/* * This file is part of RawTherapee. * * Copyright (c) 2004-2010 Gabor Horvath * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ #include "rtengine.h" #include "improcfun.h" #include #include "iccstore.h" #include "iccmatrices.h" #include "../rtgui/options.h" #include "settings.h" #include "curves.h" #include "alignedbuffer.h" #include "color.h" namespace rtengine { extern void filmlike_clip(float *r, float *g, float *b); namespace { inline void clipLAB(float iL, float ia, float ib, float &oL, float &oa, float &ob, const float scale, const float wp[3][3], const float wip[3][3]) { if (iL < 0.f) { oL = oa = ob = 0.f; } else if (iL > 32768.f || min(ia, ib) < -42000.f || max(ia, ib) > 42000.f) { float X, Y, Z; float r, g, b; Color::Lab2XYZ(iL, ia, ib, X, Y, Z); Color::xyz2rgb(X, Y, Z, r, g, b, wip); filmlike_clip(&r, &g, &b); Color::rgbxyz(r, g, b, X, Y, Z, wp); Color::XYZ2Lab(X, Y, Z, oL, oa, ob); oL /= scale; oa /= scale; ob /= scale; // oL = 32768.f / scale; // oa = ob = 0.f; } else { oL = iL / scale; oa = ia / scale; ob = ib / scale; } } inline void clipLAB(float iL, float ia, float ib, double &oL, double &oa, double &ob, const float scale, const float wp[3][3], const float wip[3][3]) { float tL, ta, tb; clipLAB(iL, ia, ib, tL, ta, tb, scale, wp, wip); oL = tL; oa = ta; ob = tb; } } // namespace extern const Settings* settings; #define DECLARE_WORKING_MATRICES_(space) \ TMatrix wprof = ICCStore::getInstance()->workingSpaceMatrix ( space ); \ const float wp[3][3] = { \ {static_cast (wprof[0][0]), static_cast (wprof[0][1]), static_cast (wprof[0][2])}, \ {static_cast (wprof[1][0]), static_cast (wprof[1][1]), static_cast (wprof[1][2])}, \ {static_cast (wprof[2][0]), static_cast (wprof[2][1]), static_cast (wprof[2][2])} \ }; \ \ TMatrix wiprof = ICCStore::getInstance()->workingSpaceInverseMatrix ( space ); \ const float wip[3][3] = { \ {static_cast (wiprof[0][0]), static_cast (wiprof[0][1]), static_cast (wiprof[0][2])}, \ {static_cast (wiprof[1][0]), static_cast (wiprof[1][1]), static_cast (wiprof[1][2])}, \ {static_cast (wiprof[2][0]), static_cast (wiprof[2][1]), static_cast (wiprof[2][2])} \ } // Used in ImProcCoordinator::updatePreviewImage (rtengine/improccoordinator.cc) // Crop::update (rtengine/dcrop.cc) // Thumbnail::processImage (rtengine/rtthumbnail.cc) // // If monitorTransform, divide by 327.68 then apply monitorTransform (which can integrate soft-proofing) // otherwise divide by 327.68, convert to xyz and apply the sRGB transform, before converting with gamma2curve void ImProcFunctions::lab2monitorRgb(LabImage* lab, Image8* image) { DECLARE_WORKING_MATRICES_(params->icm.working); if (monitorTransform) { int W = lab->W; int H = lab->H; unsigned char * data = image->data; // cmsDoTransform is relatively expensive #ifdef _OPENMP #pragma omp parallel firstprivate(lab, data, W, H) #endif { AlignedBuffer pBuf(3 * lab->W); AlignedBuffer gwBuf1; AlignedBuffer gwBuf2; if (gamutWarning) { gwBuf1.resize(3 * lab->W); gwBuf2.resize(3 * lab->W); } float *buffer = pBuf.data; #ifdef _OPENMP #pragma omp for schedule(dynamic,16) #endif for (int i = 0; i < H; i++) { const int ix = i * 3 * W; int iy = 0; float* rL = lab->L[i]; float* ra = lab->a[i]; float* rb = lab->b[i]; for (int j = 0; j < W; j++) { clipLAB(rL[j], ra[j], rb[j], buffer[iy], buffer[iy + 1], buffer[iy + 2], 327.68f, wp, wip); iy += 3; } cmsDoTransform(monitorTransform, buffer, data + ix, W); if (gamutWarning) { gamutWarning->markLine(image, i, buffer, gwBuf1.data, gwBuf2.data); } } } // End of parallelization } else { int W = lab->W; int H = lab->H; unsigned char * data = image->data; #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) if (multiThread) #endif for (int i = 0; i < H; ++i) { float* rL = lab->L[i]; float* ra = lab->a[i]; float* rb = lab->b[i]; int ix = i * 3 * W; float R, G, B; float x_, y_, z_; float L, a, b; for (int j = 0; j < W; ++j) { //float L1=rL[j],a1=ra[j],b1=rb[j];//for testing clipLAB(rL[j], ra[j], rb[j], L, a, b, 1.f, wp, wip); Color::Lab2XYZ(L, a, b, x_, y_, z_); Color::xyz2srgb(x_, y_, z_, R, G, B); /* copy RGB */ //int R1=((int)gamma2curve[(R)]) data[ix++] = uint16ToUint8Rounded(Color::gamma2curve[R]); data[ix++] = uint16ToUint8Rounded(Color::gamma2curve[G]); data[ix++] = uint16ToUint8Rounded(Color::gamma2curve[B]); } } } } // Used in ImProcCoordinator::updatePreviewImage (rtengine/improccoordinator.cc) // Crop::update (rtengine/dcrop.cc) // // Generate an Image8 // // If output profile used, divide by 327.68 then apply the "profile" profile (eventually with a standard gamma) // otherwise divide by 327.68, convert to xyz and apply the RGB transform, before converting with gamma2curve Image8* ImProcFunctions::lab2rgb(LabImage* lab, int cx, int cy, int cw, int ch, const procparams::ColorManagementParams &icm, bool consider_histogram_settings) { DECLARE_WORKING_MATRICES_(icm.working); //gamutmap(lab); if (cx < 0) { cx = 0; } if (cy < 0) { cy = 0; } if (cx + cw > lab->W) { cw = lab->W - cx; } if (cy + ch > lab->H) { ch = lab->H - cy; } Image8* image = new Image8(cw, ch); Glib::ustring profile; bool standard_gamma; if (settings->HistogramWorking && consider_histogram_settings) { profile = icm.working; standard_gamma = true; } else { profile = icm.output; if (icm.output.empty() || icm.output == ColorManagementParams::NoICMString) { profile = "sRGB"; } standard_gamma = false; } cmsHPROFILE oprof = ICCStore::getInstance()->getProfile(profile); if (oprof) { cmsHPROFILE oprofG = oprof; if (standard_gamma) { oprofG = ICCStore::makeStdGammaProfile(oprof); } cmsUInt32Number flags = cmsFLAGS_NOOPTIMIZE | cmsFLAGS_NOCACHE; if (icm.outputBPC) { flags |= cmsFLAGS_BLACKPOINTCOMPENSATION; } lcmsMutex->lock(); cmsHPROFILE LabIProf = cmsCreateLab4Profile(nullptr); cmsHTRANSFORM hTransform = cmsCreateTransform(LabIProf, TYPE_Lab_DBL, oprofG, TYPE_RGB_8, icm.outputIntent, flags); // NOCACHE is important for thread safety cmsCloseProfile(LabIProf); lcmsMutex->unlock(); unsigned char *data = image->data; // cmsDoTransform is relatively expensive #ifdef _OPENMP #pragma omp parallel #endif { AlignedBuffer pBuf(3 * cw); double *buffer = pBuf.data; int condition = cy + ch; #ifdef _OPENMP #pragma omp for firstprivate(lab) schedule(dynamic,16) #endif for (int i = cy; i < condition; i++) { const int ix = i * 3 * cw; int iy = 0; float* rL = lab->L[i]; float* ra = lab->a[i]; float* rb = lab->b[i]; for (int j = cx; j < cx + cw; j++) { clipLAB(rL[j], ra[j], rb[j], buffer[iy], buffer[iy + 1], buffer[iy + 2], 327.68f, wp, wip); iy += 3; } cmsDoTransform(hTransform, buffer, data + ix, cw); } } // End of parallelization cmsDeleteTransform(hTransform); if (oprofG != oprof) { cmsCloseProfile(oprofG); } } else { const auto xyz_rgb = ICCStore::getInstance()->workingSpaceInverseMatrix(profile); #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) if (multiThread) #endif for (int i = cy; i < cy + ch; ++i) { float* rL = lab->L[i]; float* ra = lab->a[i]; float* rb = lab->b[i]; int ix = 3 * i * cw; float R, G, B; float x_, y_, z_; float L, a, b; for (int j = cx; j < cx + cw; ++j) { clipLAB(rL[j], ra[j], rb[j], L, a, b, 1.f, wp, wip); Color::Lab2XYZ(rL[j], ra[j], rb[j], x_, y_, z_); Color::xyz2rgb(x_, y_, z_, R, G, B, xyz_rgb); image->data[ix++] = uint16ToUint8Rounded(Color::gamma2curve[R]); image->data[ix++] = uint16ToUint8Rounded(Color::gamma2curve[G]); image->data[ix++] = uint16ToUint8Rounded(Color::gamma2curve[B]); } } } return image; } /** @brief Convert the final Lab image to the output RGB color space * * Used in processImage (rtengine/simpleprocess.cc) * * Provide a pointer to a 7 floats array for "ga" (uninitialized ; this array will be filled with the gamma values) if you want * to use the custom gamma scenario. Those gamma values will correspond to the ones of the chosen standard output profile * (Prophoto if non standard output profile given) * * If "ga" is NULL, then we're considering standard gamma with the chosen output profile. * * Generate an Image16 * * If a custom gamma profile can be created, divide by 327.68, convert to xyz and apply the custom gamma transform * otherwise divide by 327.68, convert to xyz and apply the sRGB transform, before converting with gamma2curve */ Imagefloat* ImProcFunctions::lab2rgbOut(LabImage* lab, int cx, int cy, int cw, int ch, const procparams::ColorManagementParams &icm, GammaValues *ga) { if (cx < 0) { cx = 0; } if (cy < 0) { cy = 0; } if (cx + cw > lab->W) { cw = lab->W - cx; } if (cy + ch > lab->H) { ch = lab->H - cy; } Imagefloat* image = new Imagefloat(cw, ch); cmsHPROFILE oprof = nullptr; if (ga) { lcmsMutex->lock(); ICCStore::getInstance()->getGammaArray(icm, *ga); oprof = ICCStore::getInstance()->createGammaProfile(icm, *ga); lcmsMutex->unlock(); } else { oprof = ICCStore::getInstance()->getProfile(icm.output); } if (oprof) { cmsUInt32Number flags = cmsFLAGS_NOOPTIMIZE | cmsFLAGS_NOCACHE; if (icm.outputBPC) { flags |= cmsFLAGS_BLACKPOINTCOMPENSATION; } lcmsMutex->lock(); cmsHPROFILE iprof = cmsCreateLab4Profile(nullptr); cmsHTRANSFORM hTransform = cmsCreateTransform(iprof, TYPE_Lab_FLT, oprof, TYPE_RGB_FLT, icm.outputIntent, flags); lcmsMutex->unlock(); image->ExecCMSTransform(hTransform, *lab, cx, cy); cmsDeleteTransform(hTransform); image->normalizeFloatTo65535(); } else { #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) if (multiThread) #endif for (int i = cy; i < cy + ch; i++) { float R, G, B; float* rL = lab->L[i]; float* ra = lab->a[i]; float* rb = lab->b[i]; for (int j = cx; j < cx + cw; j++) { float fy = (Color::c1By116 * rL[j]) / 327.68f + Color::c16By116; // (L+16)/116 float fx = (0.002f * ra[j]) / 327.68f + fy; float fz = fy - (0.005f * rb[j]) / 327.68f; float LL = rL[j] / 327.68f; float x_ = 65535.0f * Color::f2xyz(fx) * Color::D50x; //float y_ = 65535.0 * Color::f2xyz(fy); float z_ = 65535.0f * Color::f2xyz(fz) * Color::D50z; float y_ = (LL > (float)Color::epskap) ? 65535.0f * fy * fy * fy : 65535.0f * LL / (float)Color::kappa; Color::xyz2srgb(x_, y_, z_, R, G, B); image->r(i - cy, j - cx) = Color::gamma2curve[CLIP(R)]; image->g(i - cy, j - cx) = Color::gamma2curve[CLIP(G)]; image->b(i - cy, j - cx) = Color::gamma2curve[CLIP(B)]; } } } return image; } Imagefloat* ImProcFunctions::workingtrc(Imagefloat* working, int cw, int ch, int mul, Glib::ustring profi, double gampos, double slpos, double &ga0, double &ga1, double &ga2, double &ga3, double &ga4, double &ga5, double &ga6) { TMatrix wprof; wprof = ICCStore::getInstance()->workingSpaceMatrix(params->icm.working); double dx = Color::D50x; double dz = Color::D50z; { dx = dz = 1.0; } double toxyz[3][3] = { { (wprof[0][0] / dx), //I have suppressed / Color::D50x (wprof[0][1] / dx), (wprof[0][2] / dx) }, { (wprof[1][0]), (wprof[1][1]), (wprof[1][2]) }, { (wprof[2][0] / dz), //I have suppressed / Color::D50z (wprof[2][1] / dz), (wprof[2][2] / dz) } }; Imagefloat* image = new Imagefloat(cw, ch); double pwr; double ts; ts = slpos; int five = mul; ga6 = 0.0; pwr = 1.0 / gampos; if (gampos < 1.0) { pwr = gampos; gampos = 1. / gampos; five = -mul; } // int select_temp = 1; //5003K const double eps = 0.000000001; // not divide by zero enum class ColorTemp { D50 = 5003, // for Widegamut, Prophoto Best, Beta -> D50 D65 = 6504, // for sRGB, AdobeRGB, Bruce Rec2020 -> D65 D60 = 6005 //for ACESP0 and AcesP1 }; ColorTemp temp = ColorTemp::D50; cmsHPROFILE oprofdef; float p[6]; //primaries if (true) { //primaries for 10 working profiles ==> output profiles if (profi == "WideGamut") { p[0] = 0.7350; //Widegamut primaries p[1] = 0.2650; p[2] = 0.1150; p[3] = 0.8260; p[4] = 0.1570; p[5] = 0.0180; } else if (profi == "Adobe RGB") { p[0] = 0.6400; //Adobe primaries p[1] = 0.3300; p[2] = 0.2100; p[3] = 0.7100; p[4] = 0.1500; p[5] = 0.0600; temp = ColorTemp::D65; } else if (profi == "sRGB") { p[0] = 0.6400; // sRGB primaries p[1] = 0.3300; p[2] = 0.3000; p[3] = 0.6000; p[4] = 0.1500; p[5] = 0.0600; temp = ColorTemp::D65; } else if (profi == "BruceRGB") { p[0] = 0.6400; // Bruce primaries p[1] = 0.3300; p[2] = 0.2800; p[3] = 0.6500; p[4] = 0.1500; p[5] = 0.0600; temp = ColorTemp::D65; } else if (profi == "Beta RGB") { p[0] = 0.6888; // Beta primaries p[1] = 0.3112; p[2] = 0.1986; p[3] = 0.7551; p[4] = 0.1265; p[5] = 0.0352; } else if (profi == "BestRGB") { p[0] = 0.7347; // Best primaries p[1] = 0.2653; p[2] = 0.2150; p[3] = 0.7750; p[4] = 0.1300; p[5] = 0.0350; } else if (profi == "Rec2020") { p[0] = 0.7080; // Rec2020 primaries p[1] = 0.2920; p[2] = 0.1700; p[3] = 0.7970; p[4] = 0.1310; p[5] = 0.0460; temp = ColorTemp::D65; } else if (profi == "ACESp0") { p[0] = 0.7347; // ACES P0 primaries p[1] = 0.2653; p[2] = 0.0000; p[3] = 1.0; p[4] = 0.0001; p[5] = -0.0770; temp = ColorTemp::D60; } else if (profi == "ACESp1") { p[0] = 0.713; // ACES P1 primaries p[1] = 0.293; p[2] = 0.165; p[3] = 0.830; p[4] = 0.128; p[5] = 0.044; temp = ColorTemp::D60; } else if (profi == "ProPhoto") { p[0] = 0.7347; //ProPhoto and default primaries p[1] = 0.2653; p[2] = 0.1596; p[3] = 0.8404; p[4] = 0.0366; p[5] = 0.0001; } else { p[0] = 0.7347; //default primaries always unused p[1] = 0.2653; p[2] = 0.1596; p[3] = 0.8404; p[4] = 0.0366; p[5] = 0.0001; } if (slpos == 0) { slpos = eps; } GammaValues g_a; //gamma parameters int mode = 0; Color::calcGamma(pwr, ts, mode, g_a); // call to calcGamma with selected gamma and slope : return parameters for LCMS2 ga4 = g_a[3] * ts; ga0 = gampos; ga1 = 1. / (1.0 + g_a[4]); ga2 = g_a[4] / (1.0 + g_a[4]); ga3 = 1. / slpos; ga5 = 0.0; // printf("ga0=%f ga1=%f ga2=%f ga3=%f ga4=%f\n", ga0, ga1, ga2, ga3, ga4); cmsCIExyY xyD; cmsCIExyYTRIPLE Primaries = { {p[0], p[1], 1.0}, // red {p[2], p[3], 1.0}, // green {p[4], p[5], 1.0} // blue }; cmsToneCurve* GammaTRC[3]; cmsFloat64Number Parameters[7]; Parameters[0] = ga0; Parameters[1] = ga1; Parameters[2] = ga2; Parameters[3] = ga3; Parameters[4] = ga4; Parameters[5] = ga5; Parameters[6] = ga6; // 7 parameters for smoother curves cmsWhitePointFromTemp(&xyD, (double)temp); GammaTRC[0] = GammaTRC[1] = GammaTRC[2] = cmsBuildParametricToneCurve(NULL, five, Parameters);//5 = more smoother than 4 oprofdef = cmsCreateRGBProfile(&xyD, &Primaries, GammaTRC); cmsFreeToneCurve(GammaTRC[0]); } if (oprofdef) { #pragma omp parallel for if (multiThread) for (int i = 0; i < ch; i++) { float* rr = working->r(i); float* rg = working->g(i); float* rb = working->b(i); float* xa = (float*)image->r(i); float* ya = (float*)image->g(i); float* za = (float*)image->b(i); for (int j = 0; j < cw; j++) { float r1 = rr[j]; float g1 = rg[j]; float b1 = rb[j]; float x_ = toxyz[0][0] * r1 + toxyz[0][1] * g1 + toxyz[0][2] * b1; float y_ = toxyz[1][0] * r1 + toxyz[1][1] * g1 + toxyz[1][2] * b1; float z_ = toxyz[2][0] * r1 + toxyz[2][1] * g1 + toxyz[2][2] * b1; xa[j] = ( x_) ; ya[j] = ( y_); za[j] = ( z_); } } cmsUInt32Number flags = cmsFLAGS_NOOPTIMIZE | cmsFLAGS_NOCACHE; lcmsMutex->lock(); cmsHPROFILE iprof = ICCStore::getInstance()->getXYZProfile(); // cmsHTRANSFORM hTransform = cmsCreateTransform(iprof, TYPE_RGB_16, oprofdef, TYPE_RGB_16, params->icm.outputIntent, cmsFLAGS_NOOPTIMIZE | cmsFLAGS_NOCACHE); cmsHTRANSFORM hTransform = cmsCreateTransform(iprof, TYPE_RGB_FLT, oprofdef, TYPE_RGB_FLT, params->icm.outputIntent, flags); lcmsMutex->unlock(); image->ExecCMSTransform(hTransform); cmsDeleteTransform(hTransform); image->normalizeFloatTo65535(); } return image; } }