/* * This file is part of RawTherapee. * * Copyright (c) 2004-2010 Gabor Horvath * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ #include "improcfun.h" #include "alpha.h" namespace rtengine { /* Code taken from Gimp 2.8.10 and converted for RawTherapee by Jean-Christophe FRISCH (aka Hombre) on 02.19.2014 * * ORIGINAL NOTES * * The method used here is similar to the lighting invariant correction * method but slightly different: we do not divide the RGB components, * but substract them I2 = I0 - I1, where I0 is the sample image to be * corrected, I1 is the reference pattern. Then we solve DeltaI=0 * (Laplace) with I2 Dirichlet conditions at the borders of the * mask. The solver is a unoptimized red/black checker Gauss-Siedel * with an over-relaxation factor of 1.8. It can benefit from a * multi-grid evaluation of an initial solution before the main * iteration loop. * * I reduced the convergence criteria to 0.1% (0.001) as we are * dealing here with RGB integer components, more is overkill. * * Jean-Yves Couleaud cjyves@free.fr */ /* Original Algorithm Design: * * T. Georgiev, "Photoshop Healing Brush: a Tool for Seamless Cloning * http://www.tgeorgiev.net/Photoshop_Healing.pdf */ void ImProcFunctions::removeSpots (Imagefloat* img, const std::vector &entries, const PreviewProps &pp) { Alpha mask; //printf("img(%04d, %04d)\n", img->width, img->height); for (const auto entry : entries) { float srcX = float (entry.sourcePos.x); float srcY = float (entry.sourcePos.y); float dstX = float (entry.targetPos.x); float dstY = float (entry.targetPos.y); //float radius = float (entry.radius) + 0.5f; float featherRadius = entry.radius * (1.f + entry.feather); int scaledFeatherRadius = featherRadius / pp.skip; int src_XMin = int ((srcX - featherRadius - pp.x) / float (pp.skip) + 0.5f); int src_XMax = int ((srcX + featherRadius - pp.x) / float (pp.skip) + 0.5f); int src_YMin = int ((srcY - featherRadius - pp.y) / float (pp.skip) + 0.5f); int src_YMax = int ((srcY + featherRadius - pp.y) / float (pp.skip) + 0.5f); int dst_XMin = int ((dstX - featherRadius - pp.x) / float (pp.skip) + 0.5f); int dst_XMax = int ((dstX + featherRadius - pp.x) / float (pp.skip) + 0.5f); int dst_YMin = int ((dstY - featherRadius - pp.y) / float (pp.skip) + 0.5f); int dst_YMax = int ((dstY + featherRadius - pp.y) / float (pp.skip) + 0.5f); //printf(" -> X: %04d > %04d\n -> Y: %04d > %04d\n", dst_XMin, dst_XMax, dst_YMin, dst_YMax); // scaled spot is too small, we do not preview it if (scaledFeatherRadius < 2 && pp.skip != 1) { #ifndef NDEBUG if (options.rtSettings.verbose) { printf ("Skipping spot located at %d x %d, too small for the preview zoom rate\n", entry.sourcePos.x, entry.sourcePos.y); } #endif continue; } // skipping entries totally transparent if (entry.opacity == 0.) { #ifndef NDEBUG if (options.rtSettings.verbose) { printf ("Skipping spot located at %d x %d: opacity=%.3f\n", entry.sourcePos.x, entry.sourcePos.y, entry.opacity); } continue; #endif } // skipping entries where the source circle isn't completely inside the image bounds if (src_XMin < 0 || src_XMax >= img->width || src_YMin < 0 || src_YMax >= img->height) { #ifndef NDEBUG if (options.rtSettings.verbose) { printf ("Skipping spot located at %d x %d, from the data at %d x %d, radius=%d, feather=%.3f, opacity=%.3f: source out of bounds\n", entry.sourcePos.x, entry.sourcePos.y, entry.targetPos.x, entry.targetPos.y, entry.radius, entry.feather, entry.opacity); printf ("%d < 0 || %d >= %d || %d < 0 || %d >= %d\n", src_XMin, src_XMax, img->width, src_YMin, src_YMax, img->height); } #endif continue; } // skipping entries where the dest circle is completely outside the image bounds if (dst_XMin >= img->width || dst_XMax <= 0 || dst_YMin >= img->height || dst_YMax <= 0) { #ifndef NDEBUG if (options.rtSettings.verbose) { printf ("Skipping spot located at %d x %d, from the data at %d x %d, radius=%d, feather=%.3f, opacity=%.3f: source out of bounds\n", entry.sourcePos.x, entry.sourcePos.y, entry.targetPos.x, entry.targetPos.y, entry.radius, entry.feather, entry.opacity); printf ("%d >= %d || %d <= 0 || %d >= %d || %d <= 0\n", dst_XMin, img->width, dst_XMax, dst_YMin, img->height, dst_YMax); } #endif continue; } // ----------------- Core function ----------------- #if 0 int scaledPPX = pp.x / pp.skip; int scaledPPY = pp.y / pp.skip; int scaledPPW = pp.w / pp.skip + (pp.w % pp.skip > 0); int scaledPPH = pp.h / pp.skip + (pp.h % pp.skip > 0); int sizeX = dst_XMax - dst_XMin + 1; int sizeY = dst_YMax - dst_YMin + 1; Imagefloat matrix (sizeX, sizeY); Imagefloat solution (sizeX, sizeY); // allocate the mask and draw it mask.setSize (sizeX, sizeY); { Cairo::RefPtr cr = Cairo::Context::create (mask.getSurface()); // clear the bitmap cr->set_source_rgba (0., 0., 0., 0.); cr->rectangle (0., 0., sizeX, sizeY); cr->set_line_width (0.); cr->fill(); // draw the mask cr->set_antialias (Cairo::ANTIALIAS_GRAY); cr->set_line_width (featherRadius); double gradientCenterX = double (sizeX) / 2.; double gradientCenterY = double (sizeY) / 2.; { Cairo::RefPtr radialGradient = Cairo::RadialGradient::create ( gradientCenterX, gradientCenterY, radius, gradientCenterX, gradientCenterY, featherRadius ); radialGradient->add_color_stop_rgb (0., 0., 0., 1.); radialGradient->add_color_stop_rgb (1., 0., 0., 0.); cr->set_source_rgba (0., 0., 0., 1.); cr->mask (radialGradient); cr->rectangle (0., 0., sizeX, sizeY); cr->fill(); } } // copy the src part to a temporary buffer to avoid possible self modified source Imagefloat *srcBuff = img->copySubRegion (srcX, srcY, sizeX, sizeY); // subtract pattern to image and store the result as a double in matrix for (int i = 0, i2 = dst_YMin; i2 < sizeY - 1; ++i, ++i2) { for (int j = 0, j2 = dst_XMin; i2 < sizeX - 1; ++j, ++j2) { matrix.r (i, j) = img->r (i2, j2) - srcBuff->r (i, j); matrix.g (i, j) = img->g (i2, j2) - srcBuff->g (i, j); matrix.b (i, j) = img->b (i2, j2) - srcBuff->b (i, j); } } // FIXME: is a faster implementation needed? #define EPSILON 0.001 #define MAX_ITER 500 // repeat until convergence or max iterations for (int n = 0; n < MAX_ITER; ++n) { printf ("<<< n=#%d\n", n); // ---------------------------------------------------------------- /* Perform one iteration of the Laplace solver for matrix. Store the * result in solution and get the square of the cumulative error * of the solution. */ int i, j; double tmp, diff; double sqr_err_r = 0.0; double sqr_err_g = 0.0; double sqr_err_b = 0.0; const double w = 1.80 * 0.25; /* Over-relaxation = 1.8 */ // we use a red/black checker model of the discretization grid // do reds for (i = 0; i < matrix.getHeight(); ++i) { for (j = i % 2; j < matrix.getWidth(); j += 2) { printf ("/%d,%d", j, i); if ((0 == mask (i, j)) || (i == 0) || (i == (matrix.getHeight() - 1)) || (j == 0) || (j == (matrix.getWidth() - 1))) { // do nothing at the boundary or outside mask solution.r (i, j) = matrix.r (i, j); solution.g (i, j) = matrix.g (i, j); solution.b (i, j) = matrix.b (i, j); } else { // Use Gauss Siedel to get the correction factor then over-relax it tmp = solution.r (i, j); solution.r (i, j) = (matrix.r (i, j) + w * ( matrix.r (i, j - 1) + // west matrix.r (i, j + 1) + // east matrix.r (i - 1, j) + // north matrix.r (i + 1, j) - 4.0 * matrix.r (i, j) // south ) ); diff = solution.r (i, j) - tmp; sqr_err_r += diff * diff; tmp = solution.g (i, j); solution.g (i, j) = (matrix.g (i, j) + w * ( matrix.g (i, j - 1) + // west matrix.g (i, j + 1) + // east matrix.g (i - 1, j) + // north matrix.g (i + 1, j) - 4.0 * matrix.g (i, j) // south ) ); diff = solution.g (i, j) - tmp; sqr_err_g += diff * diff; tmp = solution.b (i, j); solution.b (i, j) = (matrix.b (i, j) + w * ( matrix.b (i, j - 1) + // west matrix.b (i, j + 1) + // east matrix.b (i - 1, j) + // north matrix.b (i + 1, j) - 4.0 * matrix.b (i, j) // south ) ); diff = solution.b (i, j) - tmp; sqr_err_b += diff * diff; } } } /* Do blacks * * As we've done the reds earlier, we can use them right now to * accelerate the convergence. So we have "solution" in the solver * instead of "matrix" above */ for (i = 0; i < matrix.getHeight(); i++) { for (j = (i % 2) ? 0 : 1; j < matrix.getWidth(); j += 2) { printf (":%d,%d", j, i); if ((0 == mask (i, j)) || (i == 0) || (i == (matrix.getHeight() - 1)) || (j == 0) || (j == (matrix.getWidth() - 1))) { // do nothing at the boundary or outside mask solution.r (i, j) = matrix.r (i, j); solution.g (i, j) = matrix.g (i, j); solution.b (i, j) = matrix.b (i, j); } else { // Use Gauss Siedel to get the correction factor then over-relax it tmp = solution.r (i, j); solution.r (i, j) = (matrix.r (i, j) + w * ( matrix.r (i, j - 1) + // west matrix.r (i, j + 1) + // east matrix.r (i - 1, j) + // north matrix.r (i + 1, j) - 4.0 * matrix.r (i, j) // south ) ); diff = solution.r (i, j) - tmp; sqr_err_r += diff * diff; tmp = solution.g (i, j); solution.g (i, j) = (matrix.g (i, j) + w * ( matrix.g (i, j - 1) + // west matrix.g (i, j + 1) + // east matrix.g (i - 1, j) + // north matrix.g (i + 1, j) - 4.0 * matrix.g (i, j) // south ) ); diff = solution.g (i, j) - tmp; sqr_err_g += diff * diff; tmp = solution.b (i, j); solution.b (i, j) = (matrix.b (i, j) + w * ( matrix.b (i, j - 1) + // west matrix.b (i, j + 1) + // east matrix.b (i - 1, j) + // north matrix.b (i + 1, j) - 4.0 * matrix.b (i, j) // south ) ); diff = solution.b (i, j) - tmp; sqr_err_b += diff * diff; } } } // ---------------------------------------------------------------- // copy solution to matrix solution.copyData (&matrix); if (sqr_err_r < EPSILON && sqr_err_g < EPSILON && sqr_err_b < EPSILON) { break; } printf ("\n>>> n=#%d\n", n); } printf ("\n"); #endif // add solution to original image and store in tempPR for (int i = 0, i2 = dst_YMin; i2 < dst_YMax - 1; ++i, ++i2) { if (i2 < 0 || i2 >= img->height) { continue; } for (int j = 0, j2 = dst_XMin; j2 < dst_XMax - 1; ++j, ++j2) { if (j2 < 0 || j2 >= img->width) { continue; } //float c2 = float (mask (i, j)) / 255.f; //float c1 = 1.f - c2; //resultPR->r(i,j) = (unsigned char) CLAMP0255 ( ROUND( double(first->r(i,j)) + double(secondPR->r(i,j)) ) ); img->r (i2, j2) = 65535.0f; //img->r(i2,j2)*c1 + srcBuff->r(i,j)*c2; img->g (i2, j2) = 0.0f; //img->g(i2,j2)*c1 + srcBuff->g(i,j)*c2; img->b (i2, j2) = 0.0f; //img->b(i2,j2)*c1 + srcBuff->b(i,j)*c2; /* img->r(i2,j2) = img->r(i2,j2)*c1 + (solution.r(i,j) + srcBuff->r(i,j))*c2; img->g(i2,j2) = img->g(i2,j2)*c1 + (solution.g(i,j) + srcBuff->g(i,j))*c2; img->b(i2,j2) = img->b(i2,j2)*c1 + (solution.b(i,j) + srcBuff->b(i,j))*c2; */ } } } } }