/* -*- C++ -*- * * This file is part of RawTherapee. * * Copyright (c) 2018 Alberto Griggio * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ /* * Haze removal using the algorithm described in the paper: * * Single Image Haze Removal Using Dark Channel Prior * by He, Sun and Tang * * using a guided filter for the "soft matting" of the transmission map * */ #include #include #include #include "array2D.h" #include "color.h" #include "guidedfilter.h" #include "iccstore.h" #include "imagefloat.h" #include "improcfun.h" #include "procparams.h" #include "rescale.h" #include "rt_math.h" //#define BENCHMARK #include "StopWatch.h" #include "../rtgui/options.h" namespace rtengine { namespace { float normalize(Imagefloat *rgb, bool multithread) { float maxval = 0.f; const int W = rgb->getWidth(); const int H = rgb->getHeight(); #ifdef _OPENMP #pragma omp parallel for reduction(max:maxval) schedule(dynamic, 16) if (multithread) #endif for (int y = 0; y < H; ++y) { for (int x = 0; x < W; ++x) { maxval = max(maxval, rgb->r(y, x), rgb->g(y, x), rgb->b(y, x)); } } maxval = max(maxval * 2.f, 65535.f); #ifdef _OPENMP #pragma omp parallel for schedule(dynamic, 16) if (multithread) #endif for (int y = 0; y < H; ++y) { for (int x = 0; x < W; ++x) { rgb->r(y, x) /= maxval; rgb->g(y, x) /= maxval; rgb->b(y, x) /= maxval; } } return maxval; } void restore(Imagefloat *rgb, float maxval, bool multithread) { const int W = rgb->getWidth(); const int H = rgb->getHeight(); if (maxval > 0.f && maxval != 1.f) { #ifdef _OPENMP # pragma omp parallel for if (multithread) #endif for (int y = 0; y < H; ++y) { for (int x = 0; x < W; ++x) { rgb->r(y, x) *= maxval; rgb->g(y, x) *= maxval; rgb->b(y, x) *= maxval; } } } } int get_dark_channel(const array2D &R, const array2D &G, const array2D &B, array2D &dst, int patchsize, const float ambient[3], bool clip, bool multithread, float strength) { const int W = R.getWidth(); const int H = R.getHeight(); #ifdef _OPENMP #pragma omp parallel for if (multithread) #endif for (int y = 0; y < H; y += patchsize) { const int pH = min(y + patchsize, H); for (int x = 0; x < W; x += patchsize) { float minR = RT_INFINITY_F; float minG = RT_INFINITY_F; float minB = RT_INFINITY_F; #ifdef __SSE2__ vfloat minRv = F2V(minR); vfloat minGv = F2V(minG); vfloat minBv = F2V(minB); #endif const int pW = min(x + patchsize, W); for (int yy = y; yy < pH; ++yy) { int xx = x; #ifdef __SSE2__ for (; xx < pW - 3; xx += 4) { minRv = vminf(minRv, LVFU(R[yy][xx])); minGv = vminf(minGv, LVFU(G[yy][xx])); minBv = vminf(minBv, LVFU(B[yy][xx])); } #endif for (; xx < pW; ++xx) { minR = min(minR, R[yy][xx]); minG = min(minG, G[yy][xx]); minB = min(minB, B[yy][xx]); } } #ifdef __SSE2__ minR = min(minR, vhmin(minRv)); minG = min(minG, vhmin(minGv)); minB = min(minB, vhmin(minBv)); #endif float val = min(minR / ambient[0], minG / ambient[1], minB / ambient[2]); val = 1.f - strength * LIM01(val); for (int yy = y; yy < pH; ++yy) { std::fill(dst[yy] + x, dst[yy] + pW, val); } } } return (W / patchsize + ((W % patchsize) > 0)) * (H / patchsize + ((H % patchsize) > 0)); } int get_dark_channel_downsized(const array2D &R, const array2D &G, const array2D &B, array2D &dst, int patchsize, bool multithread) { const int W = R.getWidth(); const int H = R.getHeight(); #ifdef _OPENMP #pragma omp parallel for if (multithread) #endif for (int y = 0; y < H; y += patchsize) { const int pH = min(y + patchsize, H); for (int x = 0; x < W; x += patchsize) { float val = RT_INFINITY_F; const int pW = min(x + patchsize, W); for (int xx = x; xx < pW; ++xx) { for (int yy = y; yy < pH; ++yy) { val = min(val, R[yy][xx], G[yy][xx], B[yy][xx]); } } for (int yy = y; yy < pH; ++yy) { std::fill(dst[yy] + x, dst[yy] + pW, val); } } } return (W / patchsize + ((W % patchsize) > 0)) * (H / patchsize + ((H % patchsize) > 0)); } float estimate_ambient_light(const array2D &R, const array2D &G, const array2D &B, const array2D &dark, int patchsize, int npatches, float ambient[3]) { const int W = R.getWidth(); const int H = R.getHeight(); float darklim = RT_INFINITY_F; { std::vector p; for (int y = 0; y < H; y += patchsize) { for (int x = 0; x < W; x += patchsize) { if (!OOG(dark[y][x], 1.f - 1e-5f)) { p.push_back(dark[y][x]); } } } if (p.empty()) { return 0.f; } const int pos = p.size() * 0.95; std::nth_element(p.begin(), p.begin() + pos, p.end()); darklim = p[pos]; } std::vector> patches; patches.reserve(npatches); for (int y = 0; y < H; y += patchsize) { for (int x = 0; x < W; x += patchsize) { if (dark[y][x] >= darklim && !OOG(dark[y][x], 1.f)) { patches.push_back(std::make_pair(x, y)); } } } if (settings->verbose) { std::cout << "dehaze: computing ambient light from " << patches.size() << " patches" << std::endl; } float bright_lim = RT_INFINITY_F; { std::vector l; l.reserve(patches.size() * patchsize * patchsize); for (auto &p : patches) { const int pW = min(p.first + patchsize, W); const int pH = min(p.second + patchsize, H); for (int y = p.second; y < pH; ++y) { for (int x = p.first; x < pW; ++x) { l.push_back(R[y][x] + G[y][x] + B[y][x]); } } } const int pos = l.size() * 0.95; std::nth_element(l.begin(), l.begin() + pos, l.end()); bright_lim = l[pos]; } double rr = 0, gg = 0, bb = 0; int n = 0; for (auto &p : patches) { const int pW = min(p.first + patchsize, W); const int pH = min(p.second + patchsize, H); for (int y = p.second; y < pH; ++y) { for (int x = p.first; x < pW; ++x) { float r = R[y][x]; float g = G[y][x]; float b = B[y][x]; if (r + g + b >= bright_lim) { rr += static_cast(r); gg += static_cast(g); bb += static_cast(b); ++n; } } } } n = std::max(n, 1); ambient[0] = rr / n; ambient[1] = gg / n; ambient[2] = bb / n; // taken from darktable return darklim > 0 ? -1.125f * std::log(darklim) : std::log(std::numeric_limits::max()) / 2; } void extract_channels(Imagefloat *img, array2D &r, array2D &g, array2D &b, int radius, float epsilon, bool multithread) { const int W = img->getWidth(); const int H = img->getHeight(); array2D imgR(W, H, img->r.ptrs, ARRAY2D_BYREFERENCE); guidedFilter(imgR, imgR, r, radius, epsilon, multithread); array2D imgG(W, H, img->g.ptrs, ARRAY2D_BYREFERENCE); guidedFilter(imgG, imgG, g, radius, epsilon, multithread); array2D imgB(W, H, img->b.ptrs, ARRAY2D_BYREFERENCE); guidedFilter(imgB, imgB, b, radius, epsilon, multithread); } } // namespace void ImProcFunctions::dehaze(Imagefloat *img, const DehazeParams &dehazeParams) { if (!dehazeParams.enabled || dehazeParams.strength == 0.0) { return; } const float maxChannel = normalize(img, multiThread); const int W = img->getWidth(); const int H = img->getHeight(); const float strength = LIM01(float(dehazeParams.strength) / 100.f * 0.9f); array2D dark(W, H); int patchsize = max(int(5 / scale), 2); float ambient[3]; float maxDistance = 0.f; { array2D& R = dark; // R and dark can safely use the same buffer, which is faster and reduces memory allocations/deallocations array2D G(W, H); array2D B(W, H); extract_channels(img, R, G, B, patchsize, 1e-1, multiThread); { constexpr int sizecap = 200; const float r = static_cast(W) / static_cast(H); const int hh = r >= 1.f ? sizecap : sizecap / r; const int ww = r >= 1.f ? sizecap * r : sizecap; if (W <= ww && H <= hh) { // don't rescale small thumbs array2D D(W, H); const int npatches = get_dark_channel_downsized(R, G, B, D, 2, multiThread); maxDistance = estimate_ambient_light(R, G, B, D, patchsize, npatches, ambient); } else { array2D RR(ww, hh); array2D GG(ww, hh); array2D BB(ww, hh); rescaleNearest(R, RR, multiThread); rescaleNearest(G, GG, multiThread); rescaleNearest(B, BB, multiThread); array2D D(ww, hh); const int npatches = get_dark_channel_downsized(RR, GG, BB, D, 2, multiThread); maxDistance = estimate_ambient_light(RR, GG, BB, D, patchsize, npatches, ambient); } } if (min(ambient[0], ambient[1], ambient[2]) < 0.01f) { if (settings->verbose) { std::cout << "dehaze: no haze detected" << std::endl; } restore(img, maxChannel, multiThread); return; // probably no haze at all } patchsize = max(max(W, H) / 600, 2); if (settings->verbose) { std::cout << "dehaze: ambient light is " << ambient[0] << ", " << ambient[1] << ", " << ambient[2] << std::endl; } get_dark_channel(R, G, B, dark, patchsize, ambient, true, multiThread, strength); } const int radius = patchsize * 4; constexpr float epsilon = 1e-5f; array2D guideB(W, H, img->b.ptrs, ARRAY2D_BYREFERENCE); guidedFilter(guideB, dark, dark, radius, epsilon, multiThread); if (settings->verbose) { std::cout << "dehaze: max distance is " << maxDistance << std::endl; } const float depth = -float(dehazeParams.depth) / 100.f; const float t0 = max(1e-3f, std::exp(depth * maxDistance)); constexpr float teps = 1.f + 1e-3f; const float satBlend = dehazeParams.saturation / 100.f; const TMatrix ws = ICCStore::getInstance()->workingSpaceMatrix(params->icm.workingProfile); #ifdef __SSE2__ const vfloat wsv[3] = {F2V(ws[1][0]), F2V(ws[1][1]),F2V(ws[1][2])}; #endif const float ambientY = Color::rgbLuminance(ambient[0], ambient[1], ambient[2], ws); #ifdef _OPENMP #pragma omp parallel for if (multiThread) #endif for (int y = 0; y < H; ++y) { int x = 0; #ifdef __SSE2__ const vfloat onev = F2V(1.f); const vfloat ambient0v = F2V(ambient[0]); const vfloat ambient1v = F2V(ambient[1]); const vfloat ambient2v = F2V(ambient[2]); const vfloat ambientYv = F2V(ambientY); const vfloat epsYv = F2V(1e-5f); const vfloat t0v = F2V(t0); const vfloat tepsv = F2V(teps); const vfloat cmaxChannelv = F2V(maxChannel); const vfloat satBlendv = F2V(satBlend); for (; x < W - 3; x += 4) { // ensure that the transmission is such that to avoid clipping... const vfloat r = LVFU(img->r(y, x)); const vfloat g = LVFU(img->g(y, x)); const vfloat b = LVFU(img->b(y, x)); // ... t >= tl to avoid negative values const vfloat tlv = tepsv - vminf(r / ambient0v, vminf(g / ambient1v, b / ambient2v)); const vfloat mtv = vmaxf(LVFU(dark[y][x]), vmaxf(tlv, t0v)); if (dehazeParams.showDepthMap) { const vfloat valv = vclampf(onev - mtv, ZEROV, onev) * cmaxChannelv; STVFU(img->r(y, x), valv); STVFU(img->g(y, x), valv); STVFU(img->b(y, x), valv); } else { const vfloat Yv = Color::rgbLuminance(r, g, b, wsv); const vfloat YYv = (Yv - ambientYv) / mtv + ambientYv; const vfloat fv = vself(vmaskf_gt(Yv, epsYv), cmaxChannelv * YYv / Yv, cmaxChannelv); STVFU(img->r(y, x), vintpf(satBlendv, ((r - ambient0v) / mtv + ambient0v) * cmaxChannelv, r * fv)); STVFU(img->g(y, x), vintpf(satBlendv, ((g - ambient1v) / mtv + ambient1v) * cmaxChannelv, g * fv)); STVFU(img->b(y, x), vintpf(satBlendv, ((b - ambient2v) / mtv + ambient2v) * cmaxChannelv, b * fv)); } } #endif for (; x < W; ++x) { // ensure that the transmission is such that to avoid clipping... const float r = img->r(y, x); const float g = img->g(y, x); const float b = img->b(y, x); // ... t >= tl to avoid negative values const float tl = teps - min(r / ambient[0], g / ambient[1], b / ambient[2]); const float mt = max(dark[y][x], t0, tl); if (dehazeParams.showDepthMap) { img->r(y, x) = img->g(y, x) = img->b(y, x) = LIM01(1.f - mt) * maxChannel; } else { const float Y = Color::rgbLuminance(img->r(y, x), img->g(y, x), img->b(y, x), ws); const float YY = (Y - ambientY) / mt + ambientY; const float f = Y > 1e-5f ? maxChannel * YY / Y : maxChannel; img->r(y, x) = intp(satBlend, ((r - ambient[0]) / mt + ambient[0]) * maxChannel, r * f); img->g(y, x) = intp(satBlend, ((g - ambient[1]) / mt + ambient[1]) * maxChannel, g * f); img->b(y, x) = intp(satBlend, ((b - ambient[2]) / mt + ambient[2]) * maxChannel, b * f); } } } } void ImProcFunctions::dehazeloc(Imagefloat *img, const DehazeParams &dehazeParams) { //J.Desmis 12 2019 - this version derived from ART, is slower than the main from maximum 10% - probably use of SSE //Probably Ingo could solved this problem in some times if (!dehazeParams.enabled || dehazeParams.strength == 0.0) { return; } const float maxChannel = normalize(img, multiThread); const int W = img->getWidth(); const int H = img->getHeight(); const float strength = LIM01(float(std::abs(dehazeParams.strength)) / 100.f * 0.9f); const bool add_haze = dehazeParams.strength < 0; array2D dark(W, H); int patchsize = max(int(5 / scale), 2); float ambient[3]; float maxDistance = 0.f; { array2D& R = dark; // R and dark can safely use the same buffer, which is faster and reduces memory allocations/deallocations array2D G(W, H); array2D B(W, H); extract_channels(img, R, G, B, patchsize, 1e-1, multiThread); { constexpr int sizecap = 200; const float r = static_cast(W) / static_cast(H); const int hh = r >= 1.f ? sizecap : sizecap / r; const int ww = r >= 1.f ? sizecap * r : sizecap; if (W <= ww && H <= hh) { // don't rescale small thumbs array2D D(W, H); const int npatches = get_dark_channel_downsized(R, G, B, D, 2, multiThread); maxDistance = estimate_ambient_light(R, G, B, D, patchsize, npatches, ambient); } else { array2D RR(ww, hh); array2D GG(ww, hh); array2D BB(ww, hh); rescaleNearest(R, RR, multiThread); rescaleNearest(G, GG, multiThread); rescaleNearest(B, BB, multiThread); array2D D(ww, hh); const int npatches = get_dark_channel_downsized(RR, GG, BB, D, 2, multiThread); maxDistance = estimate_ambient_light(RR, GG, BB, D, patchsize, npatches, ambient); } } if (min(ambient[0], ambient[1], ambient[2]) < 0.01f) { if (settings->verbose) { std::cout << "dehaze: no haze detected" << std::endl; } restore(img, maxChannel, multiThread); return; // probably no haze at all } patchsize = max(max(W, H) / 600, 2); if (settings->verbose) { std::cout << "dehaze: ambient light is " << ambient[0] << ", " << ambient[1] << ", " << ambient[2] << std::endl; } get_dark_channel(R, G, B, dark, patchsize, ambient, true, multiThread, strength); } const int radius = patchsize * 4; constexpr float epsilon = 1e-5f; array2D guideB(W, H, img->b.ptrs, ARRAY2D_BYREFERENCE); guidedFilter(guideB, dark, dark, radius, epsilon, multiThread); if (settings->verbose) { std::cout << "dehaze: max distance is " << maxDistance << std::endl; } const float depth = -float(dehazeParams.depth) / 100.f; constexpr float teps = 1e-6f; const float t0 = max(teps, std::exp(depth * maxDistance)); const float satBlend = dehazeParams.saturation / 100.f; const TMatrix ws = ICCStore::getInstance()->workingSpaceMatrix(params->icm.workingProfile); const float ambientY = Color::rgbLuminance(ambient[0], ambient[1], ambient[2], ws); #ifdef _OPENMP #pragma omp parallel for if (multiThread) #endif for (int y = 0; y < H; ++y) { for (int x = 0; x < W; ++x) { // ensure that the transmission is such that to avoid clipping... const float rIn = img->r(y, x); const float gIn = img->g(y, x); const float bIn = img->b(y, x); // ... t >= tl to avoid negative values const float tl = 1.f + teps - min(rIn / ambient[0], gIn / ambient[1], bIn / ambient[2]); const float mt = max(dark[y][x], t0, tl); if (dehazeParams.showDepthMap) { img->r(y, x) = img->g(y, x) = img->b(y, x) = LIM01(1.f - mt) * maxChannel; } else { float f = 1.f; const float Y = Color::rgbLuminance(rIn, gIn, bIn, ws); if (Y > 1e-5f) { float YY = (Y - ambientY) / mt + ambientY; if (add_haze) { YY = Y + Y - YY; } f = YY / Y; } const float r1 = rIn * f; const float g1 = gIn * f; const float b1 = bIn * f; float r2 = ((rIn - ambient[0]) / mt + ambient[0]); float g2 = ((gIn - ambient[1]) / mt + ambient[1]); float b2 = ((bIn - ambient[2]) / mt + ambient[2]); if (add_haze) { r2 = rIn + rIn - r2; g2 = gIn + gIn - g2; b2 = bIn + bIn - b2; } img->r(y, x) = intp(satBlend, r2, r1); img->g(y, x) = intp(satBlend, g2, g1); img->b(y, x) = intp(satBlend, b2, b1); } } } restore(img, maxChannel, multiThread); } } // namespace rtengine