/*
* This file is part of RawTherapee.
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see .
*
* © 2010 Emil Martinec
*
*/
#include
#include
#include "curves.h"
#include "labimage.h"
#include "improcfun.h"
#include "rawimagesource.h"
#include "array2D.h"
#include "rt_math.h"
#ifdef __SSE2__
#include "sleefsseavx.c"
#endif
#ifdef _OPENMP
#include
#endif
#define CLIPI(a) ((a)>0 ?((a)<32768 ?(a):32768):0)
#define RANGEFN(i) ((1000.0f / (i + 1000.0f)))
#define CLIPC(a) ((a)>-32000?((a)<32000?(a):32000):-32000)
#define DIRWT(i1,j1,i,j) ( domker[(i1-i)/scale+halfwin][(j1-j)/scale+halfwin] * RANGEFN(fabsf((data_fine[i1][j1]-data_fine[i][j]))) )
namespace rtengine {
static const int maxlevel = 5;
static const float noise = 2000;
static const float thresh = 1000;
//sequence of scales
static const int scales[8] = {1,2,4,8,16,32,64,128};
//sequence of scales
//static const int scales[8] = {1,2,3,6,15,21,28,36};
//scale is spacing of directional averaging weights
void ImProcFunctions :: dirpyr_equalizer(float ** src, float ** dst, int srcwidth, int srcheight, const double * mult, const double dirpyrThreshold )
{
int lastlevel=maxlevel;
while (fabs(mult[lastlevel-1]-1)<0.001 && lastlevel>0) {
lastlevel--;
//printf("last level to process %d \n",lastlevel);
}
if (lastlevel==0) return;
int level;
multi_array2D dirpyrlo (srcwidth, srcheight);
level = 0;
int scale = scales[level];
//int thresh = 100 * mult[5];
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale );
level = 1;
while(level < lastlevel)
{
scale = scales[level];
dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, level, scale );
level ++;
}
// with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory
float ** buffer = dirpyrlo[lastlevel-1];
for(int level = lastlevel - 1; level > 0; level--)
{
idirpyr_eq_channel(dirpyrlo[level], dirpyrlo[level-1], buffer, srcwidth, srcheight, level, mult, dirpyrThreshold );
}
scale = scales[0];
idirpyr_eq_channel(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, mult, dirpyrThreshold );
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for (int i=0; i0) {
lastlevel--;
//printf("last level to process %d \n",lastlevel);
}
if (lastlevel==0) return;
int level;
multi_array2D dirpyrlo (srcwidth, srcheight);
level = 0;
int scale = scales[level];
//int thresh = 100 * mult[5];
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale );
level = 1;
while(level < lastlevel)
{
scale = scales[level];
dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, level, scale );
level ++;
}
// with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory
float ** buffer = dirpyrlo[lastlevel-1];
for(int level = lastlevel - 1; level > 0; level--)
{
idirpyr_eq_channel(dirpyrlo[level], dirpyrlo[level-1], buffer, srcwidth, srcheight, level, mult, dirpyrThreshold );
}
scale = scales[0];
idirpyr_eq_channel(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, mult, dirpyrThreshold );
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if(execdir)
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i=0; iJ_p[i][j] > 8.f && ncie->J_p[i][j] < 92.f)
dst[i][j] = CLIP( buffer[i][j] ); // TODO: Really a clip necessary?
else
dst[i][j]=src[i][j];
}
else
for (int i=0; i 1) {
//generate domain kernel
int domker[5][5] = {{1,1,1,1,1},{1,2,2,2,1},{1,2,2,2,1},{1,2,2,2,1},{1,1,1,1,1}};
halfwin=2;
scalewin = halfwin*scale;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef __SSE2__
__m128 thousandv = _mm_set1_ps( 1000.0f );
__m128 dirwtv, valv, normv;
float domkerv[5][5][4] = {{{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1}}};
#endif // __SSE2__
int j;
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++) {
float dirwt;
for(j = 0; j < scalewin; j++)
{
float val=0;
float norm=0;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=max(0,j-scalewin); jnbr<=j+scalewin; jnbr+=scale) {
dirwt = DIRWT(inbr, jnbr, i, j);
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j]=val/norm;//low pass filter
}
#ifdef __SSE2__
for(; j < width-scalewin-3; j+=4)
{
valv = _mm_setzero_ps();
normv = _mm_setzero_ps();
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwtv = _mm_loadu_ps((float*)&domkerv[(inbr-i)/scale+halfwin][(jnbr-j)/scale+halfwin]) * (thousandv / (vabsf(LVFU(data_fine[inbr][jnbr])-(LVFU(data_fine[i][j]))) + thousandv));
valv += dirwtv*LVFU(data_fine[inbr][jnbr]);
normv += dirwtv;
}
}
_mm_storeu_ps( &data_coarse[i][j],valv/normv);//low pass filter
}
for(; j < width-scalewin; j++)
{
float val=0;
float norm=0;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwt = DIRWT(inbr, jnbr, i, j);
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j]=val/norm;//low pass filter
}
#else
for(; j < width-scalewin; j++)
{
float val=0;
float norm=0;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwt = DIRWT(inbr, jnbr, i, j);
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j]=val/norm;//low pass filter
}
#endif
for(; j < width; j++)
{
float val=0;
float norm=0;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=min(width-1,j+scalewin); jnbr+=scale) {
dirwt = DIRWT(inbr, jnbr, i, j);
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j]=val/norm;//low pass filter
}
}
}
} else { // level <=1 means that all values of domker would be 1.0f, so no need for multiplication
halfwin = 1;
scalewin = halfwin*scale;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef __SSE2__
__m128 thousandv = _mm_set1_ps( 1000.0f );
__m128 dirwtv, valv, normv;
#endif // __SSE2__
int j;
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++) {
float dirwt;
for(j = 0; j < scalewin; j++)
{
float val=0;
float norm=0;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=max(0,j-scalewin); jnbr<=j+scalewin; jnbr+=scale) {
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j]));
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j]=val/norm;//low pass filter
}
#ifdef __SSE2__
for(; j < width-scalewin-3; j+=4)
{
valv = _mm_setzero_ps();
normv = _mm_setzero_ps();
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwtv = thousandv / (vabsf(LVFU(data_fine[inbr][jnbr])-(LVFU(data_fine[i][j]))) + thousandv);
valv += dirwtv*LVFU(data_fine[inbr][jnbr]);
normv += dirwtv;
}
}
_mm_storeu_ps( &data_coarse[i][j], valv/normv);//low pass filter
}
for(; j < width-scalewin; j++)
{
float val=0;
float norm=0;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j]));
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j]=val/norm;//low pass filter
}
#else
for(; j < width-scalewin; j++)
{
float val=0;
float norm=0;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j]));
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j]=val/norm;//low pass filter
}
#endif
for(; j < width; j++)
{
float val=0;
float norm=0;
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=min(width-1,j+scalewin); jnbr+=scale) {
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j]));
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j]=val/norm;//low pass filter
}
}
}
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void ImProcFunctions::idirpyr_eq_channel(float ** data_coarse, float ** data_fine, float ** buffer, int width, int height, int level, const double * mult, const double dirpyrThreshold )
{
float noisehi = 1.33*noise*dirpyrThreshold/expf(level*log(3.0)), noiselo = 0.66*noise*dirpyrThreshold/expf(level*log(3.0));
LUTf irangefn (0x20000);
for (int i=0; i<0x20000; i++) {
if (abs(i-0x10000)>noisehi || mult[level]<1.0) {
irangefn[i] = mult[level] ;
} else {
if (abs(i-0x10000)