/* * This file is part of RawTherapee. * * Copyright (c) 2004-2010 Gabor Horvath * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ #include #include #include "rtengine.h" #include "rawimagesource.h" #include "rawimagesource_i.h" #include "jaggedarray.h" #include "median.h" #include "rawimage.h" #include "mytime.h" #include "iccstore.h" #include "curves.h" #include "dfmanager.h" #include "ffmanager.h" #include "dcp.h" #include "rt_math.h" #include "improcfun.h" #include "rtlensfun.h" #include "pdaflinesfilter.h" #include "camconst.h" #include "procparams.h" #include "color.h" //#define BENCHMARK //#include "StopWatch.h" #ifdef _OPENMP #include #endif #include "opthelper.h" #define clipretinex( val, minv, maxv ) (( val = (val < minv ? minv : val ) ) > maxv ? maxv : val ) #undef CLIPD #define CLIPD(a) ((a)>0.0f?((a)<1.0f?(a):1.0f):0.0f) namespace { void rotateLine (const float* const line, rtengine::PlanarPtr &channel, const int tran, const int i, const int w, const int h) { switch(tran & TR_ROT) { case TR_R180: for (int j = 0; j < w; j++) { channel(h - 1 - i, w - 1 - j) = line[j]; } break; case TR_R90: for (int j = 0; j < w; j++) { channel(j, h - 1 - i) = line[j]; } break; case TR_R270: for (int j = 0; j < w; j++) { channel(w - 1 - j, i) = line[j]; } break; case TR_NONE: default: for (int j = 0; j < w; j++) { channel(i, j) = line[j]; } } } void transLineStandard (const float* const red, const float* const green, const float* const blue, const int i, rtengine::Imagefloat* const image, const int tran, const int imwidth, const int imheight) { // conventional CCD coarse rotation rotateLine (red, image->r, tran, i, imwidth, imheight); rotateLine (green, image->g, tran, i, imwidth, imheight); rotateLine (blue, image->b, tran, i, imwidth, imheight); } void transLineFuji (const float* const red, const float* const green, const float* const blue, const int i, rtengine::Imagefloat* const image, const int tran, const int imheight, const int fw) { // Fuji SuperCCD rotation + coarse rotation int start = ABS(fw - i); int w = fw * 2 + 1; int h = (imheight - fw) * 2 + 1; int end = min(h + fw - i, w - fw + i); switch(tran & TR_ROT) { case TR_R180: for (int j = start; j < end; j++) { int y = i + j - fw; int x = fw - i + j; if (x >= 0 && y < image->getHeight() && y >= 0 && x < image->getWidth()) { image->r(image->getHeight() - 1 - y, image->getWidth() - 1 - x) = red[j]; image->g(image->getHeight() - 1 - y, image->getWidth() - 1 - x) = green[j]; image->b(image->getHeight() - 1 - y, image->getWidth() - 1 - x) = blue[j]; } } break; case TR_R270: for (int j = start; j < end; j++) { int y = i + j - fw; int x = fw - i + j; if (x >= 0 && x < image->getHeight() && y >= 0 && y < image->getWidth()) { image->r(image->getHeight() - 1 - x, y) = red[j]; image->g(image->getHeight() - 1 - x, y) = green[j]; image->b(image->getHeight() - 1 - x, y) = blue[j]; } } break; case TR_R90: for (int j = start; j < end; j++) { int y = i + j - fw; int x = fw - i + j; if (x >= 0 && y < image->getWidth() && y >= 0 && x < image->getHeight()) { image->r(x, image->getWidth() - 1 - y) = red[j]; image->g(x, image->getWidth() - 1 - y) = green[j]; image->b(x, image->getWidth() - 1 - y) = blue[j]; } } break; case TR_NONE: default: for (int j = start; j < end; j++) { int y = i + j - fw; int x = fw - i + j; if (x >= 0 && y < image->getHeight() && y >= 0 && x < image->getWidth()) { image->r(y, x) = red[j]; image->g(y, x) = green[j]; image->b(y, x) = blue[j]; } } } } void transLineD1x (const float* const red, const float* const green, const float* const blue, const int i, rtengine::Imagefloat* const image, const int tran, const int imwidth, const int imheight, const bool oddHeight, const bool clip) { // Nikon D1X has an uncommon sensor with 4028 x 1324 sensels. // Vertical sensel size is 2x horizontal sensel size // We have to do vertical interpolation for the 'missing' rows // We do that in combination with coarse rotation switch(tran & TR_ROT) { case TR_R180: // rotate 180 degree for (int j = 0; j < imwidth; j++) { image->r(2 * (imheight - 1 - i), imwidth - 1 - j) = red[j]; image->g(2 * (imheight - 1 - i), imwidth - 1 - j) = green[j]; image->b(2 * (imheight - 1 - i), imwidth - 1 - j) = blue[j]; } if (i == 0) { for (int j = 0; j < imwidth; j++) { image->r(2 * imheight - 1, imwidth - 1 - j) = red[j]; image->g(2 * imheight - 1, imwidth - 1 - j) = green[j]; image->b(2 * imheight - 1, imwidth - 1 - j) = blue[j]; } } if (i == 1 || i == 2) { // linear interpolation int row = 2 * imheight - 1 - 2 * i; for (int j = 0; j < imwidth; j++) { int col = imwidth - 1 - j; image->r(row, col) = (red[j] + image->r(row + 1, col)) / 2; image->g(row, col) = (green[j] + image->g(row + 1, col)) / 2; image->b(row, col) = (blue[j] + image->b(row + 1, col)) / 2; } if(i == 2 && oddHeight) { int row = 2 * imheight; for (int j = 0; j < imwidth; j++) { int col = imwidth - 1 - j; image->r(row, col) = (red[j] + image->r(row - 2, col)) / 2; image->g(row, col) = (green[j] + image->g(row - 2, col)) / 2; image->b(row, col) = (blue[j] + image->b(row - 2, col)) / 2; } } } else if (i == imheight - 1 || i == imheight - 2) { int row = 2 * imheight - 1 - 2 * i; for (int j = 0; j < imwidth; j++) { int col = imwidth - 1 - j; image->r(row, col) = (red[j] + image->r(row + 1, col)) / 2; image->g(row, col) = (green[j] + image->g(row + 1, col)) / 2; image->b(row, col) = (blue[j] + image->b(row + 1, col)) / 2; } row = 2 * imheight - 1 - 2 * i + 2; for (int j = 0; j < imwidth; j++) { int col = imwidth - 1 - j; image->r(row, col) = (red[j] + image->r(row + 1, col)) / 2; image->g(row, col) = (green[j] + image->g(row + 1, col)) / 2; image->b(row, col) = (blue[j] + image->b(row + 1, col)) / 2; } } else if (i > 2 && i < imheight - 1) { // vertical bicubic interpolation int row = 2 * imheight - 1 - 2 * i + 2; for (int j = 0; j < imwidth; j++) { int col = imwidth - 1 - j; image->r(row, col) = MAX(0.f, -0.0625f * (red[j] + image->r(row + 3, col)) + 0.5625f * (image->r(row - 1, col) + image->r(row + 1, col))); image->g(row, col) = MAX(0.f, -0.0625f * (green[j] + image->g(row + 3, col)) + 0.5625f * (image->g(row - 1, col) + image->g(row + 1, col))); image->b(row, col) = MAX(0.f, -0.0625f * (blue[j] + image->b(row + 3, col)) + 0.5625f * (image->b(row - 1, col) + image->b(row + 1, col))); if(clip) { image->r(row, col) = MIN(image->r(row, col), rtengine::MAXVALF); image->g(row, col) = MIN(image->g(row, col), rtengine::MAXVALF); image->b(row, col) = MIN(image->b(row, col), rtengine::MAXVALF); } } } break; case TR_R90: // rotate right if( i == 0) { for (int j = 0; j < imwidth; j++) { image->r(j, 2 * imheight - 1) = red[j]; image->g(j, 2 * imheight - 1) = green[j]; image->b(j, 2 * imheight - 1) = blue[j]; } } for (int j = 0; j < imwidth; j++) { image->r(j, 2 * (imheight - 1 - i)) = red[j]; image->g(j, 2 * (imheight - 1 - i)) = green[j]; image->b(j, 2 * (imheight - 1 - i)) = blue[j]; } if (i == 1 || i == 2) { // linear interpolation int col = 2 * imheight - 1 - 2 * i; for (int j = 0; j < imwidth; j++) { image->r(j, col) = (red[j] + image->r(j, col + 1)) / 2; image->g(j, col) = (green[j] + image->g(j, col + 1)) / 2; image->b(j, col) = (blue[j] + image->b(j, col + 1)) / 2; if(oddHeight && i == 2) { image->r(j, 2 * imheight) = (red[j] + image->r(j, 2 * imheight - 2)) / 2; image->g(j, 2 * imheight) = (green[j] + image->g(j, 2 * imheight - 2)) / 2; image->b(j, 2 * imheight) = (blue[j] + image->b(j, 2 * imheight - 2)) / 2; } } } else if (i == imheight - 1) { int col = 2 * imheight - 1 - 2 * i; for (int j = 0; j < imwidth; j++) { image->r(j, col) = (red[j] + image->r(j, col + 1)) / 2; image->g(j, col) = (green[j] + image->g(j, col + 1)) / 2; image->b(j, col) = (blue[j] + image->b(j, col + 1)) / 2; } col = 2 * imheight - 1 - 2 * i + 2; for (int j = 0; j < imwidth; j++) { image->r(j, col) = (red[j] + image->r(j, col + 1)) / 2; image->g(j, col) = (green[j] + image->g(j, col + 1)) / 2; image->b(j, col) = (blue[j] + image->b(j, col + 1)) / 2; } } else if (i > 2 && i < imheight - 1) { // vertical bicubic interpolation int col = 2 * imheight - 1 - 2 * i + 2; for (int j = 0; j < imwidth; j++) { image->r(j, col) = MAX(0.f, -0.0625f * (red[j] + image->r(j, col + 3)) + 0.5625f * (image->r(j, col - 1) + image->r(j, col + 1))); image->g(j, col) = MAX(0.f, -0.0625f * (green[j] + image->g(j, col + 3)) + 0.5625f * (image->g(j, col - 1) + image->g(j, col + 1))); image->b(j, col) = MAX(0.f, -0.0625f * (blue[j] + image->b(j, col + 3)) + 0.5625f * (image->b(j, col - 1) + image->b(j, col + 1))); if(clip) { image->r(j, col) = MIN(image->r(j, col), rtengine::MAXVALF); image->g(j, col) = MIN(image->g(j, col), rtengine::MAXVALF); image->b(j, col) = MIN(image->b(j, col), rtengine::MAXVALF); } } } break; case TR_R270: // rotate left if (i == 0) { for (int j = imwidth - 1, row = 0; j >= 0; j--, row++) { image->r(row, 2 * i) = red[j]; image->g(row, 2 * i) = green[j]; image->b(row, 2 * i) = blue[j]; } } else if (i == 1 || i == 2) { // linear interpolation for (int j = imwidth - 1, row = 0; j >= 0; j--, row++) { image->r(row, 2 * i) = red[j]; image->g(row, 2 * i) = green[j]; image->b(row, 2 * i) = blue[j]; image->r(row, 2 * i - 1) = (red[j] + image->r(row, 2 * i - 2)) * 0.5f; image->g(row, 2 * i - 1) = (green[j] + image->g(row, 2 * i - 2)) * 0.5f; image->b(row, 2 * i - 1) = (blue[j] + image->b(row, 2 * i - 2)) * 0.5f; } } else if (i > 0 && i < imheight) { // vertical bicubic interpolation for (int j = imwidth - 1, row = 0; j >= 0; j--, row++) { image->r(row, 2 * i - 3) = MAX(0.f, -0.0625f * (red[j] + image->r(row, 2 * i - 6)) + 0.5625f * (image->r(row, 2 * i - 2) + image->r(row, 2 * i - 4))); image->g(row, 2 * i - 3) = MAX(0.f, -0.0625f * (green[j] + image->g(row, 2 * i - 6)) + 0.5625f * (image->g(row, 2 * i - 2) + image->g(row, 2 * i - 4))); image->b(row, 2 * i - 3) = MAX(0.f, -0.0625f * (blue[j] + image->b(row, 2 * i - 6)) + 0.5625f * (image->b(row, 2 * i - 2) + image->b(row, 2 * i - 4))); if(clip) { image->r(row, 2 * i - 3) = MIN(image->r(row, 2 * i - 3), rtengine::MAXVALF); image->g(row, 2 * i - 3) = MIN(image->g(row, 2 * i - 3), rtengine::MAXVALF); image->b(row, 2 * i - 3) = MIN(image->b(row, 2 * i - 3), rtengine::MAXVALF); } image->r(row, 2 * i) = red[j]; image->g(row, 2 * i) = green[j]; image->b(row, 2 * i) = blue[j]; } } if (i == imheight - 1) { for (int j = imwidth - 1, row = 0; j >= 0; j--, row++) { image->r(row, 2 * i - 1) = MAX(0.f, -0.0625f * (red[j] + image->r(row, 2 * i - 4)) + 0.5625f * (image->r(row, 2 * i) + image->r(row, 2 * i - 2))); image->g(row, 2 * i - 1) = MAX(0.f, -0.0625f * (green[j] + image->g(row, 2 * i - 4)) + 0.5625f * (image->g(row, 2 * i) + image->g(row, 2 * i - 2))); image->b(row, 2 * i - 1) = MAX(0.f, -0.0625f * (blue[j] + image->b(row, 2 * i - 4)) + 0.5625f * (image->b(row, 2 * i) + image->b(row, 2 * i - 2))); if(clip) { image->r(j, 2 * i - 1) = MIN(image->r(j, 2 * i - 1), rtengine::MAXVALF); image->g(j, 2 * i - 1) = MIN(image->g(j, 2 * i - 1), rtengine::MAXVALF); image->b(j, 2 * i - 1) = MIN(image->b(j, 2 * i - 1), rtengine::MAXVALF); } image->r(row, 2 * i + 1) = (red[j] + image->r(row, 2 * i - 1)) / 2; image->g(row, 2 * i + 1) = (green[j] + image->g(row, 2 * i - 1)) / 2; image->b(row, 2 * i + 1) = (blue[j] + image->b(row, 2 * i - 1)) / 2; if (oddHeight) { image->r(row, 2 * i + 2) = (red[j] + image->r(row, 2 * i - 2)) / 2; image->g(row, 2 * i + 2) = (green[j] + image->g(row, 2 * i - 2)) / 2; image->b(row, 2 * i + 2) = (blue[j] + image->b(row, 2 * i - 2)) / 2; } } } break; case TR_NONE: // no coarse rotation default: rotateLine (red, image->r, tran, 2 * i, imwidth, imheight); rotateLine (green, image->g, tran, 2 * i, imwidth, imheight); rotateLine (blue, image->b, tran, 2 * i, imwidth, imheight); if (i == 1 || i == 2) { // linear interpolation for (int j = 0; j < imwidth; j++) { image->r(2 * i - 1, j) = (red[j] + image->r(2 * i - 2, j)) / 2; image->g(2 * i - 1, j) = (green[j] + image->g(2 * i - 2, j)) / 2; image->b(2 * i - 1, j) = (blue[j] + image->b(2 * i - 2, j)) / 2; } } else if (i > 2 && i < imheight) { // vertical bicubic interpolation for (int j = 0; j < imwidth; j++) { image->r(2 * i - 3, j) = MAX(0.f, -0.0625f * (red[j] + image->r(2 * i - 6, j)) + 0.5625f * (image->r(2 * i - 2, j) + image->r(2 * i - 4, j))); image->g(2 * i - 3, j) = MAX(0.f, -0.0625f * (green[j] + image->g(2 * i - 6, j)) + 0.5625f * (image->g(2 * i - 2, j) + image->g(2 * i - 4, j))); image->b(2 * i - 3, j) = MAX(0.f, -0.0625f * (blue[j] + image->b(2 * i - 6, j)) + 0.5625f * (image->b(2 * i - 2, j) + image->b(2 * i - 4, j))); if(clip) { image->r(2 * i - 3, j) = MIN(image->r(2 * i - 3, j), rtengine::MAXVALF); image->g(2 * i - 3, j) = MIN(image->g(2 * i - 3, j), rtengine::MAXVALF); image->b(2 * i - 3, j) = MIN(image->b(2 * i - 3, j), rtengine::MAXVALF); } } } if (i == imheight - 1) { for (int j = 0; j < imwidth; j++) { image->r(2 * i - 1, j) = MAX(0.f, -0.0625f * (red[j] + image->r(2 * i - 4, j)) + 0.5625f * (image->r(2 * i, j) + image->r(2 * i - 2, j))); image->g(2 * i - 1, j) = MAX(0.f, -0.0625f * (green[j] + image->g(2 * i - 4, j)) + 0.5625f * (image->g(2 * i, j) + image->g(2 * i - 2, j))); image->b(2 * i - 1, j) = MAX(0.f, -0.0625f * (blue[j] + image->b(2 * i - 4, j)) + 0.5625f * (image->b(2 * i, j) + image->b(2 * i - 2, j))); if(clip) { image->r(2 * i - 1, j) = MIN(image->r(2 * i - 1, j), rtengine::MAXVALF); image->g(2 * i - 1, j) = MIN(image->g(2 * i - 1, j), rtengine::MAXVALF); image->b(2 * i - 1, j) = MIN(image->b(2 * i - 1, j), rtengine::MAXVALF); } image->r(2 * i + 1, j) = (red[j] + image->r(2 * i - 1, j)) / 2; image->g(2 * i + 1, j) = (green[j] + image->g(2 * i - 1, j)) / 2; image->b(2 * i + 1, j) = (blue[j] + image->b(2 * i - 1, j)) / 2; if (oddHeight) { image->r(2 * i + 2, j) = (red[j] + image->r(2 * i - 2, j)) / 2; image->g(2 * i + 2, j) = (green[j] + image->g(2 * i - 2, j)) / 2; image->b(2 * i + 2, j) = (blue[j] + image->b(2 * i - 2, j)) / 2; } } } } } } namespace rtengine { extern const Settings* settings; #undef ABS #undef DIST #define ABS(a) ((a)<0?-(a):(a)) #define DIST(a,b) (ABS(a-b)) RawImageSource::RawImageSource () : ImageSource() , W(0), H(0) , plistener(nullptr) , scale_mul{} , c_black{} , c_white{} , cblacksom{} , ref_pre_mul{} , refwb_red(0.0) , refwb_green(0.0) , refwb_blue(0.0) , rgb_cam{} , cam_rgb{} , xyz_cam{} , cam_xyz{} , fuji(false) , d1x(false) , border(4) , chmax{} , hlmax{} , clmax{} , initialGain(0.0) , camInitialGain(0.0) , defGain(0.0) , ri(nullptr) , rawData(0, 0) , green(0, 0) , red(0, 0) , blue(0, 0) , greenCache(nullptr) , redCache(nullptr) , blueCache(nullptr) , rawDirty(true) , histMatchingParams(new procparams::ColorManagementParams) { camProfile = nullptr; embProfile = nullptr; rgbSourceModified = false; for(int i = 0; i < 4; ++i) { psRedBrightness[i] = psGreenBrightness[i] = psBlueBrightness[i] = 1.f; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RawImageSource::~RawImageSource () { delete idata; delete redCache; delete greenCache; delete blueCache; for(size_t i = 0; i < numFrames; ++i) { delete riFrames[i]; } for(size_t i = 0; i + 1 < numFrames; ++i) { delete rawDataBuffer[i]; } flushRGB(); flushRawData(); if (camProfile) { cmsCloseProfile (camProfile); } if (embProfile) { cmsCloseProfile (embProfile); } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::transformRect (const PreviewProps &pp, int tran, int &ssx1, int &ssy1, int &width, int &height, int &fw) { int pp_x = pp.getX() + border; int pp_y = pp.getY() + border; int pp_width = pp.getWidth(); int pp_height = pp.getHeight(); if (d1x) { if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) { pp_x /= 2; pp_width = pp_width / 2 + 1; } else { pp_y /= 2; pp_height = pp_height / 2 + 1; } } int w = W, h = H; if (fuji) { w = ri->get_FujiWidth() * 2 + 1; h = (H - ri->get_FujiWidth()) * 2 + 1; } int sw = w, sh = h; if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) { sw = h; sh = w; } if( pp_width > sw - 2 * border) { pp_width = sw - 2 * border; } if( pp_height > sh - 2 * border) { pp_height = sh - 2 * border; } int ppx = pp_x, ppy = pp_y; if (tran & TR_HFLIP) { ppx = max(sw - pp_x - pp_width, 0); } if (tran & TR_VFLIP) { ppy = max(sh - pp_y - pp_height, 0); } int sx1 = ppx; // assuming it's >=0 int sy1 = ppy; // assuming it's >=0 int sx2 = min(ppx + pp_width, w - 1); int sy2 = min(ppy + pp_height, h - 1); if ((tran & TR_ROT) == TR_R180) { sx1 = max(w - ppx - pp_width, 0); sy1 = max(h - ppy - pp_height, 0); sx2 = min(sx1 + pp_width, w - 1); sy2 = min(sy1 + pp_height, h - 1); } else if ((tran & TR_ROT) == TR_R90) { sx1 = ppy; sy1 = max(h - ppx - pp_width, 0); sx2 = min(sx1 + pp_height, w - 1); sy2 = min(sy1 + pp_width, h - 1); } else if ((tran & TR_ROT) == TR_R270) { sx1 = max(w - ppy - pp_height, 0); sy1 = ppx; sx2 = min(sx1 + pp_height, w - 1); sy2 = min(sy1 + pp_width, h - 1); } if (fuji) { // atszamoljuk a koordinatakat fuji-ra: // recalculate the coordinates fuji-ra: ssx1 = (sx1 + sy1) / 2; ssy1 = (sy1 - sx2 ) / 2 + ri->get_FujiWidth(); int ssx2 = (sx2 + sy2) / 2 + 1; int ssy2 = (sy2 - sx1) / 2 + ri->get_FujiWidth(); fw = (sx2 - sx1) / 2 / pp.getSkip(); width = (ssx2 - ssx1) / pp.getSkip() + ((ssx2 - ssx1) % pp.getSkip() > 0); height = (ssy2 - ssy1) / pp.getSkip() + ((ssy2 - ssy1) % pp.getSkip() > 0); } else { ssx1 = sx1; ssy1 = sy1; width = (sx2 + 1 - sx1) / pp.getSkip() + ((sx2 + 1 - sx1) % pp.getSkip() > 0); height = (sy2 + 1 - sy1) / pp.getSkip() + ((sy2 + 1 - sy1) % pp.getSkip() > 0); } } float calculate_scale_mul(float scale_mul[4], const float pre_mul_[4], const float c_white[4], const float c_black[4], bool isMono, int colors) { if (isMono || colors == 1) { for (int c = 0; c < 4; c++) { scale_mul[c] = 65535.0 / (c_white[c] - c_black[c]); } } else { float pre_mul[4]; for (int c = 0; c < 4; c++) { pre_mul[c] = pre_mul_[c]; } if (pre_mul[3] == 0) { pre_mul[3] = pre_mul[1]; // G2 == G1 } float maxpremul = max(pre_mul[0], pre_mul[1], pre_mul[2], pre_mul[3]); for (int c = 0; c < 4; c++) { scale_mul[c] = (pre_mul[c] / maxpremul) * 65535.0 / (c_white[c] - c_black[c]); } } float gain = max(scale_mul[0], scale_mul[1], scale_mul[2], scale_mul[3]) / min(scale_mul[0], scale_mul[1], scale_mul[2], scale_mul[3]); return gain; } void RawImageSource::getImage (const ColorTemp &ctemp, int tran, Imagefloat* image, const PreviewProps &pp, const ToneCurveParams &hrp, const RAWParams &raw ) { MyMutex::MyLock lock(getImageMutex); tran = defTransform (tran); // compute channel multipliers double r, g, b; float rm, gm, bm; if (ctemp.getTemp() < 0) { // no white balance, ie revert the pre-process white balance to restore original unbalanced raw camera color rm = ri->get_pre_mul(0); gm = ri->get_pre_mul(1); bm = ri->get_pre_mul(2); } else { ctemp.getMultipliers (r, g, b); rm = imatrices.cam_rgb[0][0] * r + imatrices.cam_rgb[0][1] * g + imatrices.cam_rgb[0][2] * b; gm = imatrices.cam_rgb[1][0] * r + imatrices.cam_rgb[1][1] * g + imatrices.cam_rgb[1][2] * b; bm = imatrices.cam_rgb[2][0] * r + imatrices.cam_rgb[2][1] * g + imatrices.cam_rgb[2][2] * b; } if (true) { // adjust gain so the maximum raw value of the least scaled channel just hits max const float new_pre_mul[4] = { ri->get_pre_mul(0) / rm, ri->get_pre_mul(1) / gm, ri->get_pre_mul(2) / bm, ri->get_pre_mul(3) / gm }; float new_scale_mul[4]; bool isMono = (ri->getSensorType() == ST_FUJI_XTRANS && raw.xtranssensor.method == RAWParams::XTransSensor::getMethodString(RAWParams::XTransSensor::Method::MONO)) || (ri->getSensorType() == ST_BAYER && raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::MONO)); for (int i = 0; i < 4; ++i) { c_white[i] = (ri->get_white(i) - cblacksom[i]) / raw.expos + cblacksom[i]; } float gain = calculate_scale_mul(new_scale_mul, new_pre_mul, c_white, cblacksom, isMono, ri->get_colors()); rm = new_scale_mul[0] / scale_mul[0] * gain; gm = new_scale_mul[1] / scale_mul[1] * gain; bm = new_scale_mul[2] / scale_mul[2] * gain; //fprintf(stderr, "camera gain: %f, current wb gain: %f, diff in stops %f\n", camInitialGain, gain, log2(camInitialGain) - log2(gain)); } else { // old scaling: used a fixed reference gain based on camera (as-shot) white balance // how much we need to scale each channel to get our new white balance rm = refwb_red / rm; gm = refwb_green / gm; bm = refwb_blue / bm; // normalize so larger multiplier becomes 1.0 float minval = min(rm, gm, bm); rm /= minval; gm /= minval; bm /= minval; // multiply with reference gain, ie as-shot WB rm *= camInitialGain; gm *= camInitialGain; bm *= camInitialGain; } defGain = 0.0; // compute image area to render in order to provide the requested part of the image int sx1, sy1, imwidth, imheight, fw, d1xHeightOdd = 0; transformRect (pp, tran, sx1, sy1, imwidth, imheight, fw); // check possible overflows int maximwidth, maximheight; if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) { maximwidth = image->getHeight(); maximheight = image->getWidth(); } else { maximwidth = image->getWidth(); maximheight = image->getHeight(); } if (d1x) { // D1X has only half of the required rows // we interpolate the missing ones later to get correct aspect ratio // if the height is odd we also have to add an additional row to avoid a black line d1xHeightOdd = maximheight & 1; maximheight /= 2; imheight = maximheight; } // correct if overflow (very rare), but not fuji because it is corrected in transline if (!fuji && imwidth > maximwidth) { imwidth = maximwidth; } if (!fuji && imheight > maximheight) { imheight = maximheight; } if (fuji) { // zero image to avoid access to uninitialized values in further processing because fuji super-ccd processing is not clean... for (int i = 0; i < image->getHeight(); ++i) { for (int j = 0; j < image->getWidth(); ++j) { image->r(i, j) = image->g(i, j) = image->b(i, j) = 0; } } } int maxx = this->W, maxy = this->H, skip = pp.getSkip(); // raw clip levels after white balance hlmax[0] = clmax[0] * rm; hlmax[1] = clmax[1] * gm; hlmax[2] = clmax[2] * bm; const bool doClip = (chmax[0] >= clmax[0] || chmax[1] >= clmax[1] || chmax[2] >= clmax[2]) && !hrp.hrenabled && hrp.clampOOG; float area = skip * skip; rm /= area; gm /= area; bm /= area; bool doHr = (hrp.hrenabled && hrp.method != "Color"); const float expcomp = std::pow(2, ri->getBaselineExposure()); rm *= expcomp; gm *= expcomp; bm *= expcomp; #ifdef _OPENMP #pragma omp parallel if(!d1x) // omp disabled for D1x to avoid race conditions (see Issue 1088 http://code.google.com/p/rawtherapee/issues/detail?id=1088) { #endif // render the requested image part float line_red[imwidth] ALIGNED16; float line_grn[imwidth] ALIGNED16; float line_blue[imwidth] ALIGNED16; #ifdef _OPENMP #pragma omp for schedule(dynamic,16) #endif for (int ix = 0; ix < imheight; ix++) { int i = sy1 + skip * ix; i = std::min(i, maxy - skip); // avoid trouble if (ri->getSensorType() == ST_BAYER || ri->getSensorType() == ST_FUJI_XTRANS || ri->get_colors() == 1) { for (int j = 0, jx = sx1; j < imwidth; j++, jx += skip) { jx = std::min(jx, maxx - skip); // avoid trouble float rtot = 0.f, gtot = 0.f, btot = 0.f; for (int m = 0; m < skip; m++) for (int n = 0; n < skip; n++) { rtot += red[i + m][jx + n]; gtot += green[i + m][jx + n]; btot += blue[i + m][jx + n]; } rtot *= rm; gtot *= gm; btot *= bm; if (doClip) { // note: as hlmax[] can be larger than CLIP and we can later apply negative // exposure this means that we can clip away local highlights which actually // are not clipped. We have to do that though as we only check pixel by pixel // and don't know if this will transition into a clipped area, if so we need // to clip also surrounding to make a good colour transition rtot = CLIP(rtot); gtot = CLIP(gtot); btot = CLIP(btot); } line_red[j] = rtot; line_grn[j] = gtot; line_blue[j] = btot; } } else { for (int j = 0, jx = sx1; j < imwidth; j++, jx += skip) { if (jx > maxx - skip) { jx = maxx - skip - 1; } float rtot, gtot, btot; rtot = gtot = btot = 0; for (int m = 0; m < skip; m++) for (int n = 0; n < skip; n++) { rtot += rawData[i + m][(jx + n) * 3 + 0]; gtot += rawData[i + m][(jx + n) * 3 + 1]; btot += rawData[i + m][(jx + n) * 3 + 2]; } rtot *= rm; gtot *= gm; btot *= bm; if (doClip) { rtot = CLIP(rtot); gtot = CLIP(gtot); btot = CLIP(btot); } line_red[j] = rtot; line_grn[j] = gtot; line_blue[j] = btot; } } //process all highlight recovery other than "Color" if (doHr) { hlRecovery (hrp.method, line_red, line_grn, line_blue, imwidth, hlmax); } if(d1x) { transLineD1x (line_red, line_grn, line_blue, ix, image, tran, imwidth, imheight, d1xHeightOdd, doClip); } else if(fuji) { transLineFuji (line_red, line_grn, line_blue, ix, image, tran, imheight, fw); } else { transLineStandard (line_red, line_grn, line_blue, ix, image, tran, imwidth, imheight); } } #ifdef _OPENMP } #endif if (fuji) { int a = ((tran & TR_ROT) == TR_R90 && image->getWidth() % 2 == 0) || ((tran & TR_ROT) == TR_R180 && image->getHeight() % 2 + image->getWidth() % 2 == 1) || ((tran & TR_ROT) == TR_R270 && image->getHeight() % 2 == 0); // first row for (int j = 1 + a; j < image->getWidth() - 1; j += 2) { image->r(0, j) = (image->r(1, j) + image->r(0, j + 1) + image->r(0, j - 1)) / 3; image->g(0, j) = (image->g(1, j) + image->g(0, j + 1) + image->g(0, j - 1)) / 3; image->b(0, j) = (image->b(1, j) + image->b(0, j + 1) + image->b(0, j - 1)) / 3; } // other rows for (int i = 1; i < image->getHeight() - 1; i++) { for (int j = 2 - (a + i + 1) % 2; j < image->getWidth() - 1; j += 2) { // edge-adaptive interpolation double dh = (ABS(image->r(i, j + 1) - image->r(i, j - 1)) + ABS(image->g(i, j + 1) - image->g(i, j - 1)) + ABS(image->b(i, j + 1) - image->b(i, j - 1))) / 1.0; double dv = (ABS(image->r(i + 1, j) - image->r(i - 1, j)) + ABS(image->g(i + 1, j) - image->g(i - 1, j)) + ABS(image->b(i + 1, j) - image->b(i - 1, j))) / 1.0; double eh = 1.0 / (1.0 + dh); double ev = 1.0 / (1.0 + dv); image->r(i, j) = (eh * (image->r(i, j + 1) + image->r(i, j - 1)) + ev * (image->r(i + 1, j) + image->r(i - 1, j))) / (2.0 * (eh + ev)); image->g(i, j) = (eh * (image->g(i, j + 1) + image->g(i, j - 1)) + ev * (image->g(i + 1, j) + image->g(i - 1, j))) / (2.0 * (eh + ev)); image->b(i, j) = (eh * (image->b(i, j + 1) + image->b(i, j - 1)) + ev * (image->b(i + 1, j) + image->b(i - 1, j))) / (2.0 * (eh + ev)); } // first pixel if (2 - (a + i + 1) % 2 == 2) { image->r(i, 0) = (image->r(i + 1, 0) + image->r(i - 1, 0) + image->r(i, 1)) / 3; image->g(i, 0) = (image->g(i + 1, 0) + image->g(i - 1, 0) + image->g(i, 1)) / 3; image->b(i, 0) = (image->b(i + 1, 0) + image->b(i - 1, 0) + image->b(i, 1)) / 3; } // last pixel if (2 - (a + i + image->getWidth()) % 2 == 2) { image->r(i, image->getWidth() - 1) = (image->r(i + 1, image->getWidth() - 1) + image->r(i - 1, image->getWidth() - 1) + image->r(i, image->getWidth() - 2)) / 3; image->g(i, image->getWidth() - 1) = (image->g(i + 1, image->getWidth() - 1) + image->g(i - 1, image->getWidth() - 1) + image->g(i, image->getWidth() - 2)) / 3; image->b(i, image->getWidth() - 1) = (image->b(i + 1, image->getWidth() - 1) + image->b(i - 1, image->getWidth() - 1) + image->b(i, image->getWidth() - 2)) / 3; } } // last row int b = (a == 1 && image->getHeight() % 2) || (a == 0 && image->getHeight() % 2 == 0); for (int j = 1 + b; j < image->getWidth() - 1; j += 2) { image->r(image->getHeight() - 1, j) = (image->r(image->getHeight() - 2, j) + image->r(image->getHeight() - 1, j + 1) + image->r(image->getHeight() - 1, j - 1)) / 3; image->g(image->getHeight() - 1, j) = (image->g(image->getHeight() - 2, j) + image->g(image->getHeight() - 1, j + 1) + image->g(image->getHeight() - 1, j - 1)) / 3; image->b(image->getHeight() - 1, j) = (image->b(image->getHeight() - 2, j) + image->b(image->getHeight() - 1, j + 1) + image->b(image->getHeight() - 1, j - 1)) / 3; } } // Flip if needed if (tran & TR_HFLIP) { hflip (image); } if (tran & TR_VFLIP) { vflip (image); } // Colour correction (only when running on full resolution) if(pp.getSkip() == 1) { switch(ri->getSensorType()) { case ST_BAYER: processFalseColorCorrection (image, raw.bayersensor.ccSteps); break; case ST_FUJI_XTRANS: processFalseColorCorrection (image, raw.xtranssensor.ccSteps); break; case ST_FOVEON: case ST_NONE: break; } } } DCPProfile *RawImageSource::getDCP(const ColorManagementParams &cmp, DCPProfile::ApplyState &as) { if (cmp.inputProfile == "(camera)" || cmp.inputProfile == "(none)") { return nullptr; } DCPProfile *dcpProf = nullptr; cmsHPROFILE dummy; findInputProfile(cmp.inputProfile, nullptr, (static_cast(getMetaData()))->getCamera(), &dcpProf, dummy); if (dcpProf == nullptr) { if (settings->verbose) { printf("Can't load DCP profile '%s'!\n", cmp.inputProfile.c_str()); } return nullptr; } dcpProf->setStep2ApplyState(cmp.workingProfile, cmp.toneCurve, cmp.applyLookTable, cmp.applyBaselineExposureOffset, as); return dcpProf; } void RawImageSource::convertColorSpace(Imagefloat* image, const ColorManagementParams &cmp, const ColorTemp &wb) { double pre_mul[3] = { ri->get_pre_mul(0), ri->get_pre_mul(1), ri->get_pre_mul(2) }; colorSpaceConversion (image, cmp, wb, pre_mul, embProfile, camProfile, imatrices.xyz_cam, (static_cast(getMetaData()))->getCamera()); } void RawImageSource::getFullSize (int& w, int& h, int tr) { tr = defTransform (tr); if (fuji) { w = ri->get_FujiWidth() * 2 + 1; h = (H - ri->get_FujiWidth()) * 2 + 1; } else if (d1x) { w = W; h = 2 * H; } else { w = W; h = H; } if ((tr & TR_ROT) == TR_R90 || (tr & TR_ROT) == TR_R270) { int tmp = w; w = h; h = tmp; } w -= 2 * border; h -= 2 * border; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::getSize (const PreviewProps &pp, int& w, int& h) { w = pp.getWidth() / pp.getSkip() + (pp.getWidth() % pp.getSkip() > 0); h = pp.getHeight() / pp.getSkip() + (pp.getHeight() % pp.getSkip() > 0); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::hflip (Imagefloat* image) { image->hflip(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::vflip (Imagefloat* image) { image->vflip(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% int RawImageSource::load (const Glib::ustring &fname, bool firstFrameOnly) { MyTime t1, t2; t1.set(); fileName = fname; if (plistener) { plistener->setProgressStr ("PROGRESSBAR_DECODING"); plistener->setProgress (0.0); } ri = new RawImage(fname); int errCode = ri->loadRaw (false, 0, false); if (errCode) { return errCode; } numFrames = firstFrameOnly ? (numFrames < 7 ? 1 : ri->getFrameCount()) : ri->getFrameCount(); errCode = 0; if(numFrames >= 7) { // special case to avoid crash when loading Hasselblad H6D-100cMS pixelshift files // limit to 6 frames and skip first frame, as first frame is not bayer if (firstFrameOnly) { numFrames = 1; } else { numFrames = 6; } #ifdef _OPENMP #pragma omp parallel #endif { int errCodeThr = 0; #ifdef _OPENMP #pragma omp for nowait #endif for(unsigned int i = 0; i < numFrames; ++i) { if(i == 0) { riFrames[i] = ri; errCodeThr = riFrames[i]->loadRaw (true, i + 1, true, plistener, 0.8); } else { riFrames[i] = new RawImage(fname); errCodeThr = riFrames[i]->loadRaw (true, i + 1); } } #ifdef _OPENMP #pragma omp critical #endif { errCode = errCodeThr ? errCodeThr : errCode; } } } else if(numFrames > 1) { #ifdef _OPENMP #pragma omp parallel #endif { int errCodeThr = 0; #ifdef _OPENMP #pragma omp for nowait #endif for(unsigned int i = 0; i < numFrames; ++i) { if(i == 0) { riFrames[i] = ri; errCodeThr = riFrames[i]->loadRaw (true, i, true, plistener, 0.8); } else { riFrames[i] = new RawImage(fname); errCodeThr = riFrames[i]->loadRaw (true, i); } } #ifdef _OPENMP #pragma omp critical #endif { errCode = errCodeThr ? errCodeThr : errCode; } } } else { riFrames[0] = ri; errCode = riFrames[0]->loadRaw (true, 0, true, plistener, 0.8); } if(!errCode) { for(unsigned int i = 0; i < numFrames; ++i) { riFrames[i]->compress_image(i); } } else { return errCode; } if(numFrames > 1 ) { // this disables multi frame support for Fuji S5 until I found a solution to handle different dimensions if(riFrames[0]->get_width() != riFrames[1]->get_width() || riFrames[0]->get_height() != riFrames[1]->get_height()) { numFrames = 1; } } if (plistener) { plistener->setProgress (0.9); } /***** Copy once constant data extracted from raw *******/ W = ri->get_width(); H = ri->get_height(); fuji = ri->get_FujiWidth() != 0; for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) { imatrices.rgb_cam[i][j] = ri->get_colors() == 1 ? (i == j) : ri->get_rgb_cam(i, j); } // compute inverse of the color transformation matrix // first arg is matrix, second arg is inverse inverse33 (imatrices.rgb_cam, imatrices.cam_rgb); d1x = ! ri->get_model().compare("D1X"); if(ri->getSensorType() == ST_FUJI_XTRANS) { border = 7; } else if(ri->getSensorType() == ST_FOVEON) { border = 0; } if ( ri->get_profile() ) { embProfile = cmsOpenProfileFromMem (ri->get_profile(), ri->get_profileLen()); } // create profile memset (imatrices.xyz_cam, 0, sizeof(imatrices.xyz_cam)); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) for (int k = 0; k < 3; k++) { imatrices.xyz_cam[i][j] += xyz_sRGB[i][k] * imatrices.rgb_cam[k][j]; } camProfile = ICCStore::getInstance()->createFromMatrix (imatrices.xyz_cam, false, "Camera"); inverse33 (imatrices.xyz_cam, imatrices.cam_xyz); // First we get the "as shot" ("Camera") white balance and store it float pre_mul[4]; // FIXME: get_colorsCoeff not so much used nowadays, when we have calculate_scale_mul() function here ri->get_colorsCoeff( pre_mul, scale_mul, c_black, false);//modify for black level camInitialGain = max(scale_mul[0], scale_mul[1], scale_mul[2], scale_mul[3]) / min(scale_mul[0], scale_mul[1], scale_mul[2], scale_mul[3]); double camwb_red = ri->get_pre_mul(0) / pre_mul[0]; double camwb_green = ri->get_pre_mul(1) / pre_mul[1]; double camwb_blue = ri->get_pre_mul(2) / pre_mul[2]; double cam_r = imatrices.rgb_cam[0][0] * camwb_red + imatrices.rgb_cam[0][1] * camwb_green + imatrices.rgb_cam[0][2] * camwb_blue; double cam_g = imatrices.rgb_cam[1][0] * camwb_red + imatrices.rgb_cam[1][1] * camwb_green + imatrices.rgb_cam[1][2] * camwb_blue; double cam_b = imatrices.rgb_cam[2][0] * camwb_red + imatrices.rgb_cam[2][1] * camwb_green + imatrices.rgb_cam[2][2] * camwb_blue; camera_wb = ColorTemp (cam_r, cam_g, cam_b, 1.); // as shot WB ColorTemp ReferenceWB; double ref_r, ref_g, ref_b; { // ...then we re-get the constants but now with auto which gives us better demosaicing and CA auto-correct // performance for strange white balance settings (such as UniWB) ri->get_colorsCoeff( ref_pre_mul, scale_mul, c_black, true); refwb_red = ri->get_pre_mul(0) / ref_pre_mul[0]; refwb_green = ri->get_pre_mul(1) / ref_pre_mul[1]; refwb_blue = ri->get_pre_mul(2) / ref_pre_mul[2]; initialGain = max(scale_mul[0], scale_mul[1], scale_mul[2], scale_mul[3]) / min(scale_mul[0], scale_mul[1], scale_mul[2], scale_mul[3]); ref_r = imatrices.rgb_cam[0][0] * refwb_red + imatrices.rgb_cam[0][1] * refwb_green + imatrices.rgb_cam[0][2] * refwb_blue; ref_g = imatrices.rgb_cam[1][0] * refwb_red + imatrices.rgb_cam[1][1] * refwb_green + imatrices.rgb_cam[1][2] * refwb_blue; ref_b = imatrices.rgb_cam[2][0] * refwb_red + imatrices.rgb_cam[2][1] * refwb_green + imatrices.rgb_cam[2][2] * refwb_blue; ReferenceWB = ColorTemp (ref_r, ref_g, ref_b, 1.); } if (settings->verbose) { printf("Raw As Shot White balance: temp %f, tint %f\n", camera_wb.getTemp(), camera_wb.getGreen()); printf("Raw Reference (auto) white balance: temp %f, tint %f, multipliers [%f %f %f | %f %f %f]\n", ReferenceWB.getTemp(), ReferenceWB.getGreen(), ref_r, ref_g, ref_b, refwb_red, refwb_blue, refwb_green); } /*{ // Test code: if you want to test a specific white balance ColorTemp d50wb = ColorTemp(5000.0, 1.0, 1.0, "Custom"); double rm,gm,bm,r,g,b; d50wb.getMultipliers(r, g, b); camwb_red = imatrices.cam_rgb[0][0]*r + imatrices.cam_rgb[0][1]*g + imatrices.cam_rgb[0][2]*b; camwb_green = imatrices.cam_rgb[1][0]*r + imatrices.cam_rgb[1][1]*g + imatrices.cam_rgb[1][2]*b; camwb_blue = imatrices.cam_rgb[2][0]*r + imatrices.cam_rgb[2][1]*g + imatrices.cam_rgb[2][2]*b; double pre_mul[3], dmax = 0; pre_mul[0] = ri->get_pre_mul(0) / camwb_red; pre_mul[1] = ri->get_pre_mul(1) / camwb_green; pre_mul[2] = ri->get_pre_mul(2) / camwb_blue; for (int c = 0; c < 3; c++) { if (dmax < pre_mul[c]) dmax = pre_mul[c]; } for (int c = 0; c < 3; c++) { pre_mul[c] /= dmax; } camwb_red *= dmax; camwb_green *= dmax; camwb_blue *= dmax; for (int c = 0; c < 3; c++) { int sat = ri->get_white(c) - ri->get_cblack(c); scale_mul[c] = pre_mul[c] * 65535.0 / sat; } scale_mul[3] = pre_mul[1] * 65535.0 / (ri->get_white(3) - ri->get_cblack(3)); initialGain = 1.0 / min(pre_mul[0], pre_mul[1], pre_mul[2]); }*/ for(unsigned int i = 0;i < numFrames; ++i) { riFrames[i]->set_prefilters(); } // Load complete Exif information std::unique_ptr rml(new RawMetaDataLocation (ri->get_exifBase(), ri->get_ciffBase(), ri->get_ciffLen())); idata = new FramesData (fname, std::move(rml)); idata->setDCRawFrameCount (numFrames); green(W, H); red(W, H); blue(W, H); //hpmap = allocArray(W, H); if (plistener) { plistener->setProgress (1.0); } plistener = nullptr; // This must be reset, because only load() is called through progressConnector t2.set(); if( settings->verbose ) { printf("Load %s: %d usec\n", fname.c_str(), t2.etime(t1)); } return 0; // OK! } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::preprocess (const RAWParams &raw, const LensProfParams &lensProf, const CoarseTransformParams& coarse, bool prepareDenoise) { // BENCHFUN MyTime t1, t2; t1.set(); Glib::ustring newDF = raw.dark_frame; RawImage *rid = nullptr; if (!raw.df_autoselect) { if( !raw.dark_frame.empty()) { rid = dfm.searchDarkFrame( raw.dark_frame ); } } else { rid = dfm.searchDarkFrame(idata->getMake(), idata->getModel(), idata->getISOSpeed(), idata->getShutterSpeed(), idata->getDateTimeAsTS()); } if( rid && settings->verbose) { printf( "Subtracting Darkframe:%s\n", rid->get_filename().c_str()); } std::unique_ptr bitmapBads; int totBP = 0; // Hold count of bad pixels to correct if(ri->zeroIsBad()) { // mark all pixels with value zero as bad, has to be called before FF and DF. dcraw sets this flag only for some cameras (mainly Panasonic and Leica) bitmapBads.reset(new PixelsMap(W, H)); totBP = findZeroPixels(*(bitmapBads.get())); if( settings->verbose) { printf( "%d pixels with value zero marked as bad pixels\n", totBP); } } //FLATFIELD start RawImage *rif = nullptr; if (!raw.ff_AutoSelect) { if( !raw.ff_file.empty()) { rif = ffm.searchFlatField( raw.ff_file ); } } else { rif = ffm.searchFlatField( idata->getMake(), idata->getModel(), idata->getLens(), idata->getFocalLen(), idata->getFNumber(), idata->getDateTimeAsTS()); } bool hasFlatField = (rif != nullptr); if( hasFlatField && settings->verbose) { printf( "Flat Field Correction:%s\n", rif->get_filename().c_str()); } if(numFrames == 4) { int bufferNumber = 0; for(unsigned int i=0; i<4; ++i) { if(i==currFrame) { copyOriginalPixels(raw, ri, rid, rif, rawData); rawDataFrames[i] = &rawData; } else { if(!rawDataBuffer[bufferNumber]) { rawDataBuffer[bufferNumber] = new array2D; } rawDataFrames[i] = rawDataBuffer[bufferNumber]; ++bufferNumber; copyOriginalPixels(raw, riFrames[i], rid, rif, *rawDataFrames[i]); } } } else if (numFrames == 2 && currFrame == 2) { // average the frames if(!rawDataBuffer[0]) { rawDataBuffer[0] = new array2D; } rawDataFrames[1] = rawDataBuffer[0]; copyOriginalPixels(raw, riFrames[1], rid, rif, *rawDataFrames[1]); copyOriginalPixels(raw, ri, rid, rif, rawData); for (int i = 0; i < H; ++i) { for (int j = 0; j < W; ++j) { rawData[i][j] = (rawData[i][j] + (*rawDataFrames[1])[i][j]) * 0.5f; } } } else { copyOriginalPixels(raw, ri, rid, rif, rawData); } //FLATFIELD end // Always correct camera badpixels from .badpixels file std::vector *bp = dfm.getBadPixels( ri->get_maker(), ri->get_model(), idata->getSerialNumber() ); if( bp ) { if(!bitmapBads) { bitmapBads.reset(new PixelsMap(W, H)); } totBP += bitmapBads->set(*bp); if( settings->verbose ) { std::cout << "Correcting " << bp->size() << " pixels from .badpixels" << std::endl; } } // If darkframe selected, correct hotpixels found on darkframe bp = nullptr; if( raw.df_autoselect ) { bp = dfm.getHotPixels(idata->getMake(), idata->getModel(), idata->getISOSpeed(), idata->getShutterSpeed(), idata->getDateTimeAsTS()); } else if( !raw.dark_frame.empty() ) { bp = dfm.getHotPixels( raw.dark_frame ); } if(bp) { if(!bitmapBads) { bitmapBads.reset(new PixelsMap(W, H)); } totBP += bitmapBads->set(*bp); if( settings->verbose && !bp->empty()) { std::cout << "Correcting " << bp->size() << " hotpixels from darkframe" << std::endl; } } if(numFrames == 4) { for(int i=0; i<4; ++i) { scaleColors( 0, 0, W, H, raw, *rawDataFrames[i]); } } else { scaleColors( 0, 0, W, H, raw, rawData); //+ + raw parameters for black level(raw.blackxx) } // Correct vignetting of lens profile if (!hasFlatField && lensProf.useVign && lensProf.lcMode != LensProfParams::LcMode::NONE) { std::unique_ptr pmap; if (lensProf.useLensfun()) { pmap = LFDatabase::findModifier(lensProf, idata, W, H, coarse, -1); } else { const std::shared_ptr pLCPProf = LCPStore::getInstance()->getProfile(lensProf.lcpFile); if (pLCPProf) { // don't check focal length to allow distortion correction for lenses without chip, also pass dummy focal length 1 in case of 0 pmap.reset(new LCPMapper(pLCPProf, max(idata->getFocalLen(), 1.0), idata->getFocalLen35mm(), idata->getFocusDist(), idata->getFNumber(), true, false, W, H, coarse, -1)); } } if (pmap) { LensCorrection &map = *pmap; if (ri->getSensorType() == ST_BAYER || ri->getSensorType() == ST_FUJI_XTRANS || ri->get_colors() == 1) { if(numFrames == 4) { for(int i = 0; i < 4; ++i) { #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for (int y = 0; y < H; y++) { map.processVignetteLine(W, y, (*rawDataFrames[i])[y]); } } } else { #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for (int y = 0; y < H; y++) { map.processVignetteLine(W, y, rawData[y]); } } } else if(ri->get_colors() == 3) { #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for (int y = 0; y < H; y++) { map.processVignetteLine3Channels(W, y, rawData[y]); } } } } defGain = 0.0;//log(initialGain) / log(2.0); if ( ri->getSensorType() == ST_BAYER && (raw.hotPixelFilter > 0 || raw.deadPixelFilter > 0)) { if (plistener) { plistener->setProgressStr ("PROGRESSBAR_HOTDEADPIXELFILTER"); plistener->setProgress (0.0); } if(!bitmapBads) { bitmapBads.reset(new PixelsMap(W, H)); } int nFound = findHotDeadPixels(*(bitmapBads.get()), raw.hotdeadpix_thresh, raw.hotPixelFilter, raw.deadPixelFilter ); totBP += nFound; if( settings->verbose && nFound > 0) { printf( "Correcting %d hot/dead pixels found inside image\n", nFound ); } } if (ri->getSensorType() == ST_BAYER && raw.bayersensor.pdafLinesFilter) { PDAFLinesFilter f(ri); if (!bitmapBads) { bitmapBads.reset(new PixelsMap(W, H)); } int n = f.mark(rawData, *(bitmapBads.get())); totBP += n; if (n > 0) { if (settings->verbose) { printf("Marked %d hot pixels from PDAF lines\n", n); } auto &thresh = f.greenEqThreshold(); if (numFrames == 4) { for (int i = 0; i < 4; ++i) { green_equilibrate(thresh, *rawDataFrames[i]); } } else { green_equilibrate(thresh, rawData); } } } // check if green equilibration is needed. If yes, compute G channel pre-compensation factors const auto globalGreenEq = [&]() -> bool { CameraConstantsStore *ccs = CameraConstantsStore::getInstance(); CameraConst *cc = ccs->get(ri->get_maker().c_str(), ri->get_model().c_str()); return cc && cc->get_globalGreenEquilibration(); }; if ( ri->getSensorType() == ST_BAYER && (raw.bayersensor.greenthresh || (globalGreenEq() && raw.bayersensor.method != RAWParams::BayerSensor::getMethodString( RAWParams::BayerSensor::Method::VNG4))) ) { if (settings->verbose) { printf("Performing global green equilibration...\n"); } // global correction if(numFrames == 4) { for(int i = 0; i < 4; ++i) { green_equilibrate_global(*rawDataFrames[i]); } } else { green_equilibrate_global(rawData); } } if ( ri->getSensorType() == ST_BAYER && raw.bayersensor.greenthresh > 0) { if (plistener) { plistener->setProgressStr ("PROGRESSBAR_GREENEQUIL"); plistener->setProgress (0.0); } GreenEqulibrateThreshold thresh(0.01 * raw.bayersensor.greenthresh); if(numFrames == 4) { for(int i = 0; i < 4; ++i) { green_equilibrate(thresh, *rawDataFrames[i]); } } else { green_equilibrate(thresh, rawData); } } if( totBP ) { if ( ri->getSensorType() == ST_BAYER ) { if(numFrames == 4) { for(int i = 0; i < 4; ++i) { interpolateBadPixelsBayer(*(bitmapBads.get()), *rawDataFrames[i]); } } else { interpolateBadPixelsBayer(*(bitmapBads.get()), rawData); } } else if ( ri->getSensorType() == ST_FUJI_XTRANS ) { interpolateBadPixelsXtrans(*(bitmapBads.get())); } else { interpolateBadPixelsNColours(*(bitmapBads.get()), ri->get_colors()); } } if ( ri->getSensorType() == ST_BAYER && raw.bayersensor.linenoise > 0 ) { if (plistener) { plistener->setProgressStr ("PROGRESSBAR_LINEDENOISE"); plistener->setProgress (0.0); } std::unique_ptr line_denoise_rowblender; if (raw.bayersensor.linenoiseDirection == RAWParams::BayerSensor::LineNoiseDirection::PDAF_LINES) { PDAFLinesFilter f(ri); line_denoise_rowblender = f.lineDenoiseRowBlender(); } else { line_denoise_rowblender.reset(new CFALineDenoiseRowBlender()); } cfa_linedn(0.00002 * (raw.bayersensor.linenoise), int(raw.bayersensor.linenoiseDirection) & int(RAWParams::BayerSensor::LineNoiseDirection::VERTICAL), int(raw.bayersensor.linenoiseDirection) & int(RAWParams::BayerSensor::LineNoiseDirection::HORIZONTAL), *line_denoise_rowblender); } if ( (raw.ca_autocorrect || fabs(raw.cared) > 0.001 || fabs(raw.cablue) > 0.001) && ri->getSensorType() == ST_BAYER ) { // Auto CA correction disabled for X-Trans, for now... if (plistener) { plistener->setProgressStr ("PROGRESSBAR_RAWCACORR"); plistener->setProgress (0.0); } if(numFrames == 4) { double fitParams[64]; float *buffer = CA_correct_RT(raw.ca_autocorrect, raw.caautoiterations, raw.cared, raw.cablue, raw.ca_avoidcolourshift, *rawDataFrames[0], fitParams, false, true, nullptr, false, options.chunkSizeCA, options.measure); for(int i = 1; i < 3; ++i) { CA_correct_RT(raw.ca_autocorrect, raw.caautoiterations, raw.cared, raw.cablue, raw.ca_avoidcolourshift, *rawDataFrames[i], fitParams, true, false, buffer, false, options.chunkSizeCA, options.measure); } CA_correct_RT(raw.ca_autocorrect, raw.caautoiterations, raw.cared, raw.cablue, raw.ca_avoidcolourshift, *rawDataFrames[3], fitParams, true, false, buffer, true, options.chunkSizeCA, options.measure); } else { CA_correct_RT(raw.ca_autocorrect, raw.caautoiterations, raw.cared, raw.cablue, raw.ca_avoidcolourshift, rawData, nullptr, false, false, nullptr, true, options.chunkSizeCA, options.measure); } } if(prepareDenoise && dirpyrdenoiseExpComp == INFINITY) { LUTu aehist; int aehistcompr; double clip = 0; int brightness, contrast, black, hlcompr, hlcomprthresh; getAutoExpHistogram (aehist, aehistcompr); ImProcFunctions::getAutoExp (aehist, aehistcompr, clip, dirpyrdenoiseExpComp, brightness, contrast, black, hlcompr, hlcomprthresh); } t2.set(); if( settings->verbose ) { printf("Preprocessing: %d usec\n", t2.etime(t1)); } rawDirty = true; return; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::demosaic(const RAWParams &raw, bool autoContrast, double &contrastThreshold, bool cache) { MyTime t1, t2; t1.set(); if (ri->getSensorType() == ST_BAYER) { if ( raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::HPHD) ) { hphd_demosaic (); } else if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::VNG4) ) { vng4_demosaic (rawData, red, green, blue); } else if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::AHD) ) { ahd_demosaic (); } else if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::AMAZE) ) { amaze_demosaic_RT (0, 0, W, H, rawData, red, green, blue, options.chunkSizeAMAZE, options.measure); } else if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::AMAZEVNG4) || raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::DCBVNG4) || raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::RCDVNG4)) { if (!autoContrast) { double threshold = raw.bayersensor.dualDemosaicContrast; dual_demosaic_RT (true, raw, W, H, rawData, red, green, blue, threshold, false); } else { dual_demosaic_RT (true, raw, W, H, rawData, red, green, blue, contrastThreshold, true); } } else if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::PIXELSHIFT) ) { pixelshift(0, 0, W, H, raw, currFrame, ri->get_maker(), ri->get_model(), raw.expos); } else if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::DCB) ) { dcb_demosaic(raw.bayersensor.dcb_iterations, raw.bayersensor.dcb_enhance); } else if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::EAHD)) { eahd_demosaic (); } else if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::IGV)) { igv_interpolate(W, H); } else if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::LMMSE)) { lmmse_interpolate_omp(W, H, rawData, red, green, blue, raw.bayersensor.lmmse_iterations); } else if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::FAST) ) { fast_demosaic(); } else if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::MONO) ) { nodemosaic(true); } else if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::RCD) ) { rcd_demosaic(options.chunkSizeRCD, options.measure); } else { nodemosaic(false); } } else if (ri->getSensorType() == ST_FUJI_XTRANS) { if (raw.xtranssensor.method == RAWParams::XTransSensor::getMethodString(RAWParams::XTransSensor::Method::FAST) ) { fast_xtrans_interpolate(rawData, red, green, blue); } else if (raw.xtranssensor.method == RAWParams::XTransSensor::getMethodString(RAWParams::XTransSensor::Method::ONE_PASS)) { xtrans_interpolate(1, false, options.chunkSizeXT, options.measure); } else if (raw.xtranssensor.method == RAWParams::XTransSensor::getMethodString(RAWParams::XTransSensor::Method::THREE_PASS) ) { xtrans_interpolate(3, true, options.chunkSizeXT, options.measure); } else if (raw.xtranssensor.method == RAWParams::XTransSensor::getMethodString(RAWParams::XTransSensor::Method::FOUR_PASS) || raw.xtranssensor.method == RAWParams::XTransSensor::getMethodString(RAWParams::XTransSensor::Method::TWO_PASS)) { if (!autoContrast) { double threshold = raw.xtranssensor.dualDemosaicContrast; dual_demosaic_RT (false, raw, W, H, rawData, red, green, blue, threshold, false); } else { dual_demosaic_RT (false, raw, W, H, rawData, red, green, blue, contrastThreshold, true); } } else if(raw.xtranssensor.method == RAWParams::XTransSensor::getMethodString(RAWParams::XTransSensor::Method::MONO) ) { nodemosaic(true); } else { nodemosaic(false); } } else if (ri->get_colors() == 1) { // Monochrome nodemosaic(true); } t2.set(); rgbSourceModified = false; if (cache) { if (!redCache) { redCache = new array2D(W, H); greenCache = new array2D(W, H); blueCache = new array2D(W, H); } #ifdef _OPENMP #pragma omp parallel sections #endif { #ifdef _OPENMP #pragma omp section #endif for (int i = 0; i < H; ++i) { for (int j = 0; j < W; ++j) { (*redCache)[i][j] = red[i][j]; } } #ifdef _OPENMP #pragma omp section #endif for (int i = 0; i < H; ++i) { for (int j = 0; j < W; ++j) { (*greenCache)[i][j] = green[i][j]; } } #ifdef _OPENMP #pragma omp section #endif for (int i = 0; i < H; ++i) { for (int j = 0; j < W; ++j) { (*blueCache)[i][j] = blue[i][j]; } } } } else { delete redCache; redCache = nullptr; delete greenCache; greenCache = nullptr; delete blueCache; blueCache = nullptr; } if( settings->verbose ) { if (getSensorType() == ST_BAYER) { printf("Demosaicing Bayer data: %s - %d usec\n", raw.bayersensor.method.c_str(), t2.etime(t1)); } else if (getSensorType() == ST_FUJI_XTRANS) { printf("Demosaicing X-Trans data: %s - %d usec\n", raw.xtranssensor.method.c_str(), t2.etime(t1)); } } } //void RawImageSource::retinexPrepareBuffers(ColorManagementParams cmp, RetinexParams retinexParams, multi_array2D &conversionBuffer, LUTu &lhist16RETI) void RawImageSource::retinexPrepareBuffers(const ColorManagementParams& cmp, const RetinexParams &retinexParams, multi_array2D &conversionBuffer, LUTu &lhist16RETI) { bool useHsl = (retinexParams.retinexcolorspace == "HSLLOG" || retinexParams.retinexcolorspace == "HSLLIN"); conversionBuffer[0] (W - 2 * border, H - 2 * border); conversionBuffer[1] (W - 2 * border, H - 2 * border); conversionBuffer[2] (W - 2 * border, H - 2 * border); conversionBuffer[3] (W - 2 * border, H - 2 * border); LUTf *retinexgamtab = nullptr;//gamma before and after Retinex to restore tones LUTf lutTonereti; if(retinexParams.gammaretinex == "low") { retinexgamtab = &(Color::gammatab_115_2); } else if(retinexParams.gammaretinex == "mid") { retinexgamtab = &(Color::gammatab_13_2); } else if(retinexParams.gammaretinex == "hig") { retinexgamtab = &(Color::gammatab_145_3); } else if(retinexParams.gammaretinex == "fre") { GammaValues g_a; double pwr = 1.0 / retinexParams.gam; double gamm = retinexParams.gam; double ts = retinexParams.slope; double gamm2 = retinexParams.gam; if(gamm2 < 1.) { std::swap(pwr, gamm); } int mode = 0; Color::calcGamma(pwr, ts, mode, g_a); // call to calcGamma with selected gamma and slope // printf("g_a0=%f g_a1=%f g_a2=%f g_a3=%f g_a4=%f\n", g_a0,g_a1,g_a2,g_a3,g_a4); double start; double add; if(gamm2 < 1.) { start = g_a[2]; add = g_a[4]; } else { start = g_a[3]; add = g_a[4]; } double mul = 1. + g_a[4]; lutTonereti(65536); for (int i = 0; i < 65536; i++) { double val = (i) / 65535.; double x; if(gamm2 < 1.) { x = Color::igammareti (val, gamm, start, ts, mul , add); } else { x = Color::gammareti (val, gamm, start, ts, mul , add); } lutTonereti[i] = CLIP(x * 65535.);// CLIP avoid in some case extra values } retinexgamtab = &lutTonereti; } /* //test with amsterdam.pef and other files float rr,gg,bb; rr=red[50][2300]; gg=green[50][2300]; bb=blue[50][2300]; printf("rr=%f gg=%f bb=%f \n",rr,gg,bb); rr=red[1630][370]; gg=green[1630][370]; bb=blue[1630][370]; printf("rr1=%f gg1=%f bb1=%f \n",rr,gg,bb); rr=red[380][1630]; gg=green[380][1630]; bb=blue[380][1630]; printf("rr2=%f gg2=%f bb2=%f \n",rr,gg,bb); */ /* if(retinexParams.highlig < 100 && retinexParams.retinexMethod == "highliplus") {//try to recover magenta...very difficult ! float hig = ((float)retinexParams.highlig)/100.f; float higgb = ((float)retinexParams.grbl)/100.f; #ifdef _OPENMP #pragma omp parallel for #endif for (int i = border; i < H - border; i++ ) { for (int j = border; j < W - border; j++ ) { float R_,G_,B_; R_=red[i][j]; G_=green[i][j]; B_=blue[i][j]; //empirical method to find highlight magenta with no conversion RGB and no white balance //red = master Gr and Bl default higgb=0.5 // if(R_>65535.f*hig && G_ > 65535.f*higgb && B_ > 65535.f*higgb) conversionBuffer[3][i - border][j - border] = R_; // else conversionBuffer[3][i - border][j - border] = 0.f; } } } */ if(retinexParams.gammaretinex != "none" && retinexParams.str != 0 && retinexgamtab) {//gamma #ifdef _OPENMP #pragma omp parallel for #endif for (int i = border; i < H - border; i++ ) { for (int j = border; j < W - border; j++ ) { float R_, G_, B_; R_ = red[i][j]; G_ = green[i][j]; B_ = blue[i][j]; red[i][j] = (*retinexgamtab)[R_]; green[i][j] = (*retinexgamtab)[G_]; blue[i][j] = (*retinexgamtab)[B_]; } } } if(useHsl) { #ifdef _OPENMP #pragma omp parallel #endif { // one LUT per thread LUTu lhist16RETIThr; if(lhist16RETI) { lhist16RETIThr(lhist16RETI.getSize()); lhist16RETIThr.clear(); } #ifdef __SSE2__ vfloat c32768 = F2V(32768.f); #endif #ifdef _OPENMP #pragma omp for #endif for (int i = border; i < H - border; i++ ) { int j = border; #ifdef __SSE2__ for (; j < W - border - 3; j += 4) { vfloat H, S, L; Color::rgb2hsl(LVFU(red[i][j]), LVFU(green[i][j]), LVFU(blue[i][j]), H, S, L); STVFU(conversionBuffer[0][i - border][j - border], H); STVFU(conversionBuffer[1][i - border][j - border], S); L *= c32768; STVFU(conversionBuffer[2][i - border][j - border], L); STVFU(conversionBuffer[3][i - border][j - border], H); if(lhist16RETI) { for(int p = 0; p < 4; p++) { int pos = ( conversionBuffer[2][i - border][j - border + p]);//histogram in curve HSL lhist16RETIThr[pos]++; } } } #endif for (; j < W - border; j++) { float L; //rgb=>lab Color::rgb2hslfloat(red[i][j], green[i][j], blue[i][j], conversionBuffer[0][i - border][j - border], conversionBuffer[1][i - border][j - border], L); L *= 32768.f; conversionBuffer[2][i - border][j - border] = L; if(lhist16RETI) { int pos = L; lhist16RETIThr[pos]++; } } } #ifdef _OPENMP #pragma omp critical { if(lhist16RETI) { lhist16RETI += lhist16RETIThr; // Add per Thread LUT to global LUT } } #endif } } else { TMatrix wprof = ICCStore::getInstance()->workingSpaceMatrix (cmp.workingProfile); const float wp[3][3] = { {static_cast(wprof[0][0]), static_cast(wprof[0][1]), static_cast(wprof[0][2])}, {static_cast(wprof[1][0]), static_cast(wprof[1][1]), static_cast(wprof[1][2])}, {static_cast(wprof[2][0]), static_cast(wprof[2][1]), static_cast(wprof[2][2])} }; // Conversion rgb -> lab is hard to vectorize because it uses a lut (that's not the main problem) // and it uses a condition inside XYZ2Lab which is almost impossible to vectorize without making it slower... #ifdef _OPENMP #pragma omp parallel #endif { // one LUT per thread LUTu lhist16RETIThr; if(lhist16RETI) { lhist16RETIThr(lhist16RETI.getSize()); lhist16RETIThr.clear(); } #ifdef _OPENMP #pragma omp for schedule(dynamic,16) #endif for (int i = border; i < H - border; i++ ) for (int j = border; j < W - border; j++) { float X, Y, Z, L, aa, bb; //rgb=>lab Color::rgbxyz(red[i][j], green[i][j], blue[i][j], X, Y, Z, wp); //convert Lab Color::XYZ2Lab(X, Y, Z, L, aa, bb); conversionBuffer[0][i - border][j - border] = aa; conversionBuffer[1][i - border][j - border] = bb; conversionBuffer[2][i - border][j - border] = L; conversionBuffer[3][i - border][j - border] = xatan2f(bb, aa); // if(R_>40000.f && G_ > 30000.f && B_ > 30000.f) conversionBuffer[3][i - border][j - border] = R_; // else conversionBuffer[3][i - border][j - border] = 0.f; if(lhist16RETI) { int pos = L; lhist16RETIThr[pos]++;//histogram in Curve Lab } } #ifdef _OPENMP #pragma omp critical { if(lhist16RETI) { lhist16RETI += lhist16RETIThr; // Add per Thread LUT to global LUT } } #endif } } } void RawImageSource::retinexPrepareCurves(const RetinexParams &retinexParams, LUTf &cdcurve, LUTf &mapcurve, RetinextransmissionCurve &retinextransmissionCurve, RetinexgaintransmissionCurve &retinexgaintransmissionCurve, bool &retinexcontlutili, bool &mapcontlutili, bool &useHsl, LUTu & lhist16RETI, LUTu & histLRETI) { useHsl = (retinexParams.retinexcolorspace == "HSLLOG" || retinexParams.retinexcolorspace == "HSLLIN"); if(useHsl) { CurveFactory::curveDehaContL (retinexcontlutili, retinexParams.cdHcurve, cdcurve, 1, lhist16RETI, histLRETI); } else { CurveFactory::curveDehaContL (retinexcontlutili, retinexParams.cdcurve, cdcurve, 1, lhist16RETI, histLRETI); } CurveFactory::mapcurve(mapcontlutili, retinexParams.mapcurve, mapcurve, 1, lhist16RETI, histLRETI); mapcurve *= 0.5f; retinexParams.getCurves(retinextransmissionCurve, retinexgaintransmissionCurve); } void RawImageSource::retinex(const ColorManagementParams& cmp, const RetinexParams &deh, const ToneCurveParams& Tc, LUTf & cdcurve, LUTf & mapcurve, const RetinextransmissionCurve & dehatransmissionCurve, const RetinexgaintransmissionCurve & dehagaintransmissionCurve, multi_array2D &conversionBuffer, bool dehacontlutili, bool mapcontlutili, bool useHsl, float &minCD, float &maxCD, float &mini, float &maxi, float &Tmean, float &Tsigma, float &Tmin, float &Tmax, LUTu &histLRETI) { MyTime t4, t5; t4.set(); if (settings->verbose) { printf ("Applying Retinex\n"); } LUTf lutToneireti; lutToneireti(65536); LUTf *retinexigamtab = nullptr;//gamma before and after Retinex to restore tones if(deh.gammaretinex == "low") { retinexigamtab = &(Color::igammatab_115_2); } else if(deh.gammaretinex == "mid") { retinexigamtab = &(Color::igammatab_13_2); } else if(deh.gammaretinex == "hig") { retinexigamtab = &(Color::igammatab_145_3); } else if(deh.gammaretinex == "fre") { GammaValues g_a; double pwr = 1.0 / deh.gam; double gamm = deh.gam; double gamm2 = gamm; double ts = deh.slope; int mode = 0; if(gamm2 < 1.) { std::swap(pwr, gamm); } Color::calcGamma(pwr, ts, mode, g_a); // call to calcGamma with selected gamma and slope double mul = 1. + g_a[4]; double add; double start; if(gamm2 < 1.) { start = g_a[3]; add = g_a[3]; } else { add = g_a[4]; start = g_a[2]; } // printf("g_a0=%f g_a1=%f g_a2=%f g_a3=%f g_a4=%f\n", g_a0,g_a1,g_a2,g_a3,g_a4); for (int i = 0; i < 65536; i++) { double val = (i) / 65535.; double x; if(gamm2 < 1.) { x = Color::gammareti (val, gamm, start, ts, mul , add); } else { x = Color::igammareti (val, gamm, start, ts, mul , add); } lutToneireti[i] = CLIP(x * 65535.); } retinexigamtab = &lutToneireti; } // We need a buffer with original L data to allow correct blending // red, green and blue still have original size of raw, but we can't use the borders const int HNew = H - 2 * border; const int WNew = W - 2 * border; array2D LBuffer (WNew, HNew); float **temp = conversionBuffer[2]; // one less dereference LUTf dLcurve; LUTu hist16RET; if(dehacontlutili && histLRETI) { hist16RET(32768); hist16RET.clear(); histLRETI.clear(); dLcurve(32768); } FlatCurve* chcurve = nullptr;//curve c=f(H) bool chutili = false; if (deh.enabled && deh.retinexMethod == "highli") { chcurve = new FlatCurve(deh.lhcurve); if (!chcurve || chcurve->isIdentity()) { if (chcurve) { delete chcurve; chcurve = nullptr; } } else { chutili = true; } } #ifdef _OPENMP #pragma omp parallel #endif { // one LUT per thread LUTu hist16RETThr; if(hist16RET) { hist16RETThr(hist16RET.getSize()); hist16RETThr.clear(); } #ifdef _OPENMP #pragma omp for #endif for (int i = 0; i < H - 2 * border; i++ ) if(dehacontlutili) for (int j = 0; j < W - 2 * border; j++) { LBuffer[i][j] = cdcurve[2.f * temp[i][j]] / 2.f; if(histLRETI) { int pos = LBuffer[i][j]; hist16RETThr[pos]++; //histogram in Curve } } else for (int j = 0; j < W - 2 * border; j++) { LBuffer[i][j] = temp[i][j]; } #ifdef _OPENMP #pragma omp critical #endif { if(hist16RET) { hist16RET += hist16RETThr; // Add per Thread LUT to global LUT } } } if(hist16RET) {//update histogram // TODO : When rgbcurvesspeedup branch is merged into master, replace this by the following 1-liner // hist16RET.compressTo(histLRETI); // also remove declaration and init of dLcurve some lines above then and finally remove this comment :) for (int i = 0; i < 32768; i++) { float val = (double)i / 32767.0; dLcurve[i] = val; } for (int i = 0; i < 32768; i++) { float hval = dLcurve[i]; int hi = (int)(255.0f * hval); histLRETI[hi] += hist16RET[i]; } } MSR(LBuffer, conversionBuffer[2], conversionBuffer[3], mapcurve, mapcontlutili, WNew, HNew, deh, dehatransmissionCurve, dehagaintransmissionCurve, minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax); if(useHsl) { if(chutili) { #ifdef _OPENMP #pragma omp parallel for #endif for (int i = border; i < H - border; i++ ) { int j = border; for (; j < W - border; j++) { float valp = (chcurve->getVal(conversionBuffer[3][i - border][j - border]) - 0.5f); conversionBuffer[1][i - border][j - border] *= (1.f + 2.f * valp); } } } #ifdef _OPENMP #pragma omp parallel for #endif for (int i = border; i < H - border; i++ ) { int j = border; #ifdef __SSE2__ vfloat c32768 = F2V(32768.f); for (; j < W - border - 3; j += 4) { vfloat R, G, B; Color::hsl2rgb(LVFU(conversionBuffer[0][i - border][j - border]), LVFU(conversionBuffer[1][i - border][j - border]), LVFU(LBuffer[i - border][j - border]) / c32768, R, G, B); STVFU(red[i][j], R); STVFU(green[i][j], G); STVFU(blue[i][j], B); } #endif for (; j < W - border; j++) { Color::hsl2rgbfloat(conversionBuffer[0][i - border][j - border], conversionBuffer[1][i - border][j - border], LBuffer[i - border][j - border] / 32768.f, red[i][j], green[i][j], blue[i][j]); } } } else { TMatrix wiprof = ICCStore::getInstance()->workingSpaceInverseMatrix (cmp.workingProfile); double wip[3][3] = { {wiprof[0][0], wiprof[0][1], wiprof[0][2]}, {wiprof[1][0], wiprof[1][1], wiprof[1][2]}, {wiprof[2][0], wiprof[2][1], wiprof[2][2]} }; // gamut control only in Lab mode const bool highlight = Tc.hrenabled; #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ // we need some line buffers to precalculate some expensive stuff using SSE float atan2Buffer[W] ALIGNED16; float sqrtBuffer[W] ALIGNED16; float sincosxBuffer[W] ALIGNED16; float sincosyBuffer[W] ALIGNED16; const vfloat c327d68v = F2V(327.68); const vfloat onev = F2V(1.f); #endif // __SSE2__ #ifdef _OPENMP #pragma omp for #endif for (int i = border; i < H - border; i++ ) { #ifdef __SSE2__ // vectorized precalculation { int j = border; for (; j < W - border - 3; j += 4) { vfloat av = LVFU(conversionBuffer[0][i - border][j - border]); vfloat bv = LVFU(conversionBuffer[1][i - border][j - border]); vfloat chprovv = vsqrtf(SQRV(av) + SQRV(bv)); STVF(sqrtBuffer[j - border], chprovv / c327d68v); vfloat HHv = xatan2f(bv, av); STVF(atan2Buffer[j - border], HHv); av /= chprovv; bv /= chprovv; vmask selMask = vmaskf_eq(chprovv, ZEROV); STVF(sincosyBuffer[j - border], vself(selMask, onev, av)); STVF(sincosxBuffer[j - border], vselfnotzero(selMask, bv)); } for (; j < W - border; j++) { float aa = conversionBuffer[0][i - border][j - border]; float bb = conversionBuffer[1][i - border][j - border]; float Chprov1 = sqrt(SQR(aa) + SQR(bb)) / 327.68f; sqrtBuffer[j - border] = Chprov1; float HH = xatan2f(bb, aa); atan2Buffer[j - border] = HH; if(Chprov1 == 0.0f) { sincosyBuffer[j - border] = 1.f; sincosxBuffer[j - border] = 0.0f; } else { sincosyBuffer[j - border] = aa / (Chprov1 * 327.68f); sincosxBuffer[j - border] = bb / (Chprov1 * 327.68f); } } } #endif // __SSE2__ for (int j = border; j < W - border; j++) { float Lprov1 = (LBuffer[i - border][j - border]) / 327.68f; #ifdef __SSE2__ float Chprov1 = sqrtBuffer[j - border]; float HH = atan2Buffer[j - border]; float2 sincosval; sincosval.x = sincosxBuffer[j - border]; sincosval.y = sincosyBuffer[j - border]; #else float aa = conversionBuffer[0][i - border][j - border]; float bb = conversionBuffer[1][i - border][j - border]; float Chprov1 = sqrt(SQR(aa) + SQR(bb)) / 327.68f; float HH = xatan2f(bb, aa); float2 sincosval;// = xsincosf(HH); if(Chprov1 == 0.0f) { sincosval.y = 1.f; sincosval.x = 0.0f; } else { sincosval.y = aa / (Chprov1 * 327.68f); sincosval.x = bb / (Chprov1 * 327.68f); } #endif if(chutili) { // c=f(H) float valp = float((chcurve->getVal(Color::huelab_to_huehsv2(HH)) - 0.5f)); Chprov1 *= (1.f + 2.f * valp); } float R, G, B; #ifdef _DEBUG bool neg = false; bool more_rgb = false; //gamut control : Lab values are in gamut Color::gamutLchonly(HH, sincosval, Lprov1, Chprov1, R, G, B, wip, highlight, 0.15f, 0.96f, neg, more_rgb); #else //gamut control : Lab values are in gamut Color::gamutLchonly(HH, sincosval, Lprov1, Chprov1, R, G, B, wip, highlight, 0.15f, 0.96f); #endif conversionBuffer[0][i - border][j - border] = 327.68f * Chprov1 * sincosval.y; conversionBuffer[1][i - border][j - border] = 327.68f * Chprov1 * sincosval.x; LBuffer[i - border][j - border] = Lprov1 * 327.68f; } } } //end gamut control #ifdef __SSE2__ vfloat wipv[3][3]; for(int i = 0; i < 3; i++) for(int j = 0; j < 3; j++) { wipv[i][j] = F2V(wiprof[i][j]); } #endif // __SSE2__ #ifdef _OPENMP #pragma omp parallel for #endif for (int i = border; i < H - border; i++ ) { int j = border; #ifdef __SSE2__ for (; j < W - border - 3; j += 4) { vfloat x_, y_, z_; vfloat R, G, B; Color::Lab2XYZ(LVFU(LBuffer[i - border][j - border]), LVFU(conversionBuffer[0][i - border][j - border]), LVFU(conversionBuffer[1][i - border][j - border]), x_, y_, z_) ; Color::xyz2rgb(x_, y_, z_, R, G, B, wipv); STVFU(red[i][j], R); STVFU(green[i][j], G); STVFU(blue[i][j], B); } #endif for (; j < W - border; j++) { float x_, y_, z_; float R, G, B; Color::Lab2XYZ(LBuffer[i - border][j - border], conversionBuffer[0][i - border][j - border], conversionBuffer[1][i - border][j - border], x_, y_, z_) ; Color::xyz2rgb(x_, y_, z_, R, G, B, wip); red[i][j] = R; green[i][j] = G; blue[i][j] = B; } } } if (chcurve) { delete chcurve; } if(deh.gammaretinex != "none" && deh.str != 0) { //inverse gamma #ifdef _OPENMP #pragma omp parallel for #endif for (int i = border; i < H - border; i++ ) { for (int j = border; j < W - border; j++ ) { float R_, G_, B_; R_ = red[i][j]; G_ = green[i][j]; B_ = blue[i][j]; red[i][j] = (*retinexigamtab)[R_]; green[i][j] = (*retinexigamtab)[G_]; blue[i][j] = (*retinexigamtab)[B_]; } } } rgbSourceModified = false; // tricky handling for Color propagation t5.set(); if( settings->verbose ) { printf("Retinex=%d usec\n", t5.etime(t4)); } } void RawImageSource::flushRawData() { if (rawData) { rawData(0, 0); } } void RawImageSource::flushRGB() { if (green) { green(0, 0); } if (red) { red(0, 0); } if (blue) { blue(0, 0); } } void RawImageSource::HLRecovery_Global(const ToneCurveParams &hrp) { if (hrp.hrenabled && hrp.method == "Color") { if(!rgbSourceModified) { if (settings->verbose) { printf ("Applying Highlight Recovery: Color propagation...\n"); } HLRecovery_inpaint (red, green, blue); rgbSourceModified = true; } } } void RawImageSource::processFlatField(const RAWParams &raw, RawImage *riFlatFile, unsigned short black[4]) { // BENCHFUN float *cfablur = (float (*)) malloc (H * W * sizeof * cfablur); int BS = raw.ff_BlurRadius; BS += BS & 1; //function call to cfabloxblur if (raw.ff_BlurType == RAWParams::getFlatFieldBlurTypeString(RAWParams::FlatFieldBlurType::V)) { cfaboxblur(riFlatFile, cfablur, 2 * BS, 0); } else if (raw.ff_BlurType == RAWParams::getFlatFieldBlurTypeString(RAWParams::FlatFieldBlurType::H)) { cfaboxblur(riFlatFile, cfablur, 0, 2 * BS); } else if (raw.ff_BlurType == RAWParams::getFlatFieldBlurTypeString(RAWParams::FlatFieldBlurType::VH)) { //slightly more complicated blur if trying to correct both vertical and horizontal anomalies cfaboxblur(riFlatFile, cfablur, BS, BS); //first do area blur to correct vignette } else { //(raw.ff_BlurType == RAWParams::getFlatFieldBlurTypeString(RAWParams::area_ff)) cfaboxblur(riFlatFile, cfablur, BS, BS); } if(ri->getSensorType() == ST_BAYER || ri->get_colors() == 1) { float refcolor[2][2]; //find centre average values by channel for (int m = 0; m < 2; m++) for (int n = 0; n < 2; n++) { int row = 2 * (H >> 2) + m; int col = 2 * (W >> 2) + n; int c = ri->get_colors() != 1 ? FC(row, col) : 0; int c4 = ri->get_colors() != 1 ? (( c == 1 && !(row & 1) ) ? 3 : c) : 0; refcolor[m][n] = max(0.0f, cfablur[row * W + col] - black[c4]); } float limitFactor = 1.f; if(raw.ff_AutoClipControl) { for (int m = 0; m < 2; m++) for (int n = 0; n < 2; n++) { float maxval = 0.f; int c = ri->get_colors() != 1 ? FC(m, n) : 0; int c4 = ri->get_colors() != 1 ? (( c == 1 && !(m & 1) ) ? 3 : c) : 0; #ifdef _OPENMP #pragma omp parallel #endif { float maxvalthr = 0.f; #ifdef _OPENMP #pragma omp for #endif for (int row = 0; row < H - m; row += 2) { for (int col = 0; col < W - n; col += 2) { float tempval = (rawData[row + m][col + n] - black[c4]) * ( refcolor[m][n] / max(1e-5f, cfablur[(row + m) * W + col + n] - black[c4]) ); if(tempval > maxvalthr) { maxvalthr = tempval; } } } #ifdef _OPENMP #pragma omp critical #endif { if(maxvalthr > maxval) { maxval = maxvalthr; } } } // now we have the max value for the channel // if it clips, calculate factor to avoid clipping if(maxval + black[c4] >= ri->get_white(c4)) { limitFactor = min(limitFactor, ri->get_white(c4) / (maxval + black[c4])); } } flatFieldAutoClipValue = (1.f - limitFactor) * 100.f; // this value can be used to set the clip control slider in gui } else { limitFactor = max((float)(100 - raw.ff_clipControl) / 100.f, 0.01f); } for (int m = 0; m < 2; m++) for (int n = 0; n < 2; n++) { refcolor[m][n] *= limitFactor; } unsigned int c[2][2] {}; unsigned int c4[2][2] {}; if(ri->get_colors() != 1) { for (int i = 0; i < 2; ++i) { for(int j = 0; j < 2; ++j) { c[i][j] = FC(i, j); } } c4[0][0] = ( c[0][0] == 1) ? 3 : c[0][0]; c4[0][1] = ( c[0][1] == 1) ? 3 : c[0][1]; c4[1][0] = c[1][0]; c4[1][1] = c[1][1]; } constexpr float minValue = 1.f; // if the pixel value in the flat field is less or equal this value, no correction will be applied. #ifdef __SSE2__ vfloat refcolorv[2] = {_mm_set_ps(refcolor[0][1], refcolor[0][0], refcolor[0][1], refcolor[0][0]), _mm_set_ps(refcolor[1][1], refcolor[1][0], refcolor[1][1], refcolor[1][0]) }; vfloat blackv[2] = {_mm_set_ps(black[c4[0][1]], black[c4[0][0]], black[c4[0][1]], black[c4[0][0]]), _mm_set_ps(black[c4[1][1]], black[c4[1][0]], black[c4[1][1]], black[c4[1][0]]) }; vfloat onev = F2V(1.f); vfloat minValuev = F2V(minValue); #endif #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for (int row = 0; row < H; row ++) { int col = 0; #ifdef __SSE2__ vfloat rowBlackv = blackv[row & 1]; vfloat rowRefcolorv = refcolorv[row & 1]; for (; col < W - 3; col += 4) { vfloat blurv = LVFU(cfablur[(row) * W + col]) - rowBlackv; vfloat vignettecorrv = rowRefcolorv / blurv; vignettecorrv = vself(vmaskf_le(blurv, minValuev), onev, vignettecorrv); vfloat valv = LVFU(rawData[row][col]); valv -= rowBlackv; STVFU(rawData[row][col], valv * vignettecorrv + rowBlackv); } #endif for (; col < W; col ++) { float blur = cfablur[(row) * W + col] - black[c4[row & 1][col & 1]]; float vignettecorr = blur <= minValue ? 1.f : refcolor[row & 1][col & 1] / blur; rawData[row][col] = (rawData[row][col] - black[c4[row & 1][col & 1]]) * vignettecorr + black[c4[row & 1][col & 1]]; } } } else if(ri->getSensorType() == ST_FUJI_XTRANS) { float refcolor[3] = {0.f}; int cCount[3] = {0}; //find center ave values by channel for (int m = -3; m < 3; m++) for (int n = -3; n < 3; n++) { int row = 2 * (H >> 2) + m; int col = 2 * (W >> 2) + n; int c = riFlatFile->XTRANSFC(row, col); refcolor[c] += max(0.0f, cfablur[row * W + col] - black[c]); cCount[c] ++; } for(int c = 0; c < 3; c++) { refcolor[c] = refcolor[c] / cCount[c]; } float limitFactor = 1.f; if(raw.ff_AutoClipControl) { // determine maximum calculated value to avoid clipping float maxval = 0.f; // xtrans files have only one black level actually, so we can simplify the code a bit #ifdef _OPENMP #pragma omp parallel #endif { float maxvalthr = 0.f; #ifdef _OPENMP #pragma omp for schedule(dynamic,16) nowait #endif for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { float tempval = (rawData[row][col] - black[0]) * ( refcolor[ri->XTRANSFC(row, col)] / max(1e-5f, cfablur[(row) * W + col] - black[0]) ); if(tempval > maxvalthr) { maxvalthr = tempval; } } } #ifdef _OPENMP #pragma omp critical #endif { if(maxvalthr > maxval) { maxval = maxvalthr; } } } // there's only one white level for xtrans if(maxval + black[0] > ri->get_white(0)) { limitFactor = ri->get_white(0) / (maxval + black[0]); flatFieldAutoClipValue = (1.f - limitFactor) * 100.f; // this value can be used to set the clip control slider in gui } } else { limitFactor = max((float)(100 - raw.ff_clipControl) / 100.f, 0.01f); } for(int c = 0; c < 3; c++) { refcolor[c] *= limitFactor; } constexpr float minValue = 1.f; // if the pixel value in the flat field is less or equal this value, no correction will be applied. #ifdef _OPENMP #pragma omp parallel for #endif for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { int c = ri->XTRANSFC(row, col); float blur = cfablur[(row) * W + col] - black[c]; float vignettecorr = blur <= minValue ? 1.f : refcolor[c] / blur; rawData[row][col] = (rawData[row][col] - black[c]) * vignettecorr + black[c]; } } } if (raw.ff_BlurType == RAWParams::getFlatFieldBlurTypeString(RAWParams::FlatFieldBlurType::VH)) { float *cfablur1 = (float (*)) malloc (H * W * sizeof * cfablur1); float *cfablur2 = (float (*)) malloc (H * W * sizeof * cfablur2); //slightly more complicated blur if trying to correct both vertical and horizontal anomalies cfaboxblur(riFlatFile, cfablur1, 0, 2 * BS); //now do horizontal blur cfaboxblur(riFlatFile, cfablur2, 2 * BS, 0); //now do vertical blur if(ri->getSensorType() == ST_BAYER || ri->get_colors() == 1) { unsigned int c[2][2] {}; unsigned int c4[2][2] {}; if(ri->get_colors() != 1) { for (int i = 0; i < 2; ++i) { for(int j = 0; j < 2; ++j) { c[i][j] = FC(i, j); } } c4[0][0] = ( c[0][0] == 1) ? 3 : c[0][0]; c4[0][1] = ( c[0][1] == 1) ? 3 : c[0][1]; c4[1][0] = c[1][0]; c4[1][1] = c[1][1]; } #ifdef __SSE2__ vfloat blackv[2] = {_mm_set_ps(black[c4[0][1]], black[c4[0][0]], black[c4[0][1]], black[c4[0][0]]), _mm_set_ps(black[c4[1][1]], black[c4[1][0]], black[c4[1][1]], black[c4[1][0]]) }; vfloat epsv = F2V(1e-5f); #endif #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for (int row = 0; row < H; row ++) { int col = 0; #ifdef __SSE2__ vfloat rowBlackv = blackv[row & 1]; for (; col < W - 3; col += 4) { vfloat linecorrv = SQRV(vmaxf(LVFU(cfablur[row * W + col]) - rowBlackv, epsv)) / (vmaxf(LVFU(cfablur1[row * W + col]) - rowBlackv, epsv) * vmaxf(LVFU(cfablur2[row * W + col]) - rowBlackv, epsv)); vfloat valv = LVFU(rawData[row][col]); valv -= rowBlackv; STVFU(rawData[row][col], valv * linecorrv + rowBlackv); } #endif for (; col < W; col ++) { float linecorr = SQR(max(1e-5f, cfablur[row * W + col] - black[c4[row & 1][col & 1]])) / (max(1e-5f, cfablur1[row * W + col] - black[c4[row & 1][col & 1]]) * max(1e-5f, cfablur2[row * W + col] - black[c4[row & 1][col & 1]])) ; rawData[row][col] = (rawData[row][col] - black[c4[row & 1][col & 1]]) * linecorr + black[c4[row & 1][col & 1]]; } } } else if(ri->getSensorType() == ST_FUJI_XTRANS) { #ifdef _OPENMP #pragma omp parallel for #endif for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { int c = ri->XTRANSFC(row, col); float hlinecorr = (max(1e-5f, cfablur[(row) * W + col] - black[c]) / max(1e-5f, cfablur1[(row) * W + col] - black[c]) ); float vlinecorr = (max(1e-5f, cfablur[(row) * W + col] - black[c]) / max(1e-5f, cfablur2[(row) * W + col] - black[c]) ); rawData[row][col] = ((rawData[row][col] - black[c]) * hlinecorr * vlinecorr + black[c]); } } } free (cfablur1); free (cfablur2); } free (cfablur); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /* Copy original pixel data and * subtract dark frame (if present) from current image and apply flat field correction (if present) */ void RawImageSource::copyOriginalPixels(const RAWParams &raw, RawImage *src, RawImage *riDark, RawImage *riFlatFile, array2D &rawData ) { // TODO: Change type of black[] to float to avoid conversions unsigned short black[4] = { (unsigned short)ri->get_cblack(0), (unsigned short)ri->get_cblack(1), (unsigned short)ri->get_cblack(2), (unsigned short)ri->get_cblack(3) }; if (ri->getSensorType() == ST_BAYER || ri->getSensorType() == ST_FUJI_XTRANS) { if (!rawData) { rawData(W, H); } if (riDark && W == riDark->get_width() && H == riDark->get_height()) { // This works also for xtrans-sensors, because black[0] to black[4] are equal for these for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { int c = FC(row, col); int c4 = ( c == 1 && !(row & 1) ) ? 3 : c; rawData[row][col] = max(src->data[row][col] + black[c4] - riDark->data[row][col], 0.0f); } } } else { #ifdef _OPENMP #pragma omp parallel for #endif for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { rawData[row][col] = src->data[row][col]; } } } if (riFlatFile && W == riFlatFile->get_width() && H == riFlatFile->get_height()) { processFlatField(raw, riFlatFile, black); } // flatfield } else if (ri->get_colors() == 1) { // Monochrome if (!rawData) { rawData(W, H); } if (riDark && W == riDark->get_width() && H == riDark->get_height()) { for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { rawData[row][col] = max(src->data[row][col] + black[0] - riDark->data[row][col], 0.0f); } } } else { for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { rawData[row][col] = src->data[row][col]; } } } if (riFlatFile && W == riFlatFile->get_width() && H == riFlatFile->get_height()) { processFlatField(raw, riFlatFile, black); } // flatfield } else { // No bayer pattern // TODO: Is there a flat field correction possible? if (!rawData) { rawData(3 * W, H); } if (riDark && W == riDark->get_width() && H == riDark->get_height()) { for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { int c = FC(row, col); int c4 = ( c == 1 && !(row & 1) ) ? 3 : c; rawData[row][3 * col + 0] = max(src->data[row][3 * col + 0] + black[c4] - riDark->data[row][3 * col + 0], 0.0f); rawData[row][3 * col + 1] = max(src->data[row][3 * col + 1] + black[c4] - riDark->data[row][3 * col + 1], 0.0f); rawData[row][3 * col + 2] = max(src->data[row][3 * col + 2] + black[c4] - riDark->data[row][3 * col + 2], 0.0f); } } } else { for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { rawData[row][3 * col + 0] = src->data[row][3 * col + 0]; rawData[row][3 * col + 1] = src->data[row][3 * col + 1]; rawData[row][3 * col + 2] = src->data[row][3 * col + 2]; } } } } } void RawImageSource::cfaboxblur(RawImage *riFlatFile, float* cfablur, int boxH, int boxW) { if (boxW < 0 || boxH < 0 || (boxW == 0 && boxH == 0)) { // nothing to blur or negative values memcpy(cfablur, riFlatFile->data[0], W * H * sizeof(float)); return; } float *tmpBuffer = nullptr; float *cfatmp = nullptr; float *srcVertical = nullptr; if(boxH > 0 && boxW > 0) { // we need a temporary buffer if we have to blur both directions tmpBuffer = (float (*)) calloc (H * W, sizeof * tmpBuffer); } if(boxH == 0) { // if boxH == 0 we can skip the vertical blur and process the horizontal blur from riFlatFile to cfablur without using a temporary buffer cfatmp = cfablur; } else { cfatmp = tmpBuffer; } if(boxW == 0) { // if boxW == 0 we can skip the horizontal blur and process the vertical blur from riFlatFile to cfablur without using a temporary buffer srcVertical = riFlatFile->data[0]; } else { srcVertical = cfatmp; } #ifdef _OPENMP #pragma omp parallel #endif { if(boxW > 0) { //box blur cfa image; box size = BS //horizontal blur #ifdef _OPENMP #pragma omp for #endif for (int row = 0; row < H; row++) { int len = boxW / 2 + 1; cfatmp[row * W + 0] = riFlatFile->data[row][0] / len; cfatmp[row * W + 1] = riFlatFile->data[row][1] / len; for (int j = 2; j <= boxW; j += 2) { cfatmp[row * W + 0] += riFlatFile->data[row][j] / len; cfatmp[row * W + 1] += riFlatFile->data[row][j + 1] / len; } for (int col = 2; col <= boxW; col += 2) { cfatmp[row * W + col] = (cfatmp[row * W + col - 2] * len + riFlatFile->data[row][boxW + col]) / (len + 1); cfatmp[row * W + col + 1] = (cfatmp[row * W + col - 1] * len + riFlatFile->data[row][boxW + col + 1]) / (len + 1); len ++; } for (int col = boxW + 2; col < W - boxW; col++) { cfatmp[row * W + col] = cfatmp[row * W + col - 2] + (riFlatFile->data[row][boxW + col] - cfatmp[row * W + col - boxW - 2]) / len; } for (int col = W - boxW; col < W; col += 2) { cfatmp[row * W + col] = (cfatmp[row * W + col - 2] * len - cfatmp[row * W + col - boxW - 2]) / (len - 1); if (col + 1 < W) { cfatmp[row * W + col + 1] = (cfatmp[row * W + col - 1] * len - cfatmp[row * W + col - boxW - 1]) / (len - 1); } len --; } } } if(boxH > 0) { //vertical blur #ifdef __SSE2__ vfloat leninitv = F2V(boxH / 2 + 1); vfloat onev = F2V( 1.0f ); vfloat temp1v, temp2v, temp3v, temp4v, lenv, lenp1v, lenm1v; int row; #ifdef _OPENMP #pragma omp for nowait #endif for (int col = 0; col < W - 7; col += 8) { lenv = leninitv; temp1v = LVFU(srcVertical[0 * W + col]) / lenv; temp2v = LVFU(srcVertical[1 * W + col]) / lenv; temp3v = LVFU(srcVertical[0 * W + col + 4]) / lenv; temp4v = LVFU(srcVertical[1 * W + col + 4]) / lenv; for (int i = 2; i < boxH + 2; i += 2) { temp1v += LVFU(srcVertical[i * W + col]) / lenv; temp2v += LVFU(srcVertical[(i + 1) * W + col]) / lenv; temp3v += LVFU(srcVertical[i * W + col + 4]) / lenv; temp4v += LVFU(srcVertical[(i + 1) * W + col + 4]) / lenv; } STVFU(cfablur[0 * W + col], temp1v); STVFU(cfablur[1 * W + col], temp2v); STVFU(cfablur[0 * W + col + 4], temp3v); STVFU(cfablur[1 * W + col + 4], temp4v); for (row = 2; row < boxH + 2; row += 2) { lenp1v = lenv + onev; temp1v = (temp1v * lenv + LVFU(srcVertical[(row + boxH) * W + col])) / lenp1v; temp2v = (temp2v * lenv + LVFU(srcVertical[(row + boxH + 1) * W + col])) / lenp1v; temp3v = (temp3v * lenv + LVFU(srcVertical[(row + boxH) * W + col + 4])) / lenp1v; temp4v = (temp4v * lenv + LVFU(srcVertical[(row + boxH + 1) * W + col + 4])) / lenp1v; STVFU(cfablur[row * W + col], temp1v); STVFU(cfablur[(row + 1)*W + col], temp2v); STVFU(cfablur[row * W + col + 4], temp3v); STVFU(cfablur[(row + 1)*W + col + 4], temp4v); lenv = lenp1v; } for (; row < H - boxH - 1; row += 2) { temp1v = temp1v + (LVFU(srcVertical[(row + boxH) * W + col]) - LVFU(srcVertical[(row - boxH - 2) * W + col])) / lenv; temp2v = temp2v + (LVFU(srcVertical[(row + 1 + boxH) * W + col]) - LVFU(srcVertical[(row + 1 - boxH - 2) * W + col])) / lenv; temp3v = temp3v + (LVFU(srcVertical[(row + boxH) * W + col + 4]) - LVFU(srcVertical[(row - boxH - 2) * W + col + 4])) / lenv; temp4v = temp4v + (LVFU(srcVertical[(row + 1 + boxH) * W + col + 4]) - LVFU(srcVertical[(row + 1 - boxH - 2) * W + col + 4])) / lenv; STVFU(cfablur[row * W + col], temp1v); STVFU(cfablur[(row + 1)*W + col], temp2v); STVFU(cfablur[row * W + col + 4], temp3v); STVFU(cfablur[(row + 1)*W + col + 4], temp4v); } for(; row < H - boxH; row++) { temp1v = temp1v + (LVFU(srcVertical[(row + boxH) * W + col]) - LVFU(srcVertical[(row - boxH - 2) * W + col])) / lenv; temp3v = temp3v + (LVFU(srcVertical[(row + boxH) * W + col + 4]) - LVFU(srcVertical[(row - boxH - 2) * W + col + 4])) / lenv; STVFU(cfablur[row * W + col], temp1v); STVFU(cfablur[row * W + col + 4], temp3v); vfloat swapv = temp1v; temp1v = temp2v; temp2v = swapv; swapv = temp3v; temp3v = temp4v; temp4v = swapv; } for (; row < H - 1; row += 2) { lenm1v = lenv - onev; temp1v = (temp1v * lenv - LVFU(srcVertical[(row - boxH - 2) * W + col])) / lenm1v; temp2v = (temp2v * lenv - LVFU(srcVertical[(row - boxH - 1) * W + col])) / lenm1v; temp3v = (temp3v * lenv - LVFU(srcVertical[(row - boxH - 2) * W + col + 4])) / lenm1v; temp4v = (temp4v * lenv - LVFU(srcVertical[(row - boxH - 1) * W + col + 4])) / lenm1v; STVFU(cfablur[row * W + col], temp1v); STVFU(cfablur[(row + 1)*W + col], temp2v); STVFU(cfablur[row * W + col + 4], temp3v); STVFU(cfablur[(row + 1)*W + col + 4], temp4v); lenv = lenm1v; } for(; row < H; row++) { lenm1v = lenv - onev; temp1v = (temp1v * lenv - LVFU(srcVertical[(row - boxH - 2) * W + col])) / lenm1v; temp3v = (temp3v * lenv - LVFU(srcVertical[(row - boxH - 2) * W + col + 4])) / lenm1v; STVFU(cfablur[(row)*W + col], temp1v); STVFU(cfablur[(row)*W + col + 4], temp3v); } } #ifdef _OPENMP #pragma omp single #endif for (int col = W - (W % 8); col < W; col++) { int len = boxH / 2 + 1; cfablur[0 * W + col] = srcVertical[0 * W + col] / len; cfablur[1 * W + col] = srcVertical[1 * W + col] / len; for (int i = 2; i < boxH + 2; i += 2) { cfablur[0 * W + col] += srcVertical[i * W + col] / len; cfablur[1 * W + col] += srcVertical[(i + 1) * W + col] / len; } for (int row = 2; row < boxH + 2; row += 2) { cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len + srcVertical[(row + boxH) * W + col]) / (len + 1); cfablur[(row + 1)*W + col] = (cfablur[(row - 1) * W + col] * len + srcVertical[(row + boxH + 1) * W + col]) / (len + 1); len ++; } for (int row = boxH + 2; row < H - boxH; row++) { cfablur[row * W + col] = cfablur[(row - 2) * W + col] + (srcVertical[(row + boxH) * W + col] - srcVertical[(row - boxH - 2) * W + col]) / len; } for (int row = H - boxH; row < H; row += 2) { cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len - srcVertical[(row - boxH - 2) * W + col]) / (len - 1); if (row + 1 < H) { cfablur[(row + 1)*W + col] = (cfablur[(row - 1) * W + col] * len - srcVertical[(row - boxH - 1) * W + col]) / (len - 1); } len --; } } #else #ifdef _OPENMP #pragma omp for #endif for (int col = 0; col < W; col++) { int len = boxH / 2 + 1; cfablur[0 * W + col] = srcVertical[0 * W + col] / len; cfablur[1 * W + col] = srcVertical[1 * W + col] / len; for (int i = 2; i < boxH + 2; i += 2) { cfablur[0 * W + col] += srcVertical[i * W + col] / len; cfablur[1 * W + col] += srcVertical[(i + 1) * W + col] / len; } for (int row = 2; row < boxH + 2; row += 2) { cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len + srcVertical[(row + boxH) * W + col]) / (len + 1); cfablur[(row + 1)*W + col] = (cfablur[(row - 1) * W + col] * len + srcVertical[(row + boxH + 1) * W + col]) / (len + 1); len ++; } for (int row = boxH + 2; row < H - boxH; row++) { cfablur[row * W + col] = cfablur[(row - 2) * W + col] + (srcVertical[(row + boxH) * W + col] - srcVertical[(row - boxH - 2) * W + col]) / len; } for (int row = H - boxH; row < H; row += 2) { cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len - srcVertical[(row - boxH - 2) * W + col]) / (len - 1); if (row + 1 < H) { cfablur[(row + 1)*W + col] = (cfablur[(row - 1) * W + col] * len - srcVertical[(row - boxH - 1) * W + col]) / (len - 1); } len --; } } #endif } } if(tmpBuffer) { free (tmpBuffer); } } // Scale original pixels into the range 0 65535 using black offsets and multipliers void RawImageSource::scaleColors(int winx, int winy, int winw, int winh, const RAWParams &raw, array2D &rawData) { chmax[0] = chmax[1] = chmax[2] = chmax[3] = 0; //channel maxima float black_lev[4] = {0.f};//black level //adjust black level (eg Canon) bool isMono = false; if (getSensorType() == ST_BAYER || getSensorType() == ST_FOVEON ) { black_lev[0] = raw.bayersensor.black1; //R black_lev[1] = raw.bayersensor.black0; //G1 black_lev[2] = raw.bayersensor.black2; //B black_lev[3] = raw.bayersensor.black3; //G2 isMono = RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::MONO) == raw.bayersensor.method; } else if (getSensorType() == ST_FUJI_XTRANS) { black_lev[0] = raw.xtranssensor.blackred; //R black_lev[1] = raw.xtranssensor.blackgreen; //G1 black_lev[2] = raw.xtranssensor.blackblue; //B black_lev[3] = raw.xtranssensor.blackgreen; //G2 (set, only used with a Bayer filter) isMono = RAWParams::XTransSensor::getMethodString(RAWParams::XTransSensor::Method::MONO) == raw.xtranssensor.method; } for(int i = 0; i < 4 ; i++) { cblacksom[i] = max( c_black[i] + black_lev[i], 0.0f ); // adjust black level } for (int i = 0; i < 4; ++i) { c_white[i] = (ri->get_white(i) - cblacksom[i]) / raw.expos + cblacksom[i]; } initialGain = calculate_scale_mul(scale_mul, ref_pre_mul, c_white, cblacksom, isMono, ri->get_colors()); // recalculate scale colors with adjusted levels //fprintf(stderr, "recalc: %f [%f %f %f %f]\n", initialGain, scale_mul[0], scale_mul[1], scale_mul[2], scale_mul[3]); for(int i = 0; i < 4 ; i++) { clmax[i] = (c_white[i] - cblacksom[i]) * scale_mul[i]; // raw clip level } // this seems strange, but it works // scale image colors if( ri->getSensorType() == ST_BAYER) { #ifdef _OPENMP #pragma omp parallel #endif { float tmpchmax[3]; tmpchmax[0] = tmpchmax[1] = tmpchmax[2] = 0.0f; #ifdef _OPENMP #pragma omp for nowait #endif for (int row = winy; row < winy + winh; row ++) { for (int col = winx; col < winx + winw; col++) { float val = rawData[row][col]; int c = FC(row, col); // three colors, 0=R, 1=G, 2=B int c4 = ( c == 1 && !(row & 1) ) ? 3 : c; // four colors, 0=R, 1=G1, 2=B, 3=G2 val -= cblacksom[c4]; val *= scale_mul[c4]; rawData[row][col] = (val); tmpchmax[c] = max(tmpchmax[c], val); } } #ifdef _OPENMP #pragma omp critical #endif { chmax[0] = max(tmpchmax[0], chmax[0]); chmax[1] = max(tmpchmax[1], chmax[1]); chmax[2] = max(tmpchmax[2], chmax[2]); } } } else if ( ri->get_colors() == 1 ) { #ifdef _OPENMP #pragma omp parallel #endif { float tmpchmax = 0.0f; #ifdef _OPENMP #pragma omp for nowait #endif for (int row = winy; row < winy + winh; row ++) { for (int col = winx; col < winx + winw; col++) { float val = rawData[row][col]; val -= cblacksom[0]; val *= scale_mul[0]; rawData[row][col] = (val); tmpchmax = max(tmpchmax, val); } } #ifdef _OPENMP #pragma omp critical #endif { chmax[0] = chmax[1] = chmax[2] = chmax[3] = max(tmpchmax, chmax[0]); } } } else if(ri->getSensorType() == ST_FUJI_XTRANS) { #ifdef _OPENMP #pragma omp parallel #endif { float tmpchmax[3]; tmpchmax[0] = tmpchmax[1] = tmpchmax[2] = 0.0f; #ifdef _OPENMP #pragma omp for nowait #endif for (int row = winy; row < winy + winh; row ++) { for (int col = winx; col < winx + winw; col++) { float val = rawData[row][col]; int c = ri->XTRANSFC(row, col); val -= cblacksom[c]; val *= scale_mul[c]; rawData[row][col] = (val); tmpchmax[c] = max(tmpchmax[c], val); } } #ifdef _OPENMP #pragma omp critical #endif { chmax[0] = max(tmpchmax[0], chmax[0]); chmax[1] = max(tmpchmax[1], chmax[1]); chmax[2] = max(tmpchmax[2], chmax[2]); } } } else { #ifdef _OPENMP #pragma omp parallel #endif { float tmpchmax[3]; tmpchmax[0] = tmpchmax[1] = tmpchmax[2] = 0.0f; #ifdef _OPENMP #pragma omp for nowait #endif for (int row = winy; row < winy + winh; row ++) { for (int col = winx; col < winx + winw; col++) { for (int c = 0; c < 3; c++) { // three colors, 0=R, 1=G, 2=B float val = rawData[row][3 * col + c]; val -= cblacksom[c]; val *= scale_mul[c]; rawData[row][3 * col + c] = (val); tmpchmax[c] = max(tmpchmax[c], val); } } } #ifdef _OPENMP #pragma omp critical #endif { chmax[0] = max(tmpchmax[0], chmax[0]); chmax[1] = max(tmpchmax[1], chmax[1]); chmax[2] = max(tmpchmax[2], chmax[2]); } } chmax[3] = chmax[1]; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% int RawImageSource::defTransform (int tran) { int deg = ri->get_rotateDegree(); if ((tran & TR_ROT) == TR_R180) { deg += 180; } else if ((tran & TR_ROT) == TR_R90) { deg += 90; } else if ((tran & TR_ROT) == TR_R270) { deg += 270; } deg %= 360; int ret = 0; if (deg == 90) { ret |= TR_R90; } else if (deg == 180) { ret |= TR_R180; } else if (deg == 270) { ret |= TR_R270; } if (tran & TR_HFLIP) { ret |= TR_HFLIP; } if (tran & TR_VFLIP) { ret |= TR_VFLIP; } return ret; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // Thread called part void RawImageSource::processFalseColorCorrectionThread (Imagefloat* im, array2D &rbconv_Y, array2D &rbconv_I, array2D &rbconv_Q, array2D &rbout_I, array2D &rbout_Q, const int row_from, const int row_to) { const int W = im->getWidth(); constexpr float onebynine = 1.f / 9.f; #ifdef __SSE2__ vfloat buffer[12]; vfloat* pre1 = &buffer[0]; vfloat* pre2 = &buffer[3]; vfloat* post1 = &buffer[6]; vfloat* post2 = &buffer[9]; #else float buffer[12]; float* pre1 = &buffer[0]; float* pre2 = &buffer[3]; float* post1 = &buffer[6]; float* post2 = &buffer[9]; #endif int px = (row_from - 1) % 3, cx = row_from % 3, nx = 0; convert_row_to_YIQ (im->r(row_from - 1), im->g(row_from - 1), im->b(row_from - 1), rbconv_Y[px], rbconv_I[px], rbconv_Q[px], W); convert_row_to_YIQ (im->r(row_from), im->g(row_from), im->b(row_from), rbconv_Y[cx], rbconv_I[cx], rbconv_Q[cx], W); for (int j = 0; j < W; j++) { rbout_I[px][j] = rbconv_I[px][j]; rbout_Q[px][j] = rbconv_Q[px][j]; } for (int i = row_from; i < row_to; i++) { px = (i - 1) % 3; cx = i % 3; nx = (i + 1) % 3; convert_row_to_YIQ (im->r(i + 1), im->g(i + 1), im->b(i + 1), rbconv_Y[nx], rbconv_I[nx], rbconv_Q[nx], W); #ifdef __SSE2__ pre1[0] = _mm_setr_ps(rbconv_I[px][0], rbconv_Q[px][0], 0, 0) , pre1[1] = _mm_setr_ps(rbconv_I[cx][0], rbconv_Q[cx][0], 0, 0), pre1[2] = _mm_setr_ps(rbconv_I[nx][0], rbconv_Q[nx][0], 0, 0); pre2[0] = _mm_setr_ps(rbconv_I[px][1], rbconv_Q[px][1], 0, 0) , pre2[1] = _mm_setr_ps(rbconv_I[cx][1], rbconv_Q[cx][1], 0, 0), pre2[2] = _mm_setr_ps(rbconv_I[nx][1], rbconv_Q[nx][1], 0, 0); // fill first element in rbout_I and rbout_Q rbout_I[cx][0] = rbconv_I[cx][0]; rbout_Q[cx][0] = rbconv_Q[cx][0]; // median I channel for (int j = 1; j < W - 2; j += 2) { post1[0] = _mm_setr_ps(rbconv_I[px][j + 1], rbconv_Q[px][j + 1], 0, 0), post1[1] = _mm_setr_ps(rbconv_I[cx][j + 1], rbconv_Q[cx][j + 1], 0, 0), post1[2] = _mm_setr_ps(rbconv_I[nx][j + 1], rbconv_Q[nx][j + 1], 0, 0); const auto middle = middle4of6(pre2[0], pre2[1], pre2[2], post1[0], post1[1], post1[2]); vfloat medianval = median(pre1[0], pre1[1], pre1[2], middle[0], middle[1], middle[2], middle[3]); rbout_I[cx][j] = medianval[0]; rbout_Q[cx][j] = medianval[1]; post2[0] = _mm_setr_ps(rbconv_I[px][j + 2], rbconv_Q[px][j + 2], 0, 0), post2[1] = _mm_setr_ps(rbconv_I[cx][j + 2], rbconv_Q[cx][j + 2], 0, 0), post2[2] = _mm_setr_ps(rbconv_I[nx][j + 2], rbconv_Q[nx][j + 2], 0, 0); medianval = median(post2[0], post2[1], post2[2], middle[0], middle[1], middle[2], middle[3]); rbout_I[cx][j + 1] = medianval[0]; rbout_Q[cx][j + 1] = medianval[1]; std::swap(pre1, post1); std::swap(pre2, post2); } // fill last elements in rbout_I and rbout_Q rbout_I[cx][W - 1] = rbconv_I[cx][W - 1]; rbout_I[cx][W - 2] = rbconv_I[cx][W - 2]; rbout_Q[cx][W - 1] = rbconv_Q[cx][W - 1]; rbout_Q[cx][W - 2] = rbconv_Q[cx][W - 2]; #else pre1[0] = rbconv_I[px][0], pre1[1] = rbconv_I[cx][0], pre1[2] = rbconv_I[nx][0]; pre2[0] = rbconv_I[px][1], pre2[1] = rbconv_I[cx][1], pre2[2] = rbconv_I[nx][1]; // fill first element in rbout_I rbout_I[cx][0] = rbconv_I[cx][0]; // median I channel for (int j = 1; j < W - 2; j += 2) { post1[0] = rbconv_I[px][j + 1], post1[1] = rbconv_I[cx][j + 1], post1[2] = rbconv_I[nx][j + 1]; const auto middle = middle4of6(pre2[0], pre2[1], pre2[2], post1[0], post1[1], post1[2]); rbout_I[cx][j] = median(pre1[0], pre1[1], pre1[2], middle[0], middle[1], middle[2], middle[3]); post2[0] = rbconv_I[px][j + 2], post2[1] = rbconv_I[cx][j + 2], post2[2] = rbconv_I[nx][j + 2]; rbout_I[cx][j + 1] = median(post2[0], post2[1], post2[2], middle[0], middle[1], middle[2], middle[3]); std::swap(pre1, post1); std::swap(pre2, post2); } // fill last elements in rbout_I rbout_I[cx][W - 1] = rbconv_I[cx][W - 1]; rbout_I[cx][W - 2] = rbconv_I[cx][W - 2]; pre1[0] = rbconv_Q[px][0], pre1[1] = rbconv_Q[cx][0], pre1[2] = rbconv_Q[nx][0]; pre2[0] = rbconv_Q[px][1], pre2[1] = rbconv_Q[cx][1], pre2[2] = rbconv_Q[nx][1]; // fill first element in rbout_Q rbout_Q[cx][0] = rbconv_Q[cx][0]; // median Q channel for (int j = 1; j < W - 2; j += 2) { post1[0] = rbconv_Q[px][j + 1], post1[1] = rbconv_Q[cx][j + 1], post1[2] = rbconv_Q[nx][j + 1]; const auto middle = middle4of6(pre2[0], pre2[1], pre2[2], post1[0], post1[1], post1[2]); rbout_Q[cx][j] = median(pre1[0], pre1[1], pre1[2], middle[0], middle[1], middle[2], middle[3]); post2[0] = rbconv_Q[px][j + 2], post2[1] = rbconv_Q[cx][j + 2], post2[2] = rbconv_Q[nx][j + 2]; rbout_Q[cx][j + 1] = median(post2[0], post2[1], post2[2], middle[0], middle[1], middle[2], middle[3]); std::swap(pre1, post1); std::swap(pre2, post2); } // fill last elements in rbout_Q rbout_Q[cx][W - 1] = rbconv_Q[cx][W - 1]; rbout_Q[cx][W - 2] = rbconv_Q[cx][W - 2]; #endif // blur i-1th row if (i > row_from) { convert_to_RGB (im->r(i - 1, 0), im->g(i - 1, 0), im->b(i - 1, 0), rbconv_Y[px][0], rbout_I[px][0], rbout_Q[px][0]); #ifdef _OPENMP #pragma omp simd #endif for (int j = 1; j < W - 1; j++) { float I = (rbout_I[px][j - 1] + rbout_I[px][j] + rbout_I[px][j + 1] + rbout_I[cx][j - 1] + rbout_I[cx][j] + rbout_I[cx][j + 1] + rbout_I[nx][j - 1] + rbout_I[nx][j] + rbout_I[nx][j + 1]) * onebynine; float Q = (rbout_Q[px][j - 1] + rbout_Q[px][j] + rbout_Q[px][j + 1] + rbout_Q[cx][j - 1] + rbout_Q[cx][j] + rbout_Q[cx][j + 1] + rbout_Q[nx][j - 1] + rbout_Q[nx][j] + rbout_Q[nx][j + 1]) * onebynine; convert_to_RGB (im->r(i - 1, j), im->g(i - 1, j), im->b(i - 1, j), rbconv_Y[px][j], I, Q); } convert_to_RGB (im->r(i - 1, W - 1), im->g(i - 1, W - 1), im->b(i - 1, W - 1), rbconv_Y[px][W - 1], rbout_I[px][W - 1], rbout_Q[px][W - 1]); } } // blur last 3 row and finalize H-1th row convert_to_RGB (im->r(row_to - 1, 0), im->g(row_to - 1, 0), im->b(row_to - 1, 0), rbconv_Y[cx][0], rbout_I[cx][0], rbout_Q[cx][0]); #ifdef _OPENMP #pragma omp simd #endif for (int j = 1; j < W - 1; j++) { float I = (rbout_I[px][j - 1] + rbout_I[px][j] + rbout_I[px][j + 1] + rbout_I[cx][j - 1] + rbout_I[cx][j] + rbout_I[cx][j + 1] + rbconv_I[nx][j - 1] + rbconv_I[nx][j] + rbconv_I[nx][j + 1]) * onebynine; float Q = (rbout_Q[px][j - 1] + rbout_Q[px][j] + rbout_Q[px][j + 1] + rbout_Q[cx][j - 1] + rbout_Q[cx][j] + rbout_Q[cx][j + 1] + rbconv_Q[nx][j - 1] + rbconv_Q[nx][j] + rbconv_Q[nx][j + 1]) * onebynine; convert_to_RGB (im->r(row_to - 1, j), im->g(row_to - 1, j), im->b(row_to - 1, j), rbconv_Y[cx][j], I, Q); } convert_to_RGB (im->r(row_to - 1, W - 1), im->g(row_to - 1, W - 1), im->b(row_to - 1, W - 1), rbconv_Y[cx][W - 1], rbout_I[cx][W - 1], rbout_Q[cx][W - 1]); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // correction_YIQ_LQ void RawImageSource::processFalseColorCorrection (Imagefloat* im, const int steps) { if (im->getHeight() < 4 || steps < 1) { return; } #ifdef _OPENMP #pragma omp parallel { multi_array2D buffer (W, 3); int tid = omp_get_thread_num(); int nthreads = omp_get_num_threads(); int blk = (im->getHeight() - 2) / nthreads; for (int t = 0; t < steps; t++) { if (tid < nthreads - 1) { processFalseColorCorrectionThread (im, buffer[0], buffer[1], buffer[2], buffer[3], buffer[4], 1 + tid * blk, 1 + (tid + 1)*blk); } else { processFalseColorCorrectionThread (im, buffer[0], buffer[1], buffer[2], buffer[3], buffer[4], 1 + tid * blk, im->getHeight() - 1); } #pragma omp barrier } } #else multi_array2D buffer (W, 3); for (int t = 0; t < steps; t++) { processFalseColorCorrectionThread (im, buffer[0], buffer[1], buffer[2], buffer[3], buffer[4], 1 , im->getHeight() - 1); } #endif } // Some camera input profiles need gamma preprocessing // gamma is applied before the CMS, correct line fac=lineFac*rawPixel+LineSum after the CMS void RawImageSource::getProfilePreprocParams(cmsHPROFILE in, float& gammaFac, float& lineFac, float& lineSum) { gammaFac = 0; lineFac = 1; lineSum = 0; char copyright[256]; copyright[0] = 0; if (cmsGetProfileInfoASCII(in, cmsInfoCopyright, cmsNoLanguage, cmsNoCountry, copyright, 256) > 0) { if (strstr(copyright, "Phase One") != nullptr) { gammaFac = 0.55556; // 1.8 } else if (strstr(copyright, "Nikon Corporation") != nullptr) { gammaFac = 0.5; lineFac = -0.4; lineSum = 1.35; // determined in reverse by measuring NX an RT developed colorchecker PNGs } } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% static void lab2ProphotoRgbD50(float L, float A, float B, float& r, float& g, float& b) { float X; float Y; float Z; #define CLIP01(a) ((a)>0?((a)<1?(a):1):0) { // convert from Lab to XYZ float x, y, z, fx, fy, fz; fy = (L + 16.0f) / 116.0f; fx = A / 500.0f + fy; fz = fy - B / 200.0f; if (fy > 24.0f / 116.0f) { y = fy * fy * fy; } else { y = (fy - 16.0f / 116.0f) / 7.787036979f; } if (fx > 24.0f / 116.0f) { x = fx * fx * fx; } else { x = (fx - 16.0 / 116.0) / 7.787036979f; } if (fz > 24.0f / 116.0f) { z = fz * fz * fz; } else { z = (fz - 16.0f / 116.0f) / 7.787036979f; } //0.9642, 1.0000, 0.8249 D50 X = x * 0.9642; Y = y; Z = z * 0.8249; } r = prophoto_xyz[0][0] * X + prophoto_xyz[0][1] * Y + prophoto_xyz[0][2] * Z; g = prophoto_xyz[1][0] * X + prophoto_xyz[1][1] * Y + prophoto_xyz[1][2] * Z; b = prophoto_xyz[2][0] * X + prophoto_xyz[2][1] * Y + prophoto_xyz[2][2] * Z; // r = CLIP01(r); // g = CLIP01(g); // b = CLIP01(b); } // Converts raw image including ICC input profile to working space - floating point version void RawImageSource::colorSpaceConversion_ (Imagefloat* im, const ColorManagementParams& cmp, const ColorTemp &wb, double pre_mul[3], cmsHPROFILE embedded, cmsHPROFILE camprofile, double camMatrix[3][3], const std::string &camName) { // MyTime t1, t2, t3; // t1.set (); cmsHPROFILE in; DCPProfile *dcpProf; if (!findInputProfile(cmp.inputProfile, embedded, camName, &dcpProf, in)) { return; } if (dcpProf != nullptr) { // DCP processing const DCPProfile::Triple pre_mul_row = { pre_mul[0], pre_mul[1], pre_mul[2] }; const DCPProfile::Matrix cam_matrix = {{ {camMatrix[0][0], camMatrix[0][1], camMatrix[0][2]}, {camMatrix[1][0], camMatrix[1][1], camMatrix[1][2]}, {camMatrix[2][0], camMatrix[2][1], camMatrix[2][2]} } }; dcpProf->apply(im, cmp.dcpIlluminant, cmp.workingProfile, wb, pre_mul_row, cam_matrix, cmp.applyHueSatMap); return; } if (in == nullptr) { // use default camprofile, supplied by dcraw // in this case we avoid using the slllllooooooowwww lcms // Calculate matrix for direct conversion raw>working space TMatrix work = ICCStore::getInstance()->workingSpaceInverseMatrix (cmp.workingProfile); double mat[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) for (int k = 0; k < 3; k++) { mat[i][j] += work[i][k] * camMatrix[k][j]; // rgb_xyz * imatrices.xyz_cam } #ifdef _OPENMP #pragma omp parallel for #endif for (int i = 0; i < im->getHeight(); i++) for (int j = 0; j < im->getWidth(); j++) { float newr = mat[0][0] * im->r(i, j) + mat[0][1] * im->g(i, j) + mat[0][2] * im->b(i, j); float newg = mat[1][0] * im->r(i, j) + mat[1][1] * im->g(i, j) + mat[1][2] * im->b(i, j); float newb = mat[2][0] * im->r(i, j) + mat[2][1] * im->g(i, j) + mat[2][2] * im->b(i, j); im->r(i, j) = newr; im->g(i, j) = newg; im->b(i, j) = newb; } } else { bool working_space_is_prophoto = (cmp.workingProfile == "ProPhoto"); // use supplied input profile /* The goal here is to in addition to user-made custom ICC profiles also support profiles supplied with other popular raw converters. As curves affect color rendering and different raw converters deal with them differently (and few if any is as flexible as RawTherapee) we cannot really expect to get the *exact* same color rendering here. However we try hard to make the best out of it. Third-party input profiles that contain a LUT (usually A2B0 tag) often needs some preprocessing, as ICC LUTs are not really designed for dealing with linear camera data. Generally one must apply some sort of curve to get efficient use of the LUTs. Unfortunately how you should preprocess is not standardized so there are almost as many ways as there are software makers, and for each one we have to reverse engineer to find out how it has been done. (The ICC files made for RT has linear LUTs) ICC profiles which only contain the XYZ tags (ie only a color matrix) should (hopefully) not require any pre-processing. Some LUT ICC profiles apply a contrast curve and desaturate highlights (to give a "film-like" behavior. These will generally work with RawTherapee, but will not produce good results when you enable highlight recovery/reconstruction, as that data is added linearly on top of the original range. RawTherapee works best with linear ICC profiles. */ enum camera_icc_type { CAMERA_ICC_TYPE_GENERIC, // Generic, no special pre-processing required, RTs own is this way CAMERA_ICC_TYPE_PHASE_ONE, // Capture One profiles CAMERA_ICC_TYPE_LEAF, // Leaf profiles, former Leaf Capture now in Capture One, made for Leaf digital backs CAMERA_ICC_TYPE_NIKON // Nikon NX profiles } camera_icc_type = CAMERA_ICC_TYPE_GENERIC; float leaf_prophoto_mat[3][3]; { // identify ICC type char copyright[256] = ""; char description[256] = ""; cmsGetProfileInfoASCII(in, cmsInfoCopyright, cmsNoLanguage, cmsNoCountry, copyright, 256); cmsGetProfileInfoASCII(in, cmsInfoDescription, cmsNoLanguage, cmsNoCountry, description, 256); camera_icc_type = CAMERA_ICC_TYPE_GENERIC; // Note: order the identification with the most detailed matching first since the more general ones may also match the more detailed if ((strstr(copyright, "Leaf") != nullptr || strstr(copyright, "Phase One A/S") != nullptr || strstr(copyright, "Kodak") != nullptr || strstr(copyright, "Creo") != nullptr) && (strstr(description, "LF2 ") == description || strstr(description, "LF3 ") == description || strstr(description, "LeafLF2") == description || strstr(description, "LeafLF3") == description || strstr(description, "LeafLF4") == description || strstr(description, "MamiyaLF2") == description || strstr(description, "MamiyaLF3") == description)) { camera_icc_type = CAMERA_ICC_TYPE_LEAF; } else if (strstr(copyright, "Phase One A/S") != nullptr) { camera_icc_type = CAMERA_ICC_TYPE_PHASE_ONE; } else if (strstr(copyright, "Nikon Corporation") != nullptr) { camera_icc_type = CAMERA_ICC_TYPE_NIKON; } } // Initialize transform cmsHTRANSFORM hTransform; cmsHPROFILE prophoto = ICCStore::getInstance()->workingSpace("ProPhoto"); // We always use Prophoto to apply the ICC profile to minimize problems with clipping in LUT conversion. bool transform_via_pcs_lab = false; bool separate_pcs_lab_highlights = false; // check if the working space is fully contained in prophoto if (!working_space_is_prophoto && camera_icc_type == CAMERA_ICC_TYPE_GENERIC) { TMatrix toxyz = ICCStore::getInstance()->workingSpaceMatrix(cmp.workingProfile); TMatrix torgb = ICCStore::getInstance()->workingSpaceInverseMatrix("ProPhoto"); float rgb[3] = {0.f, 0.f, 0.f}; for (int i = 0; i < 2 && !working_space_is_prophoto; ++i) { rgb[i] = 1.f; float x, y, z; Color::rgbxyz(rgb[0], rgb[1], rgb[2], x, y, z, toxyz); Color::xyz2rgb(x, y, z, rgb[0], rgb[1], rgb[2], torgb); for (int j = 0; j < 2; ++j) { if (rgb[j] < 0.f || rgb[j] > 1.f) { working_space_is_prophoto = true; prophoto = ICCStore::getInstance()->workingSpace(cmp.workingProfile); if (settings->verbose) { std::cout << "colorSpaceConversion_: converting directly to " << cmp.workingProfile << " instead of passing through ProPhoto" << std::endl; } break; } rgb[j] = 0.f; } } } lcmsMutex->lock (); switch (camera_icc_type) { case CAMERA_ICC_TYPE_PHASE_ONE: case CAMERA_ICC_TYPE_LEAF: { // These profiles have a RGB to Lab cLUT, gives gamma 1.8 output, and expects a "film-like" curve on input transform_via_pcs_lab = true; separate_pcs_lab_highlights = true; // We transform to Lab because we can and that we avoid getting an unnecessary unmatched gamma conversion which we would need to revert. hTransform = cmsCreateTransform (in, TYPE_RGB_FLT, nullptr, TYPE_Lab_FLT, INTENT_RELATIVE_COLORIMETRIC, cmsFLAGS_NOOPTIMIZE | cmsFLAGS_NOCACHE ); for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { leaf_prophoto_mat[i][j] = 0; for (int k = 0; k < 3; k++) { leaf_prophoto_mat[i][j] += prophoto_xyz[i][k] * camMatrix[k][j]; } } } break; } case CAMERA_ICC_TYPE_NIKON: case CAMERA_ICC_TYPE_GENERIC: default: hTransform = cmsCreateTransform (in, TYPE_RGB_FLT, prophoto, TYPE_RGB_FLT, INTENT_RELATIVE_COLORIMETRIC, cmsFLAGS_NOOPTIMIZE | cmsFLAGS_NOCACHE ); // NOCACHE is important for thread safety break; } lcmsMutex->unlock (); if (hTransform == nullptr) { // Fallback: create transform from camera profile. Should not happen normally. lcmsMutex->lock (); hTransform = cmsCreateTransform (camprofile, TYPE_RGB_FLT, prophoto, TYPE_RGB_FLT, INTENT_RELATIVE_COLORIMETRIC, cmsFLAGS_NOOPTIMIZE | cmsFLAGS_NOCACHE ); lcmsMutex->unlock (); } TMatrix toxyz = {}, torgb = {}; if (!working_space_is_prophoto) { toxyz = ICCStore::getInstance()->workingSpaceMatrix ("ProPhoto"); torgb = ICCStore::getInstance()->workingSpaceInverseMatrix (cmp.workingProfile); //sRGB .. Adobe...Wide... } #ifdef _OPENMP #pragma omp parallel #endif { AlignedBuffer buffer(im->getWidth() * 3); AlignedBuffer hl_buffer(im->getWidth() * 3); AlignedBuffer hl_scale(im->getWidth()); #ifdef _OPENMP #pragma omp for schedule(static) #endif for ( int h = 0; h < im->getHeight(); ++h ) { float *p = buffer.data, *pR = im->r(h), *pG = im->g(h), *pB = im->b(h); // Apply pre-processing for ( int w = 0; w < im->getWidth(); ++w ) { float r = *(pR++); float g = *(pG++); float b = *(pB++); // convert to 0-1 range as LCMS expects that r /= 65535.0f; g /= 65535.0f; b /= 65535.0f; float maxc = max(r, g, b); if (maxc <= 1.0) { hl_scale.data[w] = 1.0; } else { // highlight recovery extend the range past the clip point, which means we can get values larger than 1.0 here. // LUT ICC profiles only work in the 0-1 range so we scale down to fit and restore after conversion. hl_scale.data[w] = 1.0 / maxc; r *= hl_scale.data[w]; g *= hl_scale.data[w]; b *= hl_scale.data[w]; } switch (camera_icc_type) { case CAMERA_ICC_TYPE_PHASE_ONE: // Here we apply a curve similar to Capture One's "Film Standard" + gamma, the reason is that the LUTs embedded in the // ICCs are designed to work on such input, and if you provide it with a different curve you don't get as good result. // We will revert this curve after we've made the color transform. However when we revert the curve, we'll notice that // highlight rendering suffers due to that the LUT transform don't expand well, therefore we do a less compressed // conversion too and mix them, this gives us the highest quality and most flexible result. hl_buffer.data[3 * w + 0] = pow_F(r, 1.0 / 1.8); hl_buffer.data[3 * w + 1] = pow_F(g, 1.0 / 1.8); hl_buffer.data[3 * w + 2] = pow_F(b, 1.0 / 1.8); r = phaseOneIccCurveInv->getVal(r); g = phaseOneIccCurveInv->getVal(g); b = phaseOneIccCurveInv->getVal(b); break; case CAMERA_ICC_TYPE_LEAF: { // Leaf profiles expect that the camera native RGB has been converted to Prophoto RGB float newr = leaf_prophoto_mat[0][0] * r + leaf_prophoto_mat[0][1] * g + leaf_prophoto_mat[0][2] * b; float newg = leaf_prophoto_mat[1][0] * r + leaf_prophoto_mat[1][1] * g + leaf_prophoto_mat[1][2] * b; float newb = leaf_prophoto_mat[2][0] * r + leaf_prophoto_mat[2][1] * g + leaf_prophoto_mat[2][2] * b; hl_buffer.data[3 * w + 0] = pow_F(newr, 1.0 / 1.8); hl_buffer.data[3 * w + 1] = pow_F(newg, 1.0 / 1.8); hl_buffer.data[3 * w + 2] = pow_F(newb, 1.0 / 1.8); r = phaseOneIccCurveInv->getVal(newr); g = phaseOneIccCurveInv->getVal(newg); b = phaseOneIccCurveInv->getVal(newb); break; } case CAMERA_ICC_TYPE_NIKON: // gamma 0.5 r = sqrtf(r); g = sqrtf(g); b = sqrtf(b); break; case CAMERA_ICC_TYPE_GENERIC: default: // do nothing break; } *(p++) = r; *(p++) = g; *(p++) = b; } // Run icc transform cmsDoTransform (hTransform, buffer.data, buffer.data, im->getWidth()); if (separate_pcs_lab_highlights) { cmsDoTransform (hTransform, hl_buffer.data, hl_buffer.data, im->getWidth()); } // Apply post-processing p = buffer.data; pR = im->r(h); pG = im->g(h); pB = im->b(h); for ( int w = 0; w < im->getWidth(); ++w ) { float r, g, b, hr = 0.f, hg = 0.f, hb = 0.f; if (transform_via_pcs_lab) { float L = *(p++); float A = *(p++); float B = *(p++); // profile connection space CIELAB should have D50 illuminant lab2ProphotoRgbD50(L, A, B, r, g, b); if (separate_pcs_lab_highlights) { lab2ProphotoRgbD50(hl_buffer.data[3 * w + 0], hl_buffer.data[3 * w + 1], hl_buffer.data[3 * w + 2], hr, hg, hb); } } else { r = *(p++); g = *(p++); b = *(p++); } // restore pre-processing and/or add post-processing for the various ICC types switch (camera_icc_type) { default: break; case CAMERA_ICC_TYPE_PHASE_ONE: case CAMERA_ICC_TYPE_LEAF: { // note the 1/1.8 gamma, it's the gamma that the profile has applied, which we must revert before we can revert the curve r = phaseOneIccCurve->getVal(pow_F(r, 1.0 / 1.8)); g = phaseOneIccCurve->getVal(pow_F(g, 1.0 / 1.8)); b = phaseOneIccCurve->getVal(pow_F(b, 1.0 / 1.8)); const float mix = 0.25; // may seem a low number, but remember this is linear space, mixing starts 2 stops from clipping const float maxc = max(r, g, b); if (maxc > mix) { float fac = (maxc - mix) / (1.0 - mix); fac = sqrtf(sqrtf(fac)); // gamma 0.25 to mix in highlight render relatively quick r = (1.0 - fac) * r + fac * hr; g = (1.0 - fac) * g + fac * hg; b = (1.0 - fac) * b + fac * hb; } break; } case CAMERA_ICC_TYPE_NIKON: { const float lineFac = -0.4; const float lineSum = 1.35; r *= r * lineFac + lineSum; g *= g * lineFac + lineSum; b *= b * lineFac + lineSum; break; } } // restore highlight scaling if any if (hl_scale.data[w] != 1.0) { float fac = 1.0 / hl_scale.data[w]; r *= fac; g *= fac; b *= fac; } // If we don't have ProPhoto as chosen working profile, convert. This conversion is clipless, ie if we convert // to a small space such as sRGB we may end up with negative values and values larger than max. if (!working_space_is_prophoto) { //convert from Prophoto to XYZ float x = (toxyz[0][0] * r + toxyz[0][1] * g + toxyz[0][2] * b ) ; float y = (toxyz[1][0] * r + toxyz[1][1] * g + toxyz[1][2] * b ) ; float z = (toxyz[2][0] * r + toxyz[2][1] * g + toxyz[2][2] * b ) ; //convert from XYZ to cmp.working (sRGB...Adobe...Wide..) r = ((torgb[0][0] * x + torgb[0][1] * y + torgb[0][2] * z)) ; g = ((torgb[1][0] * x + torgb[1][1] * y + torgb[1][2] * z)) ; b = ((torgb[2][0] * x + torgb[2][1] * y + torgb[2][2] * z)) ; } // return to the 0.0 - 65535.0 range (with possible negative and > max values present) r *= 65535.0; g *= 65535.0; b *= 65535.0; *(pR++) = r; *(pG++) = g; *(pB++) = b; } } } // End of parallelization cmsDeleteTransform(hTransform); } //t3.set (); // printf ("ICM TIME: %d usec\n", t3.etime(t1)); } // Determine RAW input and output profiles. Returns TRUE on success bool RawImageSource::findInputProfile(Glib::ustring inProfile, cmsHPROFILE embedded, std::string camName, DCPProfile **dcpProf, cmsHPROFILE& in) { in = nullptr; // cam will be taken on NULL *dcpProf = nullptr; if (inProfile == "(none)") { return false; } if (embedded && inProfile == "(embedded)") { in = embedded; } else if (inProfile == "(cameraICC)") { // DCPs have higher quality, so use them first *dcpProf = DCPStore::getInstance()->getStdProfile(camName); if (*dcpProf == nullptr) { in = ICCStore::getInstance()->getStdProfile(camName); } } else if (inProfile != "(camera)" && !inProfile.empty()) { Glib::ustring normalName = inProfile; if (!inProfile.compare (0, 5, "file:")) { normalName = inProfile.substr(5); } if (DCPStore::getInstance()->isValidDCPFileName(normalName)) { *dcpProf = DCPStore::getInstance()->getProfile(normalName); } if (*dcpProf == nullptr) { in = ICCStore::getInstance()->getProfile (inProfile); } } // "in" might be NULL because of "not found". That's ok, we take the cam profile then return true; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // derived from Dcraw "blend_highlights()" // very effective to reduce (or remove) the magenta, but with levels of grey ! void RawImageSource::HLRecovery_blend(float* rin, float* gin, float* bin, int width, float maxval, float* hlmax) { constexpr int ColorCount = 3; // Transform matrixes rgb>lab and back constexpr float trans[ColorCount][ColorCount] = { { 1, 1, 1 }, { 1.7320508, -1.7320508, 0 }, { -1, -1, 2 } }; constexpr float itrans[ColorCount][ColorCount] = { { 1, 0.8660254, -0.5 }, { 1, -0.8660254, -0.5 }, { 1, 0, 1 } }; #define FOREACHCOLOR for (int c=0; c < ColorCount; c++) float minpt = min(hlmax[0], hlmax[1], hlmax[2]); //min of the raw clip points //float maxpt=max(hlmax[0],hlmax[1],hlmax[2]);//max of the raw clip points //float medpt=hlmax[0]+hlmax[1]+hlmax[2]-minpt-maxpt;//median of the raw clip points float maxave = (hlmax[0] + hlmax[1] + hlmax[2]) / 3; //ave of the raw clip points //some thresholds: const float clipthresh = 0.95; const float fixthresh = 0.5; const float satthresh = 0.5; float clip[3]; FOREACHCOLOR clip[c] = min(maxave, hlmax[c]); // Determine the maximum level (clip) of all channels const float clippt = clipthresh * maxval; const float fixpt = fixthresh * minpt; const float desatpt = satthresh * maxave + (1 - satthresh) * maxval; for (int col = 0; col < width; col++) { float rgb[ColorCount], cam[2][ColorCount], lab[2][ColorCount], sum[2], chratio, lratio = 0; float L, C, H; // Copy input pixel to rgb so it's easier to access in loops rgb[0] = rin[col]; rgb[1] = gin[col]; rgb[2] = bin[col]; // If no channel is clipped, do nothing on pixel int c; for (c = 0; c < ColorCount; c++) { if (rgb[c] > clippt) { break; } } if (c == ColorCount) { continue; } // Initialize cam with raw input [0] and potentially clipped input [1] FOREACHCOLOR { lratio += min(rgb[c], clip[c]); cam[0][c] = rgb[c]; cam[1][c] = min(cam[0][c], maxval); } // Calculate the lightness correction ratio (chratio) for (int i = 0; i < 2; i++) { FOREACHCOLOR { lab[i][c] = 0; for (int j = 0; j < ColorCount; j++) { lab[i][c] += trans[c][j] * cam[i][j]; } } sum[i] = 0; for (int c = 1; c < ColorCount; c++) { sum[i] += SQR(lab[i][c]); } } chratio = (sqrt(sum[1] / sum[0])); // Apply ratio to lightness in LCH space for (int c = 1; c < ColorCount; c++) { lab[0][c] *= chratio; } // Transform back from LCH to RGB FOREACHCOLOR { cam[0][c] = 0; for (int j = 0; j < ColorCount; j++) { cam[0][c] += itrans[c][j] * lab[0][j]; } } FOREACHCOLOR rgb[c] = cam[0][c] / ColorCount; // Copy converted pixel back if (rin[col] > fixpt) { float rfrac = SQR((min(clip[0], rin[col]) - fixpt) / (clip[0] - fixpt)); rin[col] = min(maxave, rfrac * rgb[0] + (1 - rfrac) * rin[col]); } if (gin[col] > fixpt) { float gfrac = SQR((min(clip[1], gin[col]) - fixpt) / (clip[1] - fixpt)); gin[col] = min(maxave, gfrac * rgb[1] + (1 - gfrac) * gin[col]); } if (bin[col] > fixpt) { float bfrac = SQR((min(clip[2], bin[col]) - fixpt) / (clip[2] - fixpt)); bin[col] = min(maxave, bfrac * rgb[2] + (1 - bfrac) * bin[col]); } lratio /= (rin[col] + gin[col] + bin[col]); L = (rin[col] + gin[col] + bin[col]) / 3; C = lratio * 1.732050808 * (rin[col] - gin[col]); H = lratio * (2 * bin[col] - rin[col] - gin[col]); rin[col] = L - H / 6.0 + C / 3.464101615; gin[col] = L - H / 6.0 - C / 3.464101615; bin[col] = L + H / 3.0; if ((L = (rin[col] + gin[col] + bin[col]) / 3) > desatpt) { float Lfrac = max(0.0f, (maxave - L) / (maxave - desatpt)); C = Lfrac * 1.732050808 * (rin[col] - gin[col]); H = Lfrac * (2 * bin[col] - rin[col] - gin[col]); rin[col] = L - H / 6.0 + C / 3.464101615; gin[col] = L - H / 6.0 - C / 3.464101615; bin[col] = L + H / 3.0; } } } void RawImageSource::HLRecovery_Luminance (float* rin, float* gin, float* bin, float* rout, float* gout, float* bout, int width, float maxval) { for (int i = 0; i < width; i++) { float r = rin[i], g = gin[i], b = bin[i]; if (r > maxval || g > maxval || b > maxval) { float ro = min(r, maxval); float go = min(g, maxval); float bo = min(b, maxval); double L = r + g + b; double C = 1.732050808 * (r - g); double H = 2 * b - r - g; double Co = 1.732050808 * (ro - go); double Ho = 2 * bo - ro - go; if (r != g && g != b) { double ratio = sqrt ((Co * Co + Ho * Ho) / (C * C + H * H)); C *= ratio; H *= ratio; } float rr = L / 3.0 - H / 6.0 + C / 3.464101615; float gr = L / 3.0 - H / 6.0 - C / 3.464101615; float br = L / 3.0 + H / 3.0; rout[i] = rr; gout[i] = gr; bout[i] = br; } else { rout[i] = rin[i]; gout[i] = gin[i]; bout[i] = bin[i]; } } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::HLRecovery_CIELab (float* rin, float* gin, float* bin, float* rout, float* gout, float* bout, int width, float maxval, double xyz_cam[3][3], double cam_xyz[3][3]) { //static bool crTableReady = false; // lookup table for Lab conversion // perhaps should be centralized, universally defined so we don't keep remaking it??? /*for (int ix=0; ix < 0x10000; ix++) { float rx = ix / 65535.0; fv[ix] = rx > 0.008856 ? exp(1.0/3 * log(rx)) : 7.787*rx + 16/116.0; }*/ //crTableReady = true; for (int i = 0; i < width; i++) { float r = rin[i], g = gin[i], b = bin[i]; if (r > maxval || g > maxval || b > maxval) { float ro = min(r, maxval); float go = min(g, maxval); float bo = min(b, maxval); float yy = xyz_cam[1][0] * r + xyz_cam[1][1] * g + xyz_cam[1][2] * b; float fy = (yy < 65535.0 ? Color::cachef[yy] / 327.68 : std::cbrt(yy / MAXVALD)); // compute LCH decomposition of the clipped pixel (only color information, thus C and H will be used) float x = xyz_cam[0][0] * ro + xyz_cam[0][1] * go + xyz_cam[0][2] * bo; float y = xyz_cam[1][0] * ro + xyz_cam[1][1] * go + xyz_cam[1][2] * bo; float z = xyz_cam[2][0] * ro + xyz_cam[2][1] * go + xyz_cam[2][2] * bo; x = (x < 65535.0 ? Color::cachef[x] / 327.68 : std::cbrt(x / MAXVALD)); y = (y < 65535.0 ? Color::cachef[y] / 327.68 : std::cbrt(y / MAXVALD)); z = (z < 65535.0 ? Color::cachef[z] / 327.68 : std::cbrt(z / MAXVALD)); // convert back to rgb double fz = fy - y + z; double fx = fy + x - y; double zr = Color::f2xyz(fz); double xr = Color::f2xyz(fx); x = xr * 65535.0 ; y = yy; z = zr * 65535.0 ; float rr = cam_xyz[0][0] * x + cam_xyz[0][1] * y + cam_xyz[0][2] * z; float gr = cam_xyz[1][0] * x + cam_xyz[1][1] * y + cam_xyz[1][2] * z; float br = cam_xyz[2][0] * x + cam_xyz[2][1] * y + cam_xyz[2][2] * z; rout[i] = (rr); gout[i] = (gr); bout[i] = (br); } else { rout[i] = (rin[i]); gout[i] = (gin[i]); bout[i] = (bin[i]); } } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::hlRecovery (const std::string &method, float* red, float* green, float* blue, int width, float* hlmax ) { if (method == "Luminance") { HLRecovery_Luminance (red, green, blue, red, green, blue, width, 65535.0); } else if (method == "CIELab blending") { HLRecovery_CIELab (red, green, blue, red, green, blue, width, 65535.0, imatrices.xyz_cam, imatrices.cam_xyz); } else if (method == "Blend") { // derived from Dcraw HLRecovery_blend(red, green, blue, width, 65535.0, hlmax); } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::getAutoExpHistogram (LUTu & histogram, int& histcompr) { // BENCHFUN histcompr = 3; histogram(65536 >> histcompr); histogram.clear(); const float refwb[3] = {static_cast(refwb_red / (1 << histcompr)), static_cast(refwb_green / (1 << histcompr)), static_cast(refwb_blue / (1 << histcompr))}; #ifdef _OPENMP #pragma omp parallel #endif { LUTu tmphistogram(histogram.getSize()); tmphistogram.clear(); #ifdef _OPENMP #pragma omp for schedule(dynamic,16) nowait #endif for (int i = border; i < H - border; i++) { int start, end; getRowStartEnd (i, start, end); if (ri->getSensorType() == ST_BAYER) { // precalculate factors to avoid expensive per pixel calculations float refwb0 = refwb[ri->FC(i, start)]; float refwb1 = refwb[ri->FC(i, start + 1)]; int j; for (j = start; j < end - 1; j += 2) { tmphistogram[(int)(refwb0 * rawData[i][j])] += 4; tmphistogram[(int)(refwb1 * rawData[i][j + 1])] += 4; } if(j < end) { tmphistogram[(int)(refwb0 * rawData[i][j])] += 4; } } else if (ri->getSensorType() == ST_FUJI_XTRANS) { // precalculate factors to avoid expensive per pixel calculations float refwb0 = refwb[ri->XTRANSFC(i, start)]; float refwb1 = refwb[ri->XTRANSFC(i, start + 1)]; float refwb2 = refwb[ri->XTRANSFC(i, start + 2)]; float refwb3 = refwb[ri->XTRANSFC(i, start + 3)]; float refwb4 = refwb[ri->XTRANSFC(i, start + 4)]; float refwb5 = refwb[ri->XTRANSFC(i, start + 5)]; int j; for (j = start; j < end - 5; j += 6) { tmphistogram[(int)(refwb0 * rawData[i][j])] += 4; tmphistogram[(int)(refwb1 * rawData[i][j + 1])] += 4; tmphistogram[(int)(refwb2 * rawData[i][j + 2])] += 4; tmphistogram[(int)(refwb3 * rawData[i][j + 3])] += 4; tmphistogram[(int)(refwb4 * rawData[i][j + 4])] += 4; tmphistogram[(int)(refwb5 * rawData[i][j + 5])] += 4; } for (; j < end; j++) { tmphistogram[(int)(refwb[ri->XTRANSFC(i, j)] * rawData[i][j])] += 4; } } else if (ri->get_colors() == 1) { for (int j = start; j < end; j++) { tmphistogram[(int)(refwb[0] * rawData[i][j])]++; } } else { for (int j = start; j < end; j++) { tmphistogram[(int)(refwb[0] * rawData[i][3 * j + 0])]++; tmphistogram[(int)(refwb[1] * rawData[i][3 * j + 1])]++; tmphistogram[(int)(refwb[2] * rawData[i][3 * j + 2])]++; } } } #ifdef _OPENMP #pragma omp critical #endif { histogram += tmphistogram; } } } // Histogram MUST be 256 in size; gamma is applied, blackpoint and gain also void RawImageSource::getRAWHistogram (LUTu & histRedRaw, LUTu & histGreenRaw, LUTu & histBlueRaw) { // BENCHFUN histRedRaw.clear(); histGreenRaw.clear(); histBlueRaw.clear(); const float maxWhite = rtengine::max(c_white[0], c_white[1], c_white[2], c_white[3]); const float scale = maxWhite <= 1.f ? 65535.f : 1.f; // special case for float raw images in [0.0;1.0] range const float multScale = maxWhite <= 1.f ? 1.f / 255.f : 255.f; const float mult[4] = { multScale / (c_white[0] - cblacksom[0]), multScale / (c_white[1] - cblacksom[1]), multScale / (c_white[2] - cblacksom[2]), multScale / (c_white[3] - cblacksom[3]) }; const bool fourColours = ri->getSensorType() == ST_BAYER && ((mult[1] != mult[3] || cblacksom[1] != cblacksom[3]) || FC(0, 0) == 3 || FC(0, 1) == 3 || FC(1, 0) == 3 || FC(1, 1) == 3); constexpr int histoSize = 65536; LUTu hist[4]; hist[0](histoSize); hist[0].clear(); if (ri->get_colors() > 1) { hist[1](histoSize); hist[1].clear(); hist[2](histoSize); hist[2].clear(); } if (fourColours) { hist[3](histoSize); hist[3].clear(); } #ifdef _OPENMP int numThreads; // reduce the number of threads under certain conditions to avoid overhead of too many critical regions numThreads = sqrt((((H - 2 * border) * (W - 2 * border)) / 262144.f)); numThreads = std::min(std::max(numThreads, 1), omp_get_max_threads()); #pragma omp parallel num_threads(numThreads) #endif { // we need one LUT per color and thread, which corresponds to 1 MB per thread LUTu tmphist[4]; tmphist[0](histoSize); tmphist[0].clear(); if (ri->get_colors() > 1) { tmphist[1](histoSize); tmphist[1].clear(); tmphist[2](histoSize); tmphist[2].clear(); if (fourColours) { tmphist[3](histoSize); tmphist[3].clear(); } } #ifdef _OPENMP #pragma omp for nowait #endif for (int i = border; i < H - border; i++) { int start, end; getRowStartEnd (i, start, end); if (ri->getSensorType() == ST_BAYER) { int j; int c1 = FC(i, start); c1 = ( fourColours && c1 == 1 && !(i & 1) ) ? 3 : c1; int c2 = FC(i, start + 1); c2 = ( fourColours && c2 == 1 && !(i & 1) ) ? 3 : c2; for (j = start; j < end - 1; j += 2) { tmphist[c1][(int)(ri->data[i][j] * scale)]++; tmphist[c2][(int)(ri->data[i][j + 1] * scale)]++; } if(j < end) { // last pixel of row if width is odd tmphist[c1][(int)(ri->data[i][j] * scale)]++; } } else if (ri->get_colors() == 1) { for (int j = start; j < end; j++) { tmphist[0][(int)(ri->data[i][j] * scale)]++; } } else if(ri->getSensorType() == ST_FUJI_XTRANS) { for (int j = start; j < end - 1; j += 2) { int c = ri->XTRANSFC(i, j); tmphist[c][(int)(ri->data[i][j] * scale)]++; } } else { for (int j = start; j < end; j++) { for (int c = 0; c < 3; c++) { tmphist[c][(int)(ri->data[i][3 * j + c] * scale)]++; } } } } #ifdef _OPENMP #pragma omp critical #endif { hist[0] += tmphist[0]; if (ri->get_colors() > 1) { hist[1] += tmphist[1]; hist[2] += tmphist[2]; if (fourColours) { hist[3] += tmphist[3]; } } } // end of critical region } // end of parallel region const auto getidx = [&](int c, int i) -> int { float f = mult[c] * std::max(0.f, i - cblacksom[c]); return f > 0.f ? (f < 1.f ? 1 : std::min(int(f), 255)) : 0; }; for(int i = 0; i < histoSize; i++) { int idx = getidx(0, i); histRedRaw[idx] += hist[0][i]; if (ri->get_colors() > 1) { idx = getidx(1, i); histGreenRaw[idx] += hist[1][i]; if (fourColours) { idx = getidx(3, i); histGreenRaw[idx] += hist[3][i]; } idx = getidx(2, i); histBlueRaw[idx] += hist[2][i]; } } if (ri->getSensorType() == ST_BAYER) // since there are twice as many greens, correct for it for (int i = 0; i < 256; i++) { histGreenRaw[i] >>= 1; } else if(ri->getSensorType() == ST_FUJI_XTRANS) // since Xtrans has 2.5 as many greens, correct for it for (int i = 0; i < 256; i++) { histGreenRaw[i] = (histGreenRaw[i] * 2) / 5; } else if(ri->get_colors() == 1) { // monochrome sensor => set all histograms equal histGreenRaw += histRedRaw; histBlueRaw += histRedRaw; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::getRowStartEnd (int x, int &start, int &end) { if (fuji) { int fw = ri->get_FujiWidth(); start = ABS(fw - x) + border; end = min(H + W - fw - x, fw + x) - border; } else { start = border; end = W - border; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::getAutoWBMultipliers (double &rm, double &gm, double &bm) { // BENCHFUN constexpr double clipHigh = 64000.0; if (ri->get_colors() == 1) { rm = gm = bm = 1; return; } if (redAWBMul != -1.) { rm = redAWBMul; gm = greenAWBMul; bm = blueAWBMul; return; } if (!isWBProviderReady()) { rm = -1.0; gm = -1.0; bm = -1.0; return; } double avg_r = 0; double avg_g = 0; double avg_b = 0; int rn = 0, gn = 0, bn = 0; if (fuji) { for (int i = 32; i < H - 32; i++) { int fw = ri->get_FujiWidth(); int start = ABS(fw - i) + 32; int end = min(H + W - fw - i, fw + i) - 32; for (int j = start; j < end; j++) { if (ri->getSensorType() != ST_BAYER) { double dr = CLIP(initialGain * (rawData[i][3 * j] )); double dg = CLIP(initialGain * (rawData[i][3 * j + 1])); double db = CLIP(initialGain * (rawData[i][3 * j + 2])); if (dr > clipHigh || dg > clipHigh || db > clipHigh) { continue; } avg_r += dr; avg_g += dg; avg_b += db; rn = gn = ++bn; } else { int c = FC( i, j); double d = CLIP(initialGain * (rawData[i][j])); if (d > clipHigh) { continue; } // Let's test green first, because they are more numerous if (c == 1) { avg_g += d; gn++; } else if (c == 0) { avg_r += d; rn++; } else { /*if (c==2)*/ avg_b += d; bn++; } } } } } else { if (ri->getSensorType() != ST_BAYER) { if(ri->getSensorType() == ST_FUJI_XTRANS) { const double compval = clipHigh / initialGain; #ifdef _OPENMP #pragma omp parallel #endif { double avg_c[3] = {0.0}; int cn[3] = {0}; #ifdef _OPENMP #pragma omp for schedule(dynamic,16) nowait #endif for (int i = 32; i < H - 32; i++) { for (int j = 32; j < W - 32; j++) { // each loop read 1 rgb triplet value double d = rawData[i][j]; if (d > compval) { continue; } int c = ri->XTRANSFC(i, j); avg_c[c] += d; cn[c]++; } } #ifdef _OPENMP #pragma omp critical #endif { avg_r += avg_c[0]; avg_g += avg_c[1]; avg_b += avg_c[2]; rn += cn[0]; gn += cn[1]; bn += cn[2]; } } avg_r *= initialGain; avg_g *= initialGain; avg_b *= initialGain; } else { for (int i = 32; i < H - 32; i++) for (int j = 32; j < W - 32; j++) { // each loop read 1 rgb triplet value double dr = CLIP(initialGain * (rawData[i][3 * j] )); double dg = CLIP(initialGain * (rawData[i][3 * j + 1])); double db = CLIP(initialGain * (rawData[i][3 * j + 2])); if (dr > clipHigh || dg > clipHigh || db > clipHigh) { continue; } avg_r += dr; rn++; avg_g += dg; avg_b += db; } gn = rn; bn = rn; } } else { //determine GRBG coset; (ey,ex) is the offset of the R subarray int ey, ex; if (ri->ISGREEN(0, 0)) { //first pixel is G if (ri->ISRED(0, 1)) { ey = 0; ex = 1; } else { ey = 1; ex = 0; } } else {//first pixel is R or B if (ri->ISRED(0, 0)) { ey = 0; ex = 0; } else { ey = 1; ex = 1; } } const double compval = clipHigh / initialGain; #ifdef _OPENMP #pragma omp parallel for reduction(+:avg_r,avg_g,avg_b,rn,gn,bn) schedule(dynamic,8) #endif for (int i = 32; i < H - 32; i += 2) for (int j = 32; j < W - 32; j += 2) { //average each Bayer quartet component individually if non-clipped double d[2][2]; d[0][0] = rawData[i][j]; d[0][1] = rawData[i][j + 1]; d[1][0] = rawData[i + 1][j]; d[1][1] = rawData[i + 1][j + 1]; if (d[ey][ex] <= compval) { avg_r += d[ey][ex]; rn++; } if (d[1 - ey][ex] <= compval) { avg_g += d[1 - ey][ex]; gn++; } if (d[ey][1 - ex] <= compval) { avg_g += d[ey][1 - ex]; gn++; } if (d[1 - ey][1 - ex] <= compval) { avg_b += d[1 - ey][1 - ex]; bn++; } } avg_r *= initialGain; avg_g *= initialGain; avg_b *= initialGain; } } if( settings->verbose ) { printf ("AVG: %g %g %g\n", avg_r / std::max(1, rn), avg_g / std::max(1, gn), avg_b / std::max(1, bn)); } // return ColorTemp (pow(avg_r/rn, 1.0/6.0)*img_r, pow(avg_g/gn, 1.0/6.0)*img_g, pow(avg_b/bn, 1.0/6.0)*img_b); double reds = avg_r / std::max(1, rn) * refwb_red; double greens = avg_g / std::max(1, gn) * refwb_green; double blues = avg_b / std::max(1, bn) * refwb_blue; redAWBMul = rm = imatrices.rgb_cam[0][0] * reds + imatrices.rgb_cam[0][1] * greens + imatrices.rgb_cam[0][2] * blues; greenAWBMul = gm = imatrices.rgb_cam[1][0] * reds + imatrices.rgb_cam[1][1] * greens + imatrices.rgb_cam[1][2] * blues; blueAWBMul = bm = imatrices.rgb_cam[2][0] * reds + imatrices.rgb_cam[2][1] * greens + imatrices.rgb_cam[2][2] * blues; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ColorTemp RawImageSource::getSpotWB (std::vector &red, std::vector &green, std::vector &blue, int tran, double equal) { int x; int y; double reds = 0, greens = 0, blues = 0; unsigned int rn = 0; if (ri->getSensorType() != ST_BAYER) { if(ri->getSensorType() == ST_FUJI_XTRANS) { int d[9][2] = {{0, 0}, { -1, -1}, { -1, 0}, { -1, 1}, {0, -1}, {0, 1}, {1, -1}, {1, 0}, {1, 1}}; for (size_t i = 0; i < red.size(); i++) { transformPosition (red[i].x, red[i].y, tran, x, y); double rloc, gloc, bloc; int rnbrs, gnbrs, bnbrs; rloc = gloc = bloc = rnbrs = gnbrs = bnbrs = 0; for (int k = 0; k < 9; k++) { int xv = x + d[k][0]; int yv = y + d[k][1]; if(xv >= 0 && yv >= 0 && xv < W && yv < H) { if (ri->ISXTRANSRED(yv, xv)) { //RED rloc += (rawData[yv][xv]); rnbrs++; continue; } else if (ri->ISXTRANSBLUE(yv, xv)) { //BLUE bloc += (rawData[yv][xv]); bnbrs++; continue; } else { // GREEN gloc += (rawData[yv][xv]); gnbrs++; continue; } } } rloc /= rnbrs; gloc /= gnbrs; bloc /= bnbrs; if (rloc < clmax[0] && gloc < clmax[1] && bloc < clmax[2]) { reds += rloc; greens += gloc; blues += bloc; rn++; } } } else { int xmin, xmax, ymin, ymax; int xr, xg, xb, yr, yg, yb; for (size_t i = 0; i < red.size(); i++) { transformPosition (red[i].x, red[i].y, tran, xr, yr); transformPosition (green[i].x, green[i].y, tran, xg, yg); transformPosition (blue[i].x, blue[i].y, tran, xb, yb); if (initialGain * (rawData[yr][3 * xr] ) > 52500 || initialGain * (rawData[yg][3 * xg + 1]) > 52500 || initialGain * (rawData[yb][3 * xb + 2]) > 52500) { continue; } xmin = min(xr, xg, xb); xmax = max(xr, xg, xb); ymin = min(yr, yg, yb); ymax = max(yr, yg, yb); if (xmin >= 0 && ymin >= 0 && xmax < W && ymax < H) { reds += (rawData[yr][3 * xr] ); greens += (rawData[yg][3 * xg + 1]); blues += (rawData[yb][3 * xb + 2]); rn++; } } } } else { int d[9][2] = {{0, 0}, { -1, -1}, { -1, 0}, { -1, 1}, {0, -1}, {0, 1}, {1, -1}, {1, 0}, {1, 1}}; for (size_t i = 0; i < red.size(); i++) { transformPosition (red[i].x, red[i].y, tran, x, y); double rloc, gloc, bloc; int rnbrs, gnbrs, bnbrs; rloc = gloc = bloc = rnbrs = gnbrs = bnbrs = 0; for (int k = 0; k < 9; k++) { int xv = x + d[k][0]; int yv = y + d[k][1]; int c = FC(yv, xv); if(xv >= 0 && yv >= 0 && xv < W && yv < H) { if (c == 0) { //RED rloc += (rawData[yv][xv]); rnbrs++; continue; } else if (c == 2) { //BLUE bloc += (rawData[yv][xv]); bnbrs++; continue; } else { // GREEN gloc += (rawData[yv][xv]); gnbrs++; continue; } } } rloc /= std::max(1, rnbrs); gloc /= std::max(1, gnbrs); bloc /= std::max(1, bnbrs); if (rloc < clmax[0] && gloc < clmax[1] && bloc < clmax[2]) { reds += rloc; greens += gloc; blues += bloc; rn++; } transformPosition (green[i].x, green[i].y, tran, x, y);//these are redundant now ??? if not, repeat for these blocks same as for red[] rloc = gloc = bloc = rnbrs = gnbrs = bnbrs = 0; for (int k = 0; k < 9; k++) { int xv = x + d[k][0]; int yv = y + d[k][1]; int c = FC(yv, xv); if(xv >= 0 && yv >= 0 && xv < W && yv < H) { if (c == 0) { //RED rloc += (rawData[yv][xv]); rnbrs++; continue; } else if (c == 2) { //BLUE bloc += (rawData[yv][xv]); bnbrs++; continue; } else { // GREEN gloc += (rawData[yv][xv]); gnbrs++; continue; } } } rloc /= std::max(rnbrs, 1); gloc /= std::max(gnbrs, 1); bloc /= std::max(bnbrs, 1); if (rloc < clmax[0] && gloc < clmax[1] && bloc < clmax[2]) { reds += rloc; greens += gloc; blues += bloc; rn++; } transformPosition (blue[i].x, blue[i].y, tran, x, y); rloc = gloc = bloc = rnbrs = gnbrs = bnbrs = 0; for (int k = 0; k < 9; k++) { int xv = x + d[k][0]; int yv = y + d[k][1]; int c = FC(yv, xv); if(xv >= 0 && yv >= 0 && xv < W && yv < H) { if (c == 0) { //RED rloc += (rawData[yv][xv]); rnbrs++; continue; } else if (c == 2) { //BLUE bloc += (rawData[yv][xv]); bnbrs++; continue; } else { // GREEN gloc += (rawData[yv][xv]); gnbrs++; continue; } } } rloc /= std::max(rnbrs, 1); gloc /= std::max(gnbrs, 1); bloc /= std::max(bnbrs, 1); if (rloc < clmax[0] && gloc < clmax[1] && bloc < clmax[2]) { reds += rloc; greens += gloc; blues += bloc; rn++; } } } if (2u * rn < red.size()) { return ColorTemp (equal); } else { reds = reds / std::max(1u, rn) * refwb_red; greens = greens / std::max(1u, rn) * refwb_green; blues = blues / std::max(1u, rn) * refwb_blue; double rm = imatrices.rgb_cam[0][0] * reds + imatrices.rgb_cam[0][1] * greens + imatrices.rgb_cam[0][2] * blues; double gm = imatrices.rgb_cam[1][0] * reds + imatrices.rgb_cam[1][1] * greens + imatrices.rgb_cam[1][2] * blues; double bm = imatrices.rgb_cam[2][0] * reds + imatrices.rgb_cam[2][1] * greens + imatrices.rgb_cam[2][2] * blues; return ColorTemp (rm, gm, bm, equal); } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::transformPosition (int x, int y, int tran, int& ttx, int& tty) { tran = defTransform (tran); x += border; y += border; if (d1x) { if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) { x /= 2; } else { y /= 2; } } int w = W, h = H; if (fuji) { w = ri->get_FujiWidth() * 2 + 1; h = (H - ri->get_FujiWidth()) * 2 + 1; } int sw = w, sh = h; if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) { sw = h; sh = w; } int ppx = x, ppy = y; if (tran & TR_HFLIP) { ppx = sw - 1 - x ; } if (tran & TR_VFLIP) { ppy = sh - 1 - y; } int tx = ppx; int ty = ppy; if ((tran & TR_ROT) == TR_R180) { tx = w - 1 - ppx; ty = h - 1 - ppy; } else if ((tran & TR_ROT) == TR_R90) { tx = ppy; ty = h - 1 - ppx; } else if ((tran & TR_ROT) == TR_R270) { tx = w - 1 - ppy; ty = ppx; } if (fuji) { ttx = (tx + ty) / 2; tty = (ty - tx) / 2 + ri->get_FujiWidth(); } else { ttx = tx; tty = ty; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::inverse33 (const double (*rgb_cam)[3], double (*cam_rgb)[3]) { double nom = (rgb_cam[0][2] * rgb_cam[1][1] * rgb_cam[2][0] - rgb_cam[0][1] * rgb_cam[1][2] * rgb_cam[2][0] - rgb_cam[0][2] * rgb_cam[1][0] * rgb_cam[2][1] + rgb_cam[0][0] * rgb_cam[1][2] * rgb_cam[2][1] + rgb_cam[0][1] * rgb_cam[1][0] * rgb_cam[2][2] - rgb_cam[0][0] * rgb_cam[1][1] * rgb_cam[2][2] ); cam_rgb[0][0] = (rgb_cam[1][2] * rgb_cam[2][1] - rgb_cam[1][1] * rgb_cam[2][2]) / nom; cam_rgb[0][1] = -(rgb_cam[0][2] * rgb_cam[2][1] - rgb_cam[0][1] * rgb_cam[2][2]) / nom; cam_rgb[0][2] = (rgb_cam[0][2] * rgb_cam[1][1] - rgb_cam[0][1] * rgb_cam[1][2]) / nom; cam_rgb[1][0] = -(rgb_cam[1][2] * rgb_cam[2][0] - rgb_cam[1][0] * rgb_cam[2][2]) / nom; cam_rgb[1][1] = (rgb_cam[0][2] * rgb_cam[2][0] - rgb_cam[0][0] * rgb_cam[2][2]) / nom; cam_rgb[1][2] = -(rgb_cam[0][2] * rgb_cam[1][0] - rgb_cam[0][0] * rgb_cam[1][2]) / nom; cam_rgb[2][0] = (rgb_cam[1][1] * rgb_cam[2][0] - rgb_cam[1][0] * rgb_cam[2][1]) / nom; cam_rgb[2][1] = -(rgb_cam[0][1] * rgb_cam[2][0] - rgb_cam[0][0] * rgb_cam[2][1]) / nom; cam_rgb[2][2] = (rgb_cam[0][1] * rgb_cam[1][0] - rgb_cam[0][0] * rgb_cam[1][1]) / nom; } DiagonalCurve* RawImageSource::phaseOneIccCurve; DiagonalCurve* RawImageSource::phaseOneIccCurveInv; void RawImageSource::init () { { // Initialize Phase One ICC curves /* This curve is derived from TIFFTAG_TRANSFERFUNCTION of a Capture One P25+ image with applied film curve, exported to TIFF with embedded camera ICC. It's assumed to be similar to most standard curves in Capture One. It's not necessary to be exactly the same, it's just to be close to a typical curve to give the Phase One ICC files a good working space. */ const double phase_one_forward[] = { 0.0000000000, 0.0000000000, 0.0152590219, 0.0029602502, 0.0305180438, 0.0058899825, 0.0457770657, 0.0087739376, 0.0610360876, 0.0115968566, 0.0762951095, 0.0143587396, 0.0915541314, 0.0171969177, 0.1068131533, 0.0201876860, 0.1220721752, 0.0232852674, 0.1373311971, 0.0264744030, 0.1525902190, 0.0297245747, 0.1678492409, 0.0330205234, 0.1831082628, 0.0363775082, 0.1983672847, 0.0397802701, 0.2136263066, 0.0432593271, 0.2288853285, 0.0467841611, 0.2441443503, 0.0503700313, 0.2594033722, 0.0540474556, 0.2746623941, 0.0577859159, 0.2899214160, 0.0616159304, 0.3051804379, 0.0655222400, 0.3204394598, 0.0695353628, 0.3356984817, 0.0736552987, 0.3509575036, 0.0778973068, 0.3662165255, 0.0822461280, 0.3814755474, 0.0867170214, 0.3967345693, 0.0913252461, 0.4119935912, 0.0960860609, 0.4272526131, 0.1009994659, 0.4425116350, 0.1060654612, 0.4577706569, 0.1113298238, 0.4730296788, 0.1167925536, 0.4882887007, 0.1224841688, 0.5035477226, 0.1284046693, 0.5188067445, 0.1345540551, 0.5340657664, 0.1409781033, 0.5493247883, 0.1476615549, 0.5645838102, 0.1546501869, 0.5798428321, 0.1619287404, 0.5951018540, 0.1695277333, 0.6103608759, 0.1774776837, 0.6256198978, 0.1858091096, 0.6408789197, 0.1945525292, 0.6561379416, 0.2037384604, 0.6713969635, 0.2134279393, 0.6866559854, 0.2236667430, 0.7019150072, 0.2345159075, 0.7171740291, 0.2460517281, 0.7324330510, 0.2583047227, 0.7476920729, 0.2714122225, 0.7629510948, 0.2854352636, 0.7782101167, 0.3004959182, 0.7934691386, 0.3167620356, 0.8087281605, 0.3343862058, 0.8239871824, 0.3535820554, 0.8392462043, 0.3745937285, 0.8545052262, 0.3977111467, 0.8697642481, 0.4232547494, 0.8850232700, 0.4515754940, 0.9002822919, 0.4830701152, 0.9155413138, 0.5190966659, 0.9308003357, 0.5615320058, 0.9460593576, 0.6136263066, 0.9613183795, 0.6807965209, 0.9765774014, 0.7717402914, 0.9918364233, 0.9052109560, 1.0000000000, 1.0000000000 }; std::vector cForwardPoints; cForwardPoints.push_back(double(DCT_Spline)); // The first value is the curve type std::vector cInversePoints; cInversePoints.push_back(double(DCT_Spline)); // The first value is the curve type for (unsigned int i = 0; i < sizeof(phase_one_forward) / sizeof(phase_one_forward[0]); i += 2) { cForwardPoints.push_back(phase_one_forward[i + 0]); cForwardPoints.push_back(phase_one_forward[i + 1]); cInversePoints.push_back(phase_one_forward[i + 1]); cInversePoints.push_back(phase_one_forward[i + 0]); } phaseOneIccCurve = new DiagonalCurve(cForwardPoints, CURVES_MIN_POLY_POINTS); phaseOneIccCurveInv = new DiagonalCurve(cInversePoints, CURVES_MIN_POLY_POINTS); } } void RawImageSource::getRawValues(int x, int y, int rotate, int &R, int &G, int &B) { if(d1x) { // Nikon D1x has special sensor. We just skip it R = G = B = 0; return; } int xnew = x + border; int ynew = y + border; rotate += ri->get_rotateDegree(); rotate %= 360; if (rotate == 90) { std::swap(xnew,ynew); ynew = H - 1 - ynew; } else if (rotate == 180) { xnew = W - 1 - xnew; ynew = H - 1 - ynew; } else if (rotate == 270) { std::swap(xnew,ynew); xnew = W - 1 - xnew; } xnew = LIM(xnew, 0, W - 1); ynew = LIM(ynew, 0, H - 1); int c = ri->getSensorType() == ST_FUJI_XTRANS ? ri->XTRANSFC(ynew,xnew) : ri->FC(ynew,xnew); int val = round(rawData[ynew][xnew] / scale_mul[c]); if(c == 0) { R = val; G = 0; B = 0; } else if(c == 2) { R = 0; G = 0; B = val; } else { R = 0; G = val; B = 0; } } void RawImageSource::cleanup () { delete phaseOneIccCurve; delete phaseOneIccCurveInv; } } /* namespace */