/* * This file is part of RawTherapee. * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . * * © 2010 Emil Martinec * */ #include #include #include "curves.h" #include "labimage.h" #include "improcfun.h" #include "rawimagesource.h" #include "array2D.h" #include "rt_math.h" #ifdef __SSE2__ #include "sleefsseavx.c" #endif #ifdef _OPENMP #include #endif #define CLIPI(a) ((a)>0 ?((a)<32768 ?(a):32768):0) #define RANGEFN(i) ((1000.0f / (i + 1000.0f))) #define CLIPC(a) ((a)>-32000?((a)<32000?(a):32000):-32000) #define DIRWT(i1,j1,i,j) ( domker[(i1-i)/scale+halfwin][(j1-j)/scale+halfwin] * RANGEFN(fabsf((data_fine[i1][j1]-data_fine[i][j]))) ) namespace rtengine { static const int maxlevel = 5; static const float noise = 2000; static const float thresh = 1000; //sequence of scales static const int scales[8] = {1,2,4,8,16,32,64,128}; //sequence of scales //static const int scales[8] = {1,2,3,6,15,21,28,36}; //scale is spacing of directional averaging weights void ImProcFunctions :: dirpyr_equalizer(float ** src, float ** dst, int srcwidth, int srcheight, const double * mult, const double dirpyrThreshold ) { int lastlevel=maxlevel; while (fabs(mult[lastlevel-1]-1)<0.001 && lastlevel>0) { lastlevel--; //printf("last level to process %d \n",lastlevel); } if (lastlevel==0) return; int level; multi_array2D dirpyrlo (srcwidth, srcheight); level = 0; int scale = scales[level]; //int thresh = 100 * mult[5]; dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale ); level = 1; while(level < lastlevel) { scale = scales[level]; dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, level, scale ); level ++; } // with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory float ** buffer = dirpyrlo[lastlevel-1]; for(int level = lastlevel - 1; level > 0; level--) { idirpyr_eq_channel(dirpyrlo[level], dirpyrlo[level-1], buffer, srcwidth, srcheight, level, mult, dirpyrThreshold ); } scale = scales[0]; idirpyr_eq_channel(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, mult, dirpyrThreshold ); //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for (int i=0; i0) { lastlevel--; //printf("last level to process %d \n",lastlevel); } if (lastlevel==0) return; int level; multi_array2D dirpyrlo (srcwidth, srcheight); level = 0; int scale = scales[level]; //int thresh = 100 * mult[5]; dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale ); level = 1; while(level < lastlevel) { scale = scales[level]; dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, level, scale ); level ++; } // with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory float ** buffer = dirpyrlo[lastlevel-1]; for(int level = lastlevel - 1; level > 0; level--) { idirpyr_eq_channel(dirpyrlo[level], dirpyrlo[level-1], buffer, srcwidth, srcheight, level, mult, dirpyrThreshold ); } scale = scales[0]; idirpyr_eq_channel(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, mult, dirpyrThreshold ); //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if(execdir) #ifdef _OPENMP #pragma omp parallel for #endif for (int i=0; iJ_p[i][j] > 8.f && ncie->J_p[i][j] < 92.f) dst[i][j] = CLIP( buffer[i][j] ); // TODO: Really a clip necessary? else dst[i][j]=src[i][j]; } else for (int i=0; i 1) { //generate domain kernel int domker[5][5] = {{1,1,1,1,1},{1,2,2,2,1},{1,2,2,2,1},{1,2,2,2,1},{1,1,1,1,1}}; halfwin=2; scalewin = halfwin*scale; #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ __m128 thousandv = _mm_set1_ps( 1000.0f ); __m128 dirwtv, valv, normv; float domkerv[5][5][4] = {{{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1}}}; #endif // __SSE2__ int j; #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++) { float dirwt; for(j = 0; j < scalewin; j++) { float val=0; float norm=0; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=max(0,j-scalewin); jnbr<=j+scalewin; jnbr+=scale) { dirwt = DIRWT(inbr, jnbr, i, j); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } #ifdef __SSE2__ for(; j < width-scalewin-3; j+=4) { valv = _mm_setzero_ps(); normv = _mm_setzero_ps(); for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) { dirwtv = _mm_loadu_ps((float*)&domkerv[(inbr-i)/scale+halfwin][(jnbr-j)/scale+halfwin]) * (thousandv / (vabsf(LVFU(data_fine[inbr][jnbr])-(LVFU(data_fine[i][j]))) + thousandv)); valv += dirwtv*LVFU(data_fine[inbr][jnbr]); normv += dirwtv; } } _mm_storeu_ps( &data_coarse[i][j],valv/normv);//low pass filter } for(; j < width-scalewin; j++) { float val=0; float norm=0; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) { dirwt = DIRWT(inbr, jnbr, i, j); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } #else for(; j < width-scalewin; j++) { float val=0; float norm=0; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) { dirwt = DIRWT(inbr, jnbr, i, j); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } #endif for(; j < width; j++) { float val=0; float norm=0; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=min(width-1,j+scalewin); jnbr+=scale) { dirwt = DIRWT(inbr, jnbr, i, j); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } } } } else { // level <=1 means that all values of domker would be 1.0f, so no need for multiplication halfwin = 1; scalewin = halfwin*scale; #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ __m128 thousandv = _mm_set1_ps( 1000.0f ); __m128 dirwtv, valv, normv; #endif // __SSE2__ int j; #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++) { float dirwt; for(j = 0; j < scalewin; j++) { float val=0; float norm=0; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=max(0,j-scalewin); jnbr<=j+scalewin; jnbr+=scale) { dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j])); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } #ifdef __SSE2__ for(; j < width-scalewin-3; j+=4) { valv = _mm_setzero_ps(); normv = _mm_setzero_ps(); for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) { dirwtv = thousandv / (vabsf(LVFU(data_fine[inbr][jnbr])-(LVFU(data_fine[i][j]))) + thousandv); valv += dirwtv*LVFU(data_fine[inbr][jnbr]); normv += dirwtv; } } _mm_storeu_ps( &data_coarse[i][j], valv/normv);//low pass filter } for(; j < width-scalewin; j++) { float val=0; float norm=0; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) { dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j])); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } #else for(; j < width-scalewin; j++) { float val=0; float norm=0; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) { dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j])); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } #endif for(; j < width; j++) { float val=0; float norm=0; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=min(width-1,j+scalewin); jnbr+=scale) { dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j])); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } } } } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void ImProcFunctions::idirpyr_eq_channel(float ** data_coarse, float ** data_fine, float ** buffer, int width, int height, int level, const double * mult, const double dirpyrThreshold ) { float noisehi = 1.33*noise*dirpyrThreshold/expf(level*log(3.0)), noiselo = 0.66*noise*dirpyrThreshold/expf(level*log(3.0)); LUTf irangefn (0x20000); for (int i=0; i<0x20000; i++) { if (abs(i-0x10000)>noisehi || mult[level]<1.0) { irangefn[i] = mult[level] ; } else { if (abs(i-0x10000)