//////////////////////////////////////////////////////////////// // // Fast demosaicing algorithm // // copyright (c) 2008-2010 Emil Martinec // // // code dated: August 26, 2010 // // fast_demo.cc is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // //////////////////////////////////////////////////////////////// #include #include "rawimagesource.h" #include "rtgui/multilangmgr.h" #include "opthelper.h" using namespace std; using namespace rtengine; namespace { unsigned fc(const unsigned int cfa[2][2], int r, int c) { return cfa[r & 1][c & 1]; } } #define TS 224 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /* LUTf RawImageSource::initInvGrad() { LUTf invGrad (0x10000); //set up directional weight function for (int i=0; i<0x10000; i++) invGrad[i] = 1.0/SQR(1.0+i); return invGrad; } */ #define INVGRAD(i) (16.0f/SQR(4.0f+i)) #ifdef __SSE2__ #define INVGRADV(i) (c16v*_mm_rcp_ps(SQRV(fourv+i))) #endif //LUTf RawImageSource::invGrad = RawImageSource::initInvGrad(); void RawImageSource::fast_demosaic() { double progress = 0.0; const bool plistenerActive = plistener; //int winx=0, winy=0; //int winw=W, winh=H; if (plistener) { plistener->setProgressStr (Glib::ustring::compose(M("TP_RAW_DMETHOD_PROGRESSBAR"), M("TP_RAW_FAST"))); plistener->setProgress (progress); } const unsigned int cfarray[2][2] = {{FC(0,0), FC(0,1)}, {FC(1,0), FC(1,1)}}; const int bord = 5; float clip_pt = 4 * 65535 * initialGain; //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #ifdef _OPENMP #pragma omp parallel #endif { char *buffer; float *greentile; float *redtile; float *bluetile; #define CLF 1 // assign working space buffer = (char *) calloc(3 * sizeof(float) * TS * TS + 3 * CLF * 64 + 63, 1); char *data; data = (char*)( ( uintptr_t(buffer) + uintptr_t(63)) / 64 * 64); greentile = (float (*)) data; //pointers to array redtile = (float (*)) ((char*)greentile + sizeof(float) * TS * TS + CLF * 64); bluetile = (float (*)) ((char*)redtile + sizeof(float) * TS * TS + CLF * 64); #ifdef _OPENMP #pragma omp sections #endif { #ifdef _OPENMP #pragma omp section #endif { //first, interpolate borders using bilinear for (int i = 0; i < H; i++) { float sum[6]; int imin = max(0, i - 1); int imax = min(i + 2, H); for (int j = 0; j < bord; j++) { //first few columns for (int c = 0; c < 6; c++) { sum[c] = 0; } int jmin = max(0, j - 1); for (int i1 = imin; i1 < imax; i1++) for (int j1 = jmin; j1 < j + 2; j1++) { int c = fc(cfarray, i1, j1); sum[c] += rawData[i1][j1]; sum[c + 3]++; } int c = fc(cfarray, i, j); if (c == 1) { red[i][j] = sum[0] / sum[3]; green[i][j] = rawData[i][j]; blue[i][j] = sum[2] / sum[5]; } else { green[i][j] = sum[1] / sum[4]; if (c == 0) { red[i][j] = rawData[i][j]; blue[i][j] = sum[2] / sum[5]; } else { red[i][j] = sum[0] / sum[3]; blue[i][j] = rawData[i][j]; } } }//j for (int j = W - bord; j < W; j++) { //last few columns for (int c = 0; c < 6; c++) { sum[c] = 0; } int jmax = min(j + 2, W); for (int i1 = imin; i1 < imax; i1++) for (int j1 = j - 1; j1 < jmax; j1++) { int c = fc(cfarray, i1, j1); sum[c] += rawData[i1][j1]; sum[c + 3]++; } int c = fc(cfarray, i, j); if (c == 1) { red[i][j] = sum[0] / sum[3]; green[i][j] = rawData[i][j]; blue[i][j] = sum[2] / sum[5]; } else { green[i][j] = sum[1] / sum[4]; if (c == 0) { red[i][j] = rawData[i][j]; blue[i][j] = sum[2] / sum[5]; } else { red[i][j] = sum[0] / sum[3]; blue[i][j] = rawData[i][j]; } } }//j }//i } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #ifdef _OPENMP #pragma omp section #endif { for (int j = bord; j < W - bord; j++) { float sum[6]; for (int i = 0; i < bord; i++) { //first few rows for (int c = 0; c < 6; c++) { sum[c] = 0; } for (int i1 = max(0, i - 1); i1 < i + 2; i1++) for (int j1 = j - 1; j1 < j + 2; j1++) { int c = fc(cfarray, i1, j1); sum[c] += rawData[i1][j1]; sum[c + 3]++; } int c = fc(cfarray, i, j); if (c == 1) { red[i][j] = sum[0] / sum[3]; green[i][j] = rawData[i][j]; blue[i][j] = sum[2] / sum[5]; } else { green[i][j] = sum[1] / sum[4]; if (c == 0) { red[i][j] = rawData[i][j]; blue[i][j] = sum[2] / sum[5]; } else { red[i][j] = sum[0] / sum[3]; blue[i][j] = rawData[i][j]; } } }//i for (int i = H - bord; i < H; i++) { //last few rows for (int c = 0; c < 6; c++) { sum[c] = 0; } for (int i1 = i - 1; i1 < min(i + 2, H); i1++) for (int j1 = j - 1; j1 < j + 2; j1++) { int c = fc(cfarray, i1, j1); sum[c] += rawData[i1][j1]; sum[c + 3]++; } int c = fc(cfarray, i, j); if (c == 1) { red[i][j] = sum[0] / sum[3]; green[i][j] = rawData[i][j]; blue[i][j] = sum[2] / sum[5]; } else { green[i][j] = sum[1] / sum[4]; if (c == 0) { red[i][j] = rawData[i][j]; blue[i][j] = sum[2] / sum[5]; } else { red[i][j] = sum[0] / sum[3]; blue[i][j] = rawData[i][j]; } } }//i }//j } } #ifdef _OPENMP #pragma omp single #endif { if(plistenerActive) { progress += 0.1; plistener->setProgress(progress); } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% int progressCounter = 0; const double progressInc = 16.0 * (1.0 - progress) / ((H * W) / ((TS - 4) * (TS - 4))); #ifdef _OPENMP #pragma omp for nowait #endif for (int top = bord - 2; top < H - bord + 2; top += TS - (4)) for (int left = bord - 2; left < W - bord + 2; left += TS - (4)) { int bottom = min(top + TS, H - bord + 2); int right = min(left + TS, W - bord + 2); #ifdef __SSE2__ __m128 wtuv, wtdv, wtlv, wtrv; __m128 greenv, tempv, absv, abs2v; __m128 c16v = _mm_set1_ps( 16.0f ); __m128 fourv = _mm_set1_ps( 4.0f ); vmask selmask; vmask andmask = _mm_set_epi32( 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff ); if(fc(cfarray, top, left) == 1) { selmask = _mm_set_epi32( 0, 0xffffffff, 0, 0xffffffff ); } else { selmask = _mm_set_epi32( 0xffffffff, 0, 0xffffffff, 0 ); } #endif // interpolate G using gradient weights for (int i = top, rr = 0; i < bottom; i++, rr++) { float wtu, wtd, wtl, wtr; #ifdef __SSE2__ selmask = (vmask)_mm_andnot_ps( (__m128)selmask, (__m128)andmask); int j, cc; for (j = left, cc = 0; j < right - 3; j += 4, cc += 4) { tempv = LVFU(rawData[i][j]); absv = vabsf(LVFU(rawData[i - 1][j]) - LVFU(rawData[i + 1][j])); wtuv = INVGRADV(absv + vabsf(tempv - LVFU(rawData[i - 2][j])) + vabsf(LVFU(rawData[i - 1][j]) - LVFU(rawData[i - 3][j]))); wtdv = INVGRADV(absv + vabsf(tempv - LVFU(rawData[i + 2][j])) + vabsf(LVFU(rawData[i + 1][j]) - LVFU(rawData[i + 3][j]))); abs2v = vabsf(LVFU(rawData[i][j - 1]) - LVFU(rawData[i][j + 1])); wtlv = INVGRADV(abs2v + vabsf(tempv - LVFU(rawData[i][j - 2])) + vabsf(LVFU(rawData[i][j - 1]) - LVFU(rawData[i][j - 3]))); wtrv = INVGRADV(abs2v + vabsf(tempv - LVFU(rawData[i][j + 2])) + vabsf(LVFU(rawData[i][j + 1]) - LVFU(rawData[i][j + 3]))); greenv = (wtuv * LVFU(rawData[i - 1][j]) + wtdv * LVFU(rawData[i + 1][j]) + wtlv * LVFU(rawData[i][j - 1]) + wtrv * LVFU(rawData[i][j + 1])) / (wtuv + wtdv + wtlv + wtrv); _mm_store_ps(&greentile[rr * TS + cc], vself(selmask, greenv, tempv)); _mm_store_ps(&redtile[rr * TS + cc], tempv); _mm_store_ps(&bluetile[rr * TS + cc], tempv); } for (; j < right; j++, cc++) { if (fc(cfarray, i, j) == 1) { greentile[rr * TS + cc] = rawData[i][j]; } else { //compute directional weights using image gradients wtu = INVGRAD((abs(rawData[i + 1][j] - rawData[i - 1][j]) + abs(rawData[i][j] - rawData[i - 2][j]) + abs(rawData[i - 1][j] - rawData[i - 3][j]))); wtd = INVGRAD((abs(rawData[i - 1][j] - rawData[i + 1][j]) + abs(rawData[i][j] - rawData[i + 2][j]) + abs(rawData[i + 1][j] - rawData[i + 3][j]))); wtl = INVGRAD((abs(rawData[i][j + 1] - rawData[i][j - 1]) + abs(rawData[i][j] - rawData[i][j - 2]) + abs(rawData[i][j - 1] - rawData[i][j - 3]))); wtr = INVGRAD((abs(rawData[i][j - 1] - rawData[i][j + 1]) + abs(rawData[i][j] - rawData[i][j + 2]) + abs(rawData[i][j + 1] - rawData[i][j + 3]))); //store in rgb array the interpolated G value at R/B grid points using directional weighted average greentile[rr * TS + cc] = (wtu * rawData[i - 1][j] + wtd * rawData[i + 1][j] + wtl * rawData[i][j - 1] + wtr * rawData[i][j + 1]) / (wtu + wtd + wtl + wtr); } redtile[rr * TS + cc] = rawData[i][j]; bluetile[rr * TS + cc] = rawData[i][j]; } #else for (int j = left, cc = 0; j < right; j++, cc++) { if (fc(cfarray, i, j) == 1) { greentile[rr * TS + cc] = rawData[i][j]; } else { //compute directional weights using image gradients wtu = INVGRAD((abs(rawData[i + 1][j] - rawData[i - 1][j]) + abs(rawData[i][j] - rawData[i - 2][j]) + abs(rawData[i - 1][j] - rawData[i - 3][j]))); wtd = INVGRAD((abs(rawData[i - 1][j] - rawData[i + 1][j]) + abs(rawData[i][j] - rawData[i + 2][j]) + abs(rawData[i + 1][j] - rawData[i + 3][j]))); wtl = INVGRAD((abs(rawData[i][j + 1] - rawData[i][j - 1]) + abs(rawData[i][j] - rawData[i][j - 2]) + abs(rawData[i][j - 1] - rawData[i][j - 3]))); wtr = INVGRAD((abs(rawData[i][j - 1] - rawData[i][j + 1]) + abs(rawData[i][j] - rawData[i][j + 2]) + abs(rawData[i][j + 1] - rawData[i][j + 3]))); //store in rgb array the interpolated G value at R/B grid points using directional weighted average greentile[rr * TS + cc] = (wtu * rawData[i - 1][j] + wtd * rawData[i + 1][j] + wtl * rawData[i][j - 1] + wtr * rawData[i][j + 1]) / (wtu + wtd + wtl + wtr); } redtile[rr * TS + cc] = rawData[i][j]; bluetile[rr * TS + cc] = rawData[i][j]; } #endif } #ifdef __SSE2__ __m128 zd25v = _mm_set1_ps(0.25f); __m128 clip_ptv = _mm_set1_ps( clip_pt ); #endif for (int i = top + 1, rr = 1; i < bottom - 1; i++, rr++) { if (fc(cfarray, i, left + (fc(cfarray, i, 2) & 1) + 1) == 0) #ifdef __SSE2__ for (int j = left + 1, cc = 1; j < right - 1; j += 4, cc += 4) { //interpolate B/R colors at R/B sites _mm_storeu_ps(&bluetile[rr * TS + cc], LVFU(greentile[rr * TS + cc]) - zd25v * ((LVFU(greentile[(rr - 1)*TS + (cc - 1)]) + LVFU(greentile[(rr - 1)*TS + (cc + 1)]) + LVFU(greentile[(rr + 1)*TS + cc + 1]) + LVFU(greentile[(rr + 1)*TS + cc - 1])) - vminf(LVFU(rawData[i - 1][j - 1]) + LVFU(rawData[i - 1][j + 1]) + LVFU(rawData[i + 1][j + 1]) + LVFU(rawData[i + 1][j - 1]), clip_ptv))); } #else for (int cc = (fc(cfarray, i, 2) & 1) + 1, j = left + cc; j < right - 1; j += 2, cc += 2) { //interpolate B/R colors at R/B sites bluetile[rr * TS + cc] = greentile[rr * TS + cc] - 0.25f * ((greentile[(rr - 1) * TS + (cc - 1)] + greentile[(rr - 1) * TS + (cc + 1)] + greentile[(rr + 1) * TS + cc + 1] + greentile[(rr + 1) * TS + cc - 1]) - min(clip_pt, rawData[i - 1][j - 1] + rawData[i - 1][j + 1] + rawData[i + 1][j + 1] + rawData[i + 1][j - 1])); } #endif else #ifdef __SSE2__ for (int j = left + 1, cc = 1; j < right - 1; j += 4, cc += 4) { //interpolate B/R colors at R/B sites _mm_storeu_ps(&redtile[rr * TS + cc], LVFU(greentile[rr * TS + cc]) - zd25v * ((LVFU(greentile[(rr - 1)*TS + cc - 1]) + LVFU(greentile[(rr - 1)*TS + cc + 1]) + LVFU(greentile[(rr + 1)*TS + cc + 1]) + LVFU(greentile[(rr + 1)*TS + cc - 1])) - vminf(LVFU(rawData[i - 1][j - 1]) + LVFU(rawData[i - 1][j + 1]) + LVFU(rawData[i + 1][j + 1]) + LVFU(rawData[i + 1][j - 1]), clip_ptv))); } #else for (int cc = (fc(cfarray, i, 2) & 1) + 1, j = left + cc; j < right - 1; j += 2, cc += 2) { //interpolate B/R colors at R/B sites redtile[rr * TS + cc] = greentile[rr * TS + cc] - 0.25f * ((greentile[(rr - 1) * TS + cc - 1] + greentile[(rr - 1) * TS + cc + 1] + greentile[(rr + 1) * TS + cc + 1] + greentile[(rr + 1) * TS + cc - 1]) - min(clip_pt, rawData[i - 1][j - 1] + rawData[i - 1][j + 1] + rawData[i + 1][j + 1] + rawData[i + 1][j - 1])); } #endif } #ifdef __SSE2__ __m128 temp1v, temp2v, greensumv; selmask = _mm_set_epi32( 0xffffffff, 0, 0xffffffff, 0 ); #endif // interpolate R/B using color differences for (int i = top + 2, rr = 2; i < bottom - 2; i++, rr++) { #ifdef __SSE2__ for (int cc = 2 + (fc(cfarray, i, 2) & 1), j = left + cc; j < right - 2; j += 4, cc += 4) { // no need to take care about the borders of the tile. There's enough free space. //interpolate R and B colors at G sites greenv = LVFU(greentile[rr * TS + cc]); greensumv = LVFU(greentile[(rr - 1) * TS + cc]) + LVFU(greentile[(rr + 1) * TS + cc]) + LVFU(greentile[rr * TS + cc - 1]) + LVFU(greentile[rr * TS + cc + 1]); temp1v = LVFU(redtile[rr * TS + cc]); temp2v = greenv - zd25v * (greensumv - LVFU(redtile[(rr - 1) * TS + cc]) - LVFU(redtile[(rr + 1) * TS + cc]) - LVFU(redtile[rr * TS + cc - 1]) - LVFU(redtile[rr * TS + cc + 1])); _mm_storeu_ps( &redtile[rr * TS + cc], vself(selmask, temp1v, temp2v)); temp1v = LVFU(bluetile[rr * TS + cc]); temp2v = greenv - zd25v * (greensumv - LVFU(bluetile[(rr - 1) * TS + cc]) - LVFU(bluetile[(rr + 1) * TS + cc]) - LVFU(bluetile[rr * TS + cc - 1]) - LVFU(bluetile[rr * TS + cc + 1])); _mm_storeu_ps( &bluetile[rr * TS + cc], vself(selmask, temp1v, temp2v)); } #else for (int cc = 2 + (fc(cfarray, i, 2) & 1), j = left + cc; j < right - 2; j += 2, cc += 2) { //interpolate R and B colors at G sites redtile[rr * TS + cc] = greentile[rr * TS + cc] - 0.25f * ((greentile[(rr - 1) * TS + cc] - redtile[(rr - 1) * TS + cc]) + (greentile[(rr + 1) * TS + cc] - redtile[(rr + 1) * TS + cc]) + (greentile[rr * TS + cc - 1] - redtile[rr * TS + cc - 1]) + (greentile[rr * TS + cc + 1] - redtile[rr * TS + cc + 1])); bluetile[rr * TS + cc] = greentile[rr * TS + cc] - 0.25f * ((greentile[(rr - 1) * TS + cc] - bluetile[(rr - 1) * TS + cc]) + (greentile[(rr + 1) * TS + cc] - bluetile[(rr + 1) * TS + cc]) + (greentile[rr * TS + cc - 1] - bluetile[rr * TS + cc - 1]) + (greentile[rr * TS + cc + 1] - bluetile[rr * TS + cc + 1])); } #endif } for (int i = top + 2, rr = 2; i < bottom - 2; i++, rr++) { #ifdef __SSE2__ int j, cc; for (j = left + 2, cc = 2; j < right - 5; j += 4, cc += 4) { _mm_storeu_ps(&red[i][j], vmaxf(LVFU(redtile[rr * TS + cc]), ZEROV)); _mm_storeu_ps(&green[i][j], vmaxf(LVFU(greentile[rr * TS + cc]), ZEROV)); _mm_storeu_ps(&blue[i][j], vmaxf(LVFU(bluetile[rr * TS + cc]), ZEROV)); } for (; j < right - 2; j++, cc++) { red[i][j] = std::max(0.f, redtile[rr * TS + cc]); green[i][j] = std::max(0.f, greentile[rr * TS + cc]); blue[i][j] = std::max(0.f, bluetile[rr * TS + cc]); } #else for (int j = left + 2, cc = 2; j < right - 2; j++, cc++) { red[i][j] = std::max(0.f, redtile[rr * TS + cc]); green[i][j] = std::max(0.f, greentile[rr * TS + cc]); blue[i][j] = std::max(0.f, bluetile[rr * TS + cc]); } #endif } if(plistenerActive && ((++progressCounter) % 16 == 0)) { #ifdef _OPENMP #pragma omp critical (updateprogress) #endif { progress += progressInc; progress = min(1.0, progress); plistener->setProgress (progress); } } } free(buffer); } // End of parallelization if(plistenerActive) { plistener->setProgress(1.00); } } #undef TS #undef CLF