] = val / norm; //low pass filter } } } } else { // level <=1 means that all values of domker would be 1.0f, so no need for multiplication // const int scalewin = scale; #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ __m128 thousandv = _mm_set1_ps( 1000.0f ); __m128 dirwtv, valv, normv, dftemp1v, dftemp2v; #endif // __SSE2__ int j; #ifdef _OPENMP #pragma omp for schedule(dynamic,16) #endif for(int i = 0; i < height; i++) { float dirwt; for(j = 0; j < scale; j++) { float val = 0.f; float norm = 0.f; for(int inbr = max(0, i - scale); inbr <= min(height - 1, i + scale); inbr += scale) { for (int jnbr = max(0, j - scale); jnbr <= j + scale; jnbr += scale) { dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr] - data_fine[i][j])); val += dirwt * data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j] = val / norm; //low pass filter } #ifdef __SSE2__ for(; j < width - scale - 3; j += 4) { valv = _mm_setzero_ps(); normv = _mm_setzero_ps(); dftemp1v = LVFU(data_fine[i][j]); for(int inbr = MAX(0, i - scale); inbr <= MIN(height - 1, i + scale); inbr += scale) { for (int jnbr = j - scale; jnbr <= j + scale; jnbr += scale) { dftemp2v = LVFU(data_fine[inbr][jnbr]); dirwtv = thousandv / (vabsf(dftemp2v - dftemp1v) + thousandv); valv += dirwtv * dftemp2v; normv += dirwtv; } } _mm_storeu_ps( &data_coarse[i][j], valv / normv); //low pass filter } for(; j < width - scale; j++) { float val = 0.f; float norm = 0.f; for(int inbr = max(0, i - scale); inbr <= min(height - 1, i + scale); inbr += scale) { for (int jnbr = j - scale; jnbr <= j + scale; jnbr += scale) { dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr] - data_fine[i][j])); val += dirwt * data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j] = val / norm; //low pass filter } #else for(; j < width - scale; j++) { float val = 0.f; float norm = 0.f; for(int inbr = max(0, i - scale); inbr <= min(height - 1, i + scale); inbr += scale) { for (int jnbr = j - scale; jnbr <= j + scale; jnbr += scale) { dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr] - data_fine[i][j])); val += dirwt * data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j] = val / norm; //low pass filter } #endif for(; j < width; j++) { float val = 0.f; float norm = 0.f; for(int inbr = max(0, i - scale); inbr <= min(height - 1, i + scale); inbr += scale) { for (int jnbr = j - scale; jnbr <= min(width - 1, j + scale); jnbr += scale) { dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr] - data_fine[i][j])); val += dirwt * data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j] = val / norm; //low pass filter } } } } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void ImProcFunctions::idirpyr_eq_channel(float ** data_coarse, float ** data_fine, float ** buffer, int width, int height, int level, float mult[5], const double dirpyrThreshold, float ** hue, float ** chrom, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r , int choice) { const float skinprotneg = -skinprot; const float factorHard = (1.f - skinprotneg / 100.f); float offs; if(skinprot == 0.f) { offs = 0.f; } else { offs = -1.f; } float multbis[6]; multbis[level] = mult[level]; //multbis to reduce artifacts for high values mult if(level == 4 && mult[level] > 1.f) { multbis[level] = 1.f + 0.65f * (mult[level] - 1.f); } if(level == 5 && mult[level] > 1.f) { multbis[level] = 1.f + 0.45f * (mult[level] - 1.f); } LUTf irangefn (0x20000); { const float noisehi = 1.33f * noise * dirpyrThreshold / expf(level * log(3.0)), noiselo = 0.66f * noise * dirpyrThreshold / expf(level * log(3.0)); //printf("level=%i multlev=%f noisehi=%f noiselo=%f skinprot=%f\n",level,mult[level], noisehi, noiselo, skinprot); for (int i = 0; i < 0x20000; i++) { if (abs(i - 0x10000) > noisehi || multbis[level] < 1.0) { irangefn[i] = multbis[level] + offs; } else { if (abs(i - 0x10000) < noiselo) { irangefn[i] = 1.f + offs ; } else { irangefn[i] = 1.f + offs + (multbis[level] - 1.f) * (noisehi - abs(i - 0x10000)) / (noisehi - noiselo + 0.01f) ; } } } } if(skinprot == 0.f) #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++) { for(int j = 0; j < width; j++) { float hipass = (data_fine[i][j] - data_coarse[i][j]); buffer[i][j] += irangefn[hipass + 0x10000] * hipass; } } else if(skinprot > 0.f) #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++) { for(int j = 0; j < width; j++) { float scale = 1.f; float hipass = (data_fine[i][j] - data_coarse[i][j]); // These values are precalculated now float modhue = hue[i][j]; float modchro = chrom[i][j]; Color::SkinSatCbdl ((data_fine[i][j]) / 327.68f, modhue, modchro, skinprot, scale, true, b_l, t_l, t_r); buffer[i][j] += (1.f + (irangefn[hipass + 0x10000]) * scale) * hipass ; } } else #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++) { for(int j = 0; j < width; j++) { float scale = 1.f; float hipass = (data_fine[i][j] - data_coarse[i][j]); // These values are precalculated now float modhue = hue[i][j]; float modchro = chrom[i][j]; Color::SkinSatCbdl ((data_fine[i][j]) / 327.68f, modhue, modchro, skinprotneg, scale, false, b_l, t_l, t_r); float correct = irangefn[hipass + 0x10000]; if (scale == 1.f) {//image hard buffer[i][j] += (1.f + (correct) * (factorHard)) * hipass ; } else { //image soft with scale < 1 ==> skin buffer[i][j] += (1.f + (correct)) * hipass ; } } } } void ImProcFunctions::idirpyr_eq_channelcam(float ** data_coarse, float ** data_fine, float ** buffer, int width, int height, int level, float mult[5], const double dirpyrThreshold, float ** l_a_h, float ** l_b_c, const double skinprot, float b_l, float t_l, float t_r) { const float skinprotneg = -skinprot; const float factorHard = (1.f - skinprotneg / 100.f); float offs; if(skinprot == 0.f) { offs = 0.f; } else { offs = -1.f; } float multbis[6]; multbis[level] = mult[level]; //multbis to reduce artifacts for high values mult if(level == 4 && mult[level] > 1.f) { multbis[level] = 1.f + 0.65f * (mult[level] - 1.f); } if(level == 5 && mult[level] > 1.f) { multbis[level] = 1.f + 0.45f * (mult[level] - 1.f); } LUTf irangefn (0x20000); { const float noisehi = 1.33f * noise * dirpyrThreshold / expf(level * log(3.0)), noiselo = 0.66f * noise * dirpyrThreshold / expf(level * log(3.0)); //printf("level=%i multlev=%f noisehi=%f noiselo=%f skinprot=%f\n",level,mult[level], noisehi, noiselo, skinprot); for (int i = 0; i < 0x20000; i++) { if (abs(i - 0x10000) > noisehi || multbis[level] < 1.0) { irangefn[i] = multbis[level] + offs; } else { if (abs(i - 0x10000) < noiselo) { irangefn[i] = 1.f + offs ; } else { irangefn[i] = 1.f + offs + (multbis[level] - 1.f) * (noisehi - abs(i - 0x10000)) / (noisehi - noiselo + 0.01f) ; } } } } if(skinprot == 0.f) #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++) { for(int j = 0; j < width; j++) { float hipass = (data_fine[i][j] - data_coarse[i][j]); buffer[i][j] += irangefn[hipass + 0x10000] * hipass ; } } else if(skinprot > 0.f) #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++) { for(int j = 0; j < width; j++) { float hipass = (data_fine[i][j] - data_coarse[i][j]); float scale = 1.f; Color::SkinSatCbdlCam ((data_fine[i][j]) / 327.68f, l_a_h[i][j] , l_b_c[i][j], skinprot, scale, true, b_l, t_l, t_r); buffer[i][j] += (1.f + (irangefn[hipass + 0x10000]) * scale) * hipass ; } } else #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++) { for(int j = 0; j < width; j++) { float hipass = (data_fine[i][j] - data_coarse[i][j]); float scale = 1.f; float correct; correct = irangefn[hipass + 0x10000]; Color::SkinSatCbdlCam ((data_fine[i][j]) / 327.68f, l_a_h[i][j], l_b_c[i][j] , skinprotneg, scale, false, b_l, t_l, t_r); if (scale == 1.f) {//image hard buffer[i][j] += (1.f + (correct) * factorHard) * hipass ; } else { //image soft buffer[i][j] += (1.f + (correct)) * hipass ; } } } // if(gamutlab) { // ImProcFunctions::badpixcam (buffer[i][j], 6.0, 10, 2);//for bad pixels // } /* if(gamutlab) {//disabled float Lprov1=(buffer[i][j])/327.68f; float R,G,B; #ifdef _DEBUG bool neg=false; bool more_rgb=false; //gamut control : Lab values are in gamut Color::gamutLchonly(modhue,Lprov1,modchro, R, G, B, wip, highlight, 0.15f, 0.96f, neg, more_rgb); #else //gamut control : Lab values are in gamut Color::gamutLchonly(modhue,Lprov1,modchro, R, G, B, wip, highlight, 0.15f, 0.96f); #endif // Color::gamutLchonly(modhue,Lprov1,modchro, R, G, B, wip, highlight, 0.15f, 0.96f);//gamut control in Lab mode ..not in CIECAM buffer[i][j]=Lprov1*327.68f; float2 sincosval = xsincosf(modhue); l_a_h[i][j]=327.68f*modchro*sincosval.y; l_b_c[i][j]=327.68f*modchro*sincosval.x; } */ } // float hipass = (data_fine[i][j]-data_coarse[i][j]); // buffer[i][j] += irangefn[hipass+0x10000] * hipass ; #undef DIRWT_L #undef DIRWT_AB #undef NRWT_L #undef NRWT_AB }