/* * This file is part of RawTherapee. * * Copyright (c) 2004-2010 Gabor Horvath * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . * adaptation to RawTherapee * 2015 Jacques Desmis * 2015 Ingo Weyrich * D. J. Jobson, Z. Rahman, and G. A. Woodell. A multi-scale * Retinex for bridging the gap between color images and the * human observation of scenes. IEEE Transactions on Image Processing, * 1997, 6(7): 965-976 * Fan Guo Zixing Cai Bin Xie Jin Tang * School of Information Science and Engineering, Central South University Changsha, China * Weixing Wang and Lian Xu * College of Physics and Information Engineering, Fuzhou University, Fuzhou, China * inspired from 2003 Fabien Pelisson * some ideas taken (use of mask) Russell Cottrell - The Retinex .8bf Plugin */ #include #include #include #include #include "color.h" #include "curves.h" #include "gauss.h" #include "improcfun.h" #include "jaggedarray.h" #include "median.h" #include "opthelper.h" #include "procparams.h" #include "rawimagesource.h" #include "rtengine.h" #include "StopWatch.h" namespace { void retinex_scales( float* scales, int nscales, int mode, int s, float high) { if ( nscales == 1 ) { scales[0] = (float)s / 2.f; } else if (nscales == 2) { scales[1] = (float) s / 2.f; scales[0] = (float) s; } else { float size_step = (float) s / (float) nscales; if (mode == 0) { for (int i = 0; i < nscales; ++i ) { scales[nscales - i - 1] = 2.0f + (float)i * size_step; } } else if (mode == 1) { size_step = (float)log(s - 2.0f) / (float) nscales; for (int i = 0; i < nscales; ++i ) { scales[nscales - i - 1] = 2.0f + (float)pow (10.f, (i * size_step) / log (10.f)); } } else if (mode == 2) { size_step = (float) log(s - 2.0f) / (float) nscales; for ( int i = 0; i < nscales; ++i ) { scales[i] = s - (float)pow (10.f, (i * size_step) / log (10.f)); } } else if (mode == 3) { size_step = (float) log(s - 2.0f) / (float) nscales; for ( int i = 0; i < nscales; ++i ) { scales[i] = high * s - (float)pow (10.f, (i * size_step) / log (10.f)); } } } } void mean_stddv2( float **dst, float &mean, float &stddv, int W_L, int H_L, float &maxtr, float &mintr) { // summation using double precision to avoid too large summation error for large pictures double vsquared = 0.f; double sum = 0.f; maxtr = -999999.f; mintr = 999999.f; #ifdef _OPENMP #pragma omp parallel #endif { float lmax = -999999.f, lmin = 999999.f; #ifdef _OPENMP #pragma omp for reduction(+:sum,vsquared) nowait // this leads to differences, but parallel summation is more accurate #endif for (int i = 0; i < H_L; i++ ) for (int j = 0; j < W_L; j++) { sum += dst[i][j]; vsquared += (dst[i][j] * dst[i][j]); lmax = dst[i][j] > lmax ? dst[i][j] : lmax; lmin = dst[i][j] < lmin ? dst[i][j] : lmin; } #ifdef _OPENMP #pragma omp critical #endif { maxtr = maxtr > lmax ? maxtr : lmax; mintr = mintr < lmin ? mintr : lmin; } } mean = sum / (double) (W_L * H_L); vsquared /= (double) W_L * H_L; stddv = ( vsquared - (mean * mean) ); stddv = (float)sqrt(stddv); } } namespace rtengine { void RawImageSource::MSR(float** luminance, float** originalLuminance, float **exLuminance, const LUTf& mapcurve, bool mapcontlutili, int width, int height, const procparams::RetinexParams &deh, const RetinextransmissionCurve & dehatransmissionCurve, const RetinexgaintransmissionCurve & dehagaintransmissionCurve, float &minCD, float &maxCD, float &mini, float &maxi, float &Tmean, float &Tsigma, float &Tmin, float &Tmax) { BENCHFUN if (!deh.enabled) { return; } constexpr float eps = 2.f; const bool useHsl = deh.retinexcolorspace == "HSLLOG"; const bool useHslLin = deh.retinexcolorspace == "HSLLIN"; const float offse = deh.offs; //def = 0 not use const int iter = deh.iter; const int gradient = deh.scal; int scal = deh.skal; const int nei = 2.8f * deh.neigh; //def = 220 const float vart = deh.vart / 100.f;//variance const float gradvart = deh.grad; const float gradstr = deh.grads; const float strength = deh.str / 100.f; // Blend with original L channel data float limD = deh.limd; limD = pow(limD, 1.7f);//about 2500 enough limD *= useHslLin ? 10.f : 1.f; const float ilimD = 1.f / limD; const float hig = deh.highl / 100.f; const int H_L = height; const int W_L = width; constexpr float elogt = 2.71828f; bool lhutili = false; FlatCurve* shcurve = new FlatCurve(deh.lhcurve); //curve L=f(H) if (!shcurve || shcurve->isIdentity()) { if (shcurve) { delete shcurve; shcurve = nullptr; } } else { lhutili = true; } bool higplus = false ; int moderetinex = 2; // default to 2 ( deh.retinexMethod == "high" ) if(deh.retinexMethod == "highliplus") { higplus = true; moderetinex = 3; } else if (deh.retinexMethod == "uni") { moderetinex = 0; } else if (deh.retinexMethod == "low") { moderetinex = 1; } else { /*if (deh.retinexMethod == "highli") */ moderetinex = 3; } constexpr float aahi = 49.f / 99.f; ////reduce sensibility 50% constexpr float bbhi = 1.f - aahi; float high = bbhi + aahi * (float) deh.highl; for (int it = 1; it < iter + 1; it++) { //iter nb max of iterations float grad = 1.f; float sc = scal; if (gradient == 0) { grad = 1.f; sc = 3.f; } else if (gradient == 1) { grad = 0.25f * it + 0.75f; sc = -0.5f * it + 4.5f; } else if (gradient == 2) { grad = 0.5f * it + 0.5f; sc = -0.75f * it + 5.75f; } else if (gradient == 3) { grad = 0.666f * it + 0.333f; sc = -0.75f * it + 5.75f; } else if (gradient == 4) { grad = 0.8f * it + 0.2f; sc = -0.75f * it + 5.75f; } else if (gradient == 5) { if (moderetinex != 3) { grad = 2.5f * it - 1.5f; } else { float aa = (11.f * high - 1.f) / 4.f; float bb = 1.f - aa; grad = aa * it + bb; } sc = -0.75f * it + 5.75f; } else if (gradient == 6) { if (moderetinex != 3) { grad = 5.f * it - 4.f; } else { float aa = (21.f * high - 1.f) / 4.f; float bb = 1.f - aa; grad = aa * it + bb; } sc = -0.75f * it + 5.75f; } else if (gradient == -1) { grad = -0.125f * it + 1.125f; sc = 3.f; } if (iter == 1) { sc = scal; } else { //adjust sc in function of choice of scale by user if iterations if (scal < 3) { sc -= 1; if (sc < 1.f) {//avoid 0 sc = 1.f; } } else if (scal > 4) { sc += 1; } } float varx = vart; float limdx = limD; float ilimdx = ilimD; if (gradvart != 0) { if (gradvart == 1) { varx = vart * (-0.125f * it + 1.125f); limdx = limD * (-0.125f * it + 1.125f); ilimdx = 1.f / limdx; } else if (gradvart == 2) { varx = vart * (-0.2f * it + 1.2f); limdx = limD * (-0.2f * it + 1.2f); ilimdx = 1.f / limdx; } else if (gradvart == -1) { varx = vart * (0.125f * it + 0.875f); limdx = limD * (0.125f * it + 0.875f); ilimdx = 1.f / limdx; } else if (gradvart == -2) { varx = vart * (0.4f * it + 0.6f); limdx = limD * (0.4f * it + 0.6f); ilimdx = 1.f / limdx; } } scal = round(sc); float ks = 1.f; if (gradstr != 0) { if (gradstr == 1) { if (it <= 3) { ks = -0.3f * it + 1.6f; } else { ks = 0.5f; } } else if (gradstr == 2) { if (it <= 3) { ks = -0.6f * it + 2.2f; } else { ks = 0.3f; } } else if (gradstr == -1) { if (it <= 3) { ks = 0.2f * it + 0.6f; } else { ks = 1.2f; } } else if (gradstr == -2) { if (it <= 3) { ks = 0.4f * it + 0.2f; } else { ks = 1.5f; } } } const float strengthx = ks * strength; constexpr auto maxRetinexScales = 8; float RetinexScales[maxRetinexScales]; retinex_scales(RetinexScales, scal, moderetinex, nei / grad, high); const int shHighlights = deh.highlights; const int shShadows = deh.shadows; int mapmet = 0; if(deh.mapMethod == "map") { mapmet = 2; } else if(deh.mapMethod == "mapT") { mapmet = 3; } else if(deh.mapMethod == "gaus") { mapmet = 4; } const double shradius = mapmet == 4 ? (double) deh.radius : 40.; int viewmet = 0; if(deh.viewMethod == "mask") { viewmet = 1; } else if(deh.viewMethod == "tran") { viewmet = 2; } else if(deh.viewMethod == "tran2") { viewmet = 3; } else if(deh.viewMethod == "unsharp") { viewmet = 4; } std::unique_ptr> srcBuffer(new JaggedArray(W_L, H_L)); float** src = *(srcBuffer.get()); #ifdef _OPENMP #pragma omp parallel for #endif for (int i = 0; i < H_L; i++) for (int j = 0; j < W_L; j++) { src[i][j] = luminance[i][j] + eps; luminance[i][j] = 0.f; } JaggedArray out(W_L, H_L); JaggedArray& tran = out; // tran and out can safely use the same buffer const float logBetaGain = xlogf(16384.f); float pond = logBetaGain / (float) scal; if(!useHslLin) { pond /= log(elogt); } std::unique_ptr shmap; if (((mapmet == 2 || mapmet == 3 || mapmet == 4) && it == 1)) { shmap.reset(new SHMap(W_L, H_L)); } std::unique_ptr buffer; if (mapmet > 0) { buffer.reset(new float[W_L * H_L]); } for (int scale = scal - 1; scale >= 0; --scale) { if (scale == scal - 1) { gaussianBlur(src, out, W_L, H_L, RetinexScales[scale], true); } else { // reuse result of last iteration // out was modified in last iteration => restore it if((((mapmet == 2 && scale > 1) || mapmet == 3 || mapmet == 4) || (mapmet > 0 && mapcontlutili)) && it == 1) { #ifdef _OPENMP #pragma omp parallel for #endif for (int i = 0; i < H_L; i++) { for (int j = 0; j < W_L; j++) { out[i][j] = buffer[i * W_L + j]; } } } gaussianBlur(out, out, W_L, H_L, sqrtf(SQR(RetinexScales[scale]) - SQR(RetinexScales[scale + 1])), true); } if ((((mapmet == 2 && scale > 2) || mapmet == 3 || mapmet == 4) || (mapmet > 0 && mapcontlutili)) && it == 1 && scale > 0) { // out will be modified => store it for use in next iteration. #ifdef _OPENMP #pragma omp parallel for #endif for (int i = 0; i < H_L; i++) { for (int j = 0; j < W_L; j++) { buffer[i * W_L + j] = out[i][j]; } } } int h_th = 0; int s_th = 0; if (((mapmet == 2 && scale > 2) || mapmet == 3 || mapmet == 4) && it == 1) { shmap->updateL(out, shradius, true, 1); h_th = shmap->max_f - deh.htonalwidth * (shmap->max_f - shmap->avg) / 100; s_th = deh.stonalwidth * (shmap->avg - shmap->min_f) / 100; } if (mapmet > 0 && mapcontlutili && it == 1) { #ifdef _OPENMP #pragma omp parallel for #endif for (int i = 0; i < H_L; i++) { for (int j = 0; j < W_L; j++) { out[i][j] = mapcurve[2.f * out[i][j]]; } } } if (((mapmet == 2 && scale > 2) || mapmet == 3 || mapmet == 4) && it == 1) { const float hWeight = (100.f - shHighlights) / 100.f; const float sWeight = (100.f - shShadows) / 100.f; #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for (int i = 0; i < H_L; i++) { for (int j = 0; j < W_L; j++) { const float mapval = 1.f + shmap->map[i][j]; float factor; if (mapval > h_th) { factor = (h_th + hWeight * (mapval - h_th)) / mapval; } else if (mapval < s_th) { factor = (s_th - sWeight * (s_th - mapval)) / mapval; } else { factor = 1.f; } out[i][j] *= factor; } } } #ifdef _OPENMP #pragma omp parallel for #endif for (int i = 0; i < H_L; i++) { int j = 0; #ifdef __SSE2__ const vfloat pondv = F2V(pond); const vfloat limMinv = F2V(ilimdx); const vfloat limMaxv = F2V(limdx); if( useHslLin) { for (; j < W_L - 3; j += 4) { STVFU(luminance[i][j], LVFU(luminance[i][j]) + pondv * vclampf(LVFU(src[i][j]) / LVFU(out[i][j]), limMinv, limMaxv)); } } else { for (; j < W_L - 3; j += 4) { STVFU(luminance[i][j], LVFU(luminance[i][j]) + pondv * xlogf(vclampf(LVFU(src[i][j]) / LVFU(out[i][j]), limMinv, limMaxv))); } } #endif if(useHslLin) { for (; j < W_L; j++) { luminance[i][j] += pond * LIM(src[i][j] / out[i][j], ilimdx, limdx); } } else { for (; j < W_L; j++) { luminance[i][j] += pond * xlogf(LIM(src[i][j] / out[i][j], ilimdx, limdx)); // /logt ? } } } } srcBuffer.reset(); float mean = 0.f; float stddv = 0.f; // I call mean_stddv2 instead of mean_stddv ==> logBetaGain float maxtr, mintr; mean_stddv2(luminance, mean, stddv, W_L, H_L, maxtr, mintr); //printf("mean=%f std=%f delta=%f maxtr=%f mintr=%f\n", mean, stddv, delta, maxtr, mintr); //mean_stddv( luminance, mean, stddv, W_L, H_L, logBetaGain, maxtr, mintr); if (dehatransmissionCurve && mean != 0.f && stddv != 0.f) { //if curve float asig = 0.166666f / stddv; float bsig = 0.5f - asig * mean; float amax = 0.333333f / (maxtr - mean - stddv); float bmax = 1.f - amax * maxtr; float amin = 0.333333f / (mean - stddv - mintr); float bmin = -amin * mintr; asig *= 500.f; bsig *= 500.f; amax *= 500.f; bmax *= 500.f; amin *= 500.f; bmin *= 500.f; #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for (int i = 0; i < H_L; i++ ) { for (int j = 0; j < W_L; j++) { //for mintr to maxtr evalate absciss in function of original transmission float absciss; if (LIKELY(fabsf(luminance[i][j] - mean) < stddv)) { absciss = asig * luminance[i][j] + bsig; } else if (luminance[i][j] >= mean) { absciss = amax * luminance[i][j] + bmax; } else { /*if(luminance[i][j] <= mean - stddv)*/ absciss = amin * luminance[i][j] + bmin; } //TODO : move multiplication by 4.f and subtraction of 1.f inside the curve luminance[i][j] *= (-1.f + 4.f * dehatransmissionCurve[absciss]); //new transmission if(viewmet == 3 || viewmet == 2) { tran[i][j] = luminance[i][j]; } } } // median filter on transmission ==> reduce artifacts if (deh.medianmap && it == 1) { //only one time JaggedArray tmL(W_L, H_L); constexpr int borderL = 1; #ifdef _OPENMP #pragma omp parallel for #endif for (int i = borderL; i < H_L - borderL; i++) { for (int j = borderL; j < W_L - borderL; j++) { tmL[i][j] = median(luminance[i][j], luminance[i - 1][j], luminance[i + 1][j], luminance[i][j + 1], luminance[i][j - 1], luminance[i - 1][j - 1], luminance[i - 1][j + 1], luminance[i + 1][j - 1], luminance[i + 1][j + 1]); //3x3 } } #ifdef _OPENMP #pragma omp parallel for #endif for (int i = borderL; i < H_L - borderL; i++ ) { for (int j = borderL; j < W_L - borderL; j++) { luminance[i][j] = tmL[i][j]; } } } // I call mean_stddv2 instead of mean_stddv ==> logBetaGain //mean_stddv( luminance, mean, stddv, W_L, H_L, 1.f, maxtr, mintr); mean_stddv2(luminance, mean, stddv, W_L, H_L, maxtr, mintr); } constexpr float epsil = 0.1f; mini = mean - varx * stddv; if (mini < mintr) { mini = mintr + epsil; } maxi = mean + varx * stddv; if (maxi > maxtr) { maxi = maxtr - epsil; } float delta = maxi - mini; //printf("maxi=%f mini=%f mean=%f std=%f delta=%f maxtr=%f mintr=%f\n", maxi, mini, mean, stddv, delta, maxtr, mintr); if ( !delta ) { delta = 1.0f; } // coeff for auto "transmission" with 2 sigma #95% data const float aza = 16300.f / (2.f * stddv); const float azb = -aza * (mean - 2.f * stddv); const float bza = 16300.f / (2.f * stddv); const float bzb = 16300.f - bza * (mean); //prepare work for curve gain #ifdef _OPENMP #pragma omp parallel for #endif for (int i = 0; i < H_L; i++) { for (int j = 0; j < W_L; j++) { luminance[i][j] = luminance[i][j] - mini; } } mean = 0.f; stddv = 0.f; // I call mean_stddv2 instead of mean_stddv ==> logBetaGain mean_stddv2(luminance, mean, stddv, W_L, H_L, maxtr, mintr); float asig = 0.f, bsig = 0.f, amax = 0.f, bmax = 0.f, amin = 0.f, bmin = 0.f; if (dehagaintransmissionCurve && mean != 0.f && stddv != 0.f) { //if curve asig = 0.166666f / stddv; bsig = 0.5f - asig * mean; amax = 0.333333f / (maxtr - mean - stddv); bmax = 1.f - amax * maxtr; amin = 0.333333f / (mean - stddv - mintr); bmin = -amin * mintr; asig *= 500.f; bsig *= 500.f; amax *= 500.f; bmax *= 500.f; amin *= 500.f; bmin *= 500.f; } const float cdfactor = 32768.f / delta; maxCD = -9999999.f; minCD = 9999999.f; #ifdef _OPENMP #pragma omp parallel for reduction(max:maxCD) reduction(min:minCD) schedule(dynamic, 16) #endif for ( int i = 0; i < H_L; i ++ ) { for (int j = 0; j < W_L; j++) { float gan; if (dehagaintransmissionCurve && mean != 0.f && stddv != 0.f) { float absciss; if (LIKELY(fabsf(luminance[i][j] - mean) < stddv)) { absciss = asig * luminance[i][j] + bsig; } else if (luminance[i][j] >= mean) { absciss = amax * luminance[i][j] + bmax; } else { /*if(luminance[i][j] <= mean - stddv)*/ absciss = amin * luminance[i][j] + bmin; } // float cd = cdfactor * ( luminance[i][j] - mini ) + offse; // TODO : move multiplication by 2.f inside the curve gan = 2.f * dehagaintransmissionCurve[absciss]; //new gain function transmission } else { gan = 0.5f; } const float cd = gan * cdfactor * luminance[i][j] + offse; maxCD = cd > maxCD ? cd : maxCD; minCD = cd < minCD ? cd : minCD; float str = strengthx; if (lhutili && it == 1) { // S=f(H) { const float HH = exLuminance[i][j]; float valparam; if(useHsl || useHslLin) { valparam = shcurve->getVal(HH) - 0.5f; } else { valparam = shcurve->getVal(Color::huelab_to_huehsv2(HH)) - 0.5f; } str *= (1.f + 2.f * valparam); } } if (higplus && exLuminance[i][j] > 65535.f * hig) { str *= hig; } if (viewmet == 0) { luminance[i][j] = intp(str, LIM(cd, 0.f, 32768.f), originalLuminance[i][j]); } else if (viewmet == 1) { luminance[i][j] = out[i][j]; } else if (viewmet == 4) { luminance[i][j] = originalLuminance[i][j] + str * (originalLuminance[i][j] - out[i][j]);//unsharp } else if (viewmet == 2) { if(tran[i][j] <= mean) { luminance[i][j] = azb + aza * tran[i][j]; //auto values } else { luminance[i][j] = bzb + bza * tran[i][j]; } } else { /*if (viewmet == 3) */ luminance[i][j] = 1000.f + tran[i][j] * 700.f; //arbitrary values to help display log values which are between -20 to + 30 - usage values -4 + 5 } } } Tmean = mean; Tsigma = stddv; Tmin = mintr; Tmax = maxtr; if (shcurve) { delete shcurve; shcurve = nullptr; } } } }