//////////////////////////////////////////////////////////////// // // Highlight reconstruction // // copyright (c) 2008-2011 Emil Martinec // // // code dated: June 16, 2011 // // hilite_recon.cc is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // //////////////////////////////////////////////////////////////// #include #include #include "array2D.h" #include "rawimagesource.h" #include "rt_math.h" #include "opthelper.h" namespace rtengine { extern const Settings* settings; //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::boxblur2(float** src, float** dst, float** temp, int H, int W, int box ) { //box blur image channel; box size = 2*box+1 //horizontal blur #ifdef _OPENMP #pragma omp parallel for #endif for (int row = 0; row < H; row++) { int len = box + 1; temp[row][0] = src[row][0] / len; for (int j = 1; j <= box; j++) { temp[row][0] += src[row][j] / len; } for (int col = 1; col <= box; col++) { temp[row][col] = (temp[row][col - 1] * len + src[row][col + box]) / (len + 1); len ++; } for (int col = box + 1; col < W - box; col++) { temp[row][col] = temp[row][col - 1] + (src[row][col + box] - src[row][col - box - 1]) / len; } for (int col = W - box; col < W; col++) { temp[row][col] = (temp[row][col - 1] * len - src[row][col - box - 1]) / (len - 1); len --; } } #ifdef __SSE2__ //vertical blur #ifdef _OPENMP #pragma omp parallel #endif { float len = box + 1; vfloat lenv = F2V( len ); vfloat lenp1v = F2V( len + 1.0f ); vfloat onev = F2V( 1.0f ); vfloat tempv, temp2v; #ifdef _OPENMP #pragma omp for nowait #endif for (int col = 0; col < W - 7; col += 8) { tempv = LVFU(temp[0][col]) / lenv; temp2v = LVFU(temp[0][col + 4]) / lenv; for (int i = 1; i <= box; i++) { tempv = tempv + LVFU(temp[i][col]) / lenv; temp2v = temp2v + LVFU(temp[i][col + 4]) / lenv; } _mm_storeu_ps( &dst[0][col], tempv); _mm_storeu_ps( &dst[0][col + 4], temp2v); for (int row = 1; row <= box; row++) { tempv = (tempv * lenv + LVFU(temp[(row + box)][col])) / lenp1v; temp2v = (temp2v * lenv + LVFU(temp[(row + box)][col + 4])) / lenp1v; _mm_storeu_ps( &dst[row][col], tempv); _mm_storeu_ps( &dst[row][col + 4], temp2v); lenv = lenp1v; lenp1v = lenp1v + onev; } for (int row = box + 1; row < H - box; row++) { tempv = tempv + (LVFU(temp[(row + box)][col]) - LVFU(temp[(row - box - 1)][col])) / lenv; temp2v = temp2v + (LVFU(temp[(row + box)][col + 4]) - LVFU(temp[(row - box - 1)][col + 4])) / lenv; _mm_storeu_ps( &dst[row][col], tempv); _mm_storeu_ps( &dst[row][col + 4], temp2v); } for (int row = H - box; row < H; row++) { lenp1v = lenv; lenv = lenv - onev; tempv = (tempv * lenp1v - LVFU(temp[(row - box - 1)][col])) / lenv; temp2v = (temp2v * lenp1v - LVFU(temp[(row - box - 1)][col + 4])) / lenv; _mm_storeu_ps( &dst[row][col], tempv ); _mm_storeu_ps( &dst[row][col + 4], temp2v ); } } #ifdef _OPENMP #pragma omp single #endif { for (int col = W - (W % 8); col < W - 3; col += 4) { tempv = LVFU(temp[0][col]) / lenv; for (int i = 1; i <= box; i++) { tempv = tempv + LVFU(temp[i][col]) / lenv; } _mm_storeu_ps( &dst[0][col], tempv); for (int row = 1; row <= box; row++) { tempv = (tempv * lenv + LVFU(temp[(row + box)][col])) / lenp1v; _mm_storeu_ps( &dst[row][col], tempv); lenv = lenp1v; lenp1v = lenp1v + onev; } for (int row = box + 1; row < H - box; row++) { tempv = tempv + (LVFU(temp[(row + box)][col]) - LVFU(temp[(row - box - 1)][col])) / lenv; _mm_storeu_ps( &dst[row][col], tempv); } for (int row = H - box; row < H; row++) { lenp1v = lenv; lenv = lenv - onev; tempv = (tempv * lenp1v - LVFU(temp[(row - box - 1)][col])) / lenv; _mm_storeu_ps( &dst[row][col], tempv ); } } for (int col = W - (W % 4); col < W; col++) { int len = box + 1; dst[0][col] = temp[0][col] / len; for (int i = 1; i <= box; i++) { dst[0][col] += temp[i][col] / len; } for (int row = 1; row <= box; row++) { dst[row][col] = (dst[(row - 1)][col] * len + temp[(row + box)][col]) / (len + 1); len ++; } for (int row = box + 1; row < H - box; row++) { dst[row][col] = dst[(row - 1)][col] + (temp[(row + box)][col] - temp[(row - box - 1)][col]) / len; } for (int row = H - box; row < H; row++) { dst[row][col] = (dst[(row - 1)][col] * len - temp[(row - box - 1)][col]) / (len - 1); len --; } } } } #else //vertical blur #ifdef _OPENMP #pragma omp parallel for #endif for (int col = 0; col < W; col++) { int len = box + 1; dst[0][col] = temp[0][col] / len; for (int i = 1; i <= box; i++) { dst[0][col] += temp[i][col] / len; } for (int row = 1; row <= box; row++) { dst[row][col] = (dst[(row - 1)][col] * len + temp[(row + box)][col]) / (len + 1); len ++; } for (int row = box + 1; row < H - box; row++) { dst[row][col] = dst[(row - 1)][col] + (temp[(row + box)][col] - temp[(row - box - 1)][col]) / len; } for (int row = H - box; row < H; row++) { dst[row][col] = (dst[(row - 1)][col] * len - temp[(row - box - 1)][col]) / (len - 1); len --; } } #endif } void RawImageSource::boxblur_resamp(float **src, float **dst, float ** temp, int H, int W, int box, int samp ) { #ifdef _OPENMP #pragma omp parallel #endif { #ifdef _OPENMP #pragma omp for #endif //box blur image channel; box size = 2*box+1 //horizontal blur for (int row = 0; row < H; row++) { int len = box + 1; float tempval = src[row][0] / len; for (int j = 1; j <= box; j++) { tempval += src[row][j] / len; } temp[row][0] = tempval; for (int col = 1; col <= box; col++) { tempval = (tempval * len + src[row][col + box]) / (len + 1); if(col % samp == 0) { temp[row][col / samp] = tempval; } len ++; } float oneByLen = 1.f / (float)len; for (int col = box + 1; col < W - box; col++) { tempval = tempval + (src[row][col + box] - src[row][col - box - 1]) * oneByLen; if(col % samp == 0) { temp[row][col / samp] = tempval; } } for (int col = W - box; col < W; col++) { tempval = (tempval * len - src[row][col - box - 1]) / (len - 1); if(col % samp == 0) { temp[row][col / samp] = tempval; } len --; } } } static const int numCols = 8; // process numCols columns at once for better L1 CPU cache usage #ifdef _OPENMP #pragma omp parallel #endif { float tempvalN[numCols] ALIGNED16; #ifdef _OPENMP #pragma omp for nowait #endif //vertical blur for (int col = 0; col < (W / samp) - (numCols - 1); col += numCols) { int len = box + 1; for(int n = 0; n < numCols; n++) { tempvalN[n] = temp[0][col + n] / len; } for (int i = 1; i <= box; i++) { for(int n = 0; n < numCols; n++) { tempvalN[n] += temp[i][col + n] / len; } } for(int n = 0; n < numCols; n++) { dst[0][col + n] = tempvalN[n]; } for (int row = 1; row <= box; row++) { for(int n = 0; n < numCols; n++) { tempvalN[n] = (tempvalN[n] * len + temp[(row + box)][col + n]) / (len + 1); } if(row % samp == 0) { for(int n = 0; n < numCols; n++) { dst[row / samp][col + n] = tempvalN[n]; } } len ++; } for (int row = box + 1; row < H - box; row++) { for(int n = 0; n < numCols; n++) { tempvalN[n] = tempvalN[n] + (temp[(row + box)][col + n] - temp[(row - box - 1)][col + n]) / len; } if(row % samp == 0) { for(int n = 0; n < numCols; n++) { dst[row / samp][col + n] = tempvalN[n]; } } } for (int row = H - box; row < H; row++) { for(int n = 0; n < numCols; n++) { tempvalN[n] = (tempvalN[n] * len - temp[(row - box - 1)][col + n]) / (len - 1); } if(row % samp == 0) { for(int n = 0; n < numCols; n++) { dst[row / samp][col + n] = tempvalN[n]; } } len --; } } // process remaining columns #ifdef _OPENMP #pragma omp single #endif { //vertical blur for (int col = (W / samp) - ((W / samp) % numCols); col < W / samp; col++) { int len = box + 1; float tempval = temp[0][col] / len; for (int i = 1; i <= box; i++) { tempval += temp[i][col] / len; } dst[0][col] = tempval; for (int row = 1; row <= box; row++) { tempval = (tempval * len + temp[(row + box)][col]) / (len + 1); if(row % samp == 0) { dst[row / samp][col] = tempval; } len ++; } for (int row = box + 1; row < H - box; row++) { tempval = tempval + (temp[(row + box)][col] - temp[(row - box - 1)][col]) / len; if(row % samp == 0) { dst[row / samp][col] = tempval; } } for (int row = H - box; row < H; row++) { tempval = (tempval * len - temp[(row - box - 1)][col]) / (len - 1); if(row % samp == 0) { dst[row / samp][col] = tempval; } len --; } } } } } void RawImageSource :: HLRecovery_inpaint (float** red, float** green, float** blue) { double progress = 0.0; if (plistener) { plistener->setProgressStr ("PROGRESSBAR_HLREC"); plistener->setProgress (progress); } int height = H; int width = W; constexpr int range = 2; constexpr int pitch = 4; constexpr float threshpct = 0.25f; constexpr float maxpct = 0.95f; constexpr float epsilon = 0.00001f; //%%%%%%%%%%%%%%%%%%%% //for blend algorithm: constexpr float blendthresh = 1.0; constexpr int ColorCount = 3; // Transform matrixes rgb>lab and back constexpr float trans[ColorCount][ColorCount] = { { 1.f, 1.f, 1.f }, { 1.7320508f, -1.7320508f, 0.f }, { -1.f, -1.f, 2.f } }; constexpr float itrans[ColorCount][ColorCount] = { { 1.f, 0.8660254f, -0.5f }, { 1.f, -0.8660254f, -0.5f }, { 1.f, 0.f, 1.f } }; if(settings->verbose) for(int c = 0; c < 3; c++) { printf("chmax[%d] : %f\tclmax[%d] : %f\tratio[%d] : %f\n", c, chmax[c], c, clmax[c], c, chmax[c] / clmax[c]); } float factor[3]; for(int c = 0; c < ColorCount; c++) { factor[c] = chmax[c] / clmax[c]; } float minFactor = min(factor[0], factor[1], factor[2]); if(minFactor > 1.f) { // all 3 channels clipped // calculate clip factor per channel for (int c = 0; c < ColorCount; c++) { factor[c] /= minFactor; } // get max clip factor int maxpos = 0; float maxValNew = 0.f; for (int c = 0; c < ColorCount; c++) { if(chmax[c] / factor[c] > maxValNew) { maxValNew = chmax[c] / factor[c]; maxpos = c; } } float clipFactor = clmax[maxpos] / maxValNew; if(clipFactor < maxpct) // if max clipFactor < maxpct (0.95) adjust per channel factors for (int c = 0; c < ColorCount; c++) { factor[c] *= (maxpct / clipFactor); } } else { factor[0] = factor[1] = factor[2] = 1.f; } if(settings->verbose) for (int c = 0; c < ColorCount; c++) { printf("correction factor[%d] : %f\n", c, factor[c]); } float max_f[3], thresh[3]; for (int c = 0; c < ColorCount; c++) { thresh[c] = chmax[c] * threshpct / factor[c]; max_f[c] = chmax[c] * maxpct / factor[c]; } float whitept = max(max_f[0], max_f[1], max_f[2]); float clippt = min(max_f[0], max_f[1], max_f[2]); float medpt = max_f[0] + max_f[1] + max_f[2] - whitept - clippt; float blendpt = blendthresh * clippt; float medFactor[3]; for (int c = 0; c < ColorCount; c++) { medFactor[c] = max(1.0f, max_f[c] / medpt) / (-blendpt); } multi_array2D channelblur(width, height, 0, 48); array2D temp(width, height); // allocate temporary buffer // blur RGB channels boxblur2(red, channelblur[0], temp, height, width, 4); if(plistener) { progress += 0.05; plistener->setProgress(progress); } boxblur2(green, channelblur[1], temp, height, width, 4); if(plistener) { progress += 0.05; plistener->setProgress(progress); } boxblur2(blue, channelblur[2], temp, height, width, 4); if(plistener) { progress += 0.05; plistener->setProgress(progress); } // reduce channel blur to one array #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i++) for(int j = 0; j < width; j++) { channelblur[0][i][j] = fabsf(channelblur[0][i][j] - red[i][j]) + fabsf(channelblur[1][i][j] - green[i][j]) + fabsf(channelblur[2][i][j] - blue[i][j]); } for (int c = 1; c < 3; c++) { channelblur[c].free(); //free up some memory } if(plistener) { progress += 0.05; plistener->setProgress(progress); } multi_array2D hilite_full(width, height, ARRAY2D_CLEAR_DATA, 32); if(plistener) { progress += 0.10; plistener->setProgress(progress); } double hipass_sum = 0.f; int hipass_norm = 0; // set up which pixels are clipped or near clipping #ifdef _OPENMP #pragma omp parallel for reduction(+:hipass_sum,hipass_norm) schedule(dynamic,16) #endif for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { //if one or more channels is highlight but none are blown, add to highlight accumulator if ((red[i][j] > thresh[0] || green[i][j] > thresh[1] || blue[i][j] > thresh[2]) && (red[i][j] < max_f[0] && green[i][j] < max_f[1] && blue[i][j] < max_f[2])) { hipass_sum += channelblur[0][i][j]; hipass_norm ++; hilite_full[0][i][j] = red[i][j]; hilite_full[1][i][j] = green[i][j]; hilite_full[2][i][j] = blue[i][j]; hilite_full[3][i][j] = 1.f; } } }//end of filling highlight array float hipass_ave = 2.f * hipass_sum / (hipass_norm + epsilon); if(plistener) { progress += 0.05; plistener->setProgress(progress); } array2D hilite_full4(width, height); //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //blur highlight data boxblur2(hilite_full[3], hilite_full4, temp, height, width, 1); temp.free(); // free temporary buffer if(plistener) { progress += 0.05; plistener->setProgress(progress); } #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { if (channelblur[0][i][j] > hipass_ave) { //too much variation hilite_full[0][i][j] = hilite_full[1][i][j] = hilite_full[2][i][j] = hilite_full[3][i][j] = 0.f; continue; } if (hilite_full4[i][j] > epsilon && hilite_full4[i][j] < 0.95f) { //too near an edge, could risk using CA affected pixels, therefore omit hilite_full[0][i][j] = hilite_full[1][i][j] = hilite_full[2][i][j] = hilite_full[3][i][j] = 0.f; } } } channelblur[0].free(); //free up some memory hilite_full4.free(); //free up some memory int hfh = (height - (height % pitch)) / pitch; int hfw = (width - (width % pitch)) / pitch; multi_array2D hilite(hfw + 1, hfh + 1, ARRAY2D_CLEAR_DATA, 48); //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // blur and resample highlight data; range=size of blur, pitch=sample spacing array2D temp2((width / pitch) + ((width % pitch) == 0 ? 0 : 1), height); for (int m = 0; m < 4; m++) { boxblur_resamp(hilite_full[m], hilite[m], temp2, height, width, range, pitch); if(plistener) { progress += 0.05; plistener->setProgress(progress); } } temp2.free(); for (int c = 0; c < 4; c++) { hilite_full[c].free(); //free up some memory } multi_array2D hilite_dir(hfw, hfh, ARRAY2D_CLEAR_DATA, 64); // for faster processing we create two buffers using (height,width) instead of (width,height) multi_array2D hilite_dir0(hfh, hfw, ARRAY2D_CLEAR_DATA, 64); multi_array2D hilite_dir4(hfh, hfw, ARRAY2D_CLEAR_DATA, 64); if(plistener) { progress += 0.05; plistener->setProgress(progress); } //fill gaps in highlight map by directional extension //raster scan from four corners for (int j = 1; j < hfw - 1; j++) { for (int i = 2; i < hfh - 2; i++) { //from left if (hilite[3][i][j] > epsilon) { hilite_dir0[3][j][i] = 1.f; } else { hilite_dir0[3][j][i] = (hilite_dir0[0 + 3][j - 1][i - 2] + hilite_dir0[0 + 3][j - 1][i - 1] + hilite_dir0[0 + 3][j - 1][i] + hilite_dir0[0 + 3][j - 1][i + 1] + hilite_dir0[0 + 3][j - 1][i + 2]) == 0.f ? 0.f : 0.1f; } } if(hilite[3][2][j] <= epsilon) { hilite_dir[0 + 3][0][j] = hilite_dir0[3][j][2]; } if(hilite[3][3][j] <= epsilon) { hilite_dir[0 + 3][1][j] = hilite_dir0[3][j][3]; } if(hilite[3][hfh - 3][j] <= epsilon) { hilite_dir[4 + 3][hfh - 1][j] = hilite_dir0[3][j][hfh - 3]; } if(hilite[3][hfh - 4][j] <= epsilon) { hilite_dir[4 + 3][hfh - 2][j] = hilite_dir0[3][j][hfh - 4]; } } for (int i = 2; i < hfh - 2; i++) { if(hilite[3][i][hfw - 2] <= epsilon) { hilite_dir4[3][hfw - 1][i] = hilite_dir0[3][hfw - 2][i]; } } #ifdef _OPENMP #pragma omp parallel for #endif for (int c = 0; c < 3; c++) { for (int j = 1; j < hfw - 1; j++) { for (int i = 2; i < hfh - 2; i++) { //from left if (hilite[3][i][j] > epsilon) { hilite_dir0[c][j][i] = hilite[c][i][j] / hilite[3][i][j]; } else { hilite_dir0[c][j][i] = 0.1f * ((hilite_dir0[0 + c][j - 1][i - 2] + hilite_dir0[0 + c][j - 1][i - 1] + hilite_dir0[0 + c][j - 1][i] + hilite_dir0[0 + c][j - 1][i + 1] + hilite_dir0[0 + c][j - 1][i + 2]) / (hilite_dir0[0 + 3][j - 1][i - 2] + hilite_dir0[0 + 3][j - 1][i - 1] + hilite_dir0[0 + 3][j - 1][i] + hilite_dir0[0 + 3][j - 1][i + 1] + hilite_dir0[0 + 3][j - 1][i + 2] + epsilon)); } } if(hilite[3][2][j] <= epsilon) { hilite_dir[0 + c][0][j] = hilite_dir0[c][j][2]; } if(hilite[3][3][j] <= epsilon) { hilite_dir[0 + c][1][j] = hilite_dir0[c][j][3]; } if(hilite[3][hfh - 3][j] <= epsilon) { hilite_dir[4 + c][hfh - 1][j] = hilite_dir0[c][j][hfh - 3]; } if(hilite[3][hfh - 4][j] <= epsilon) { hilite_dir[4 + c][hfh - 2][j] = hilite_dir0[c][j][hfh - 4]; } } for (int i = 2; i < hfh - 2; i++) { if(hilite[3][i][hfw - 2] <= epsilon) { hilite_dir4[c][hfw - 1][i] = hilite_dir0[c][hfw - 2][i]; } } } if(plistener) { progress += 0.05; plistener->setProgress(progress); } for (int j = hfw - 2; j > 0; j--) { for (int i = 2; i < hfh - 2; i++) { //from right if (hilite[3][i][j] > epsilon) { hilite_dir4[3][j][i] = 1.f; } else { hilite_dir4[3][j][i] = (hilite_dir4[3][(j + 1)][(i - 2)] + hilite_dir4[3][(j + 1)][(i - 1)] + hilite_dir4[3][(j + 1)][(i)] + hilite_dir4[3][(j + 1)][(i + 1)] + hilite_dir4[3][(j + 1)][(i + 2)]) == 0.f ? 0.f : 0.1f; } } if(hilite[3][2][j] <= epsilon) { hilite_dir[0 + 3][0][j] += hilite_dir4[3][j][2]; } if(hilite[3][hfh - 3][j] <= epsilon) { hilite_dir[4 + 3][hfh - 1][j] += hilite_dir4[3][j][hfh - 3]; } } for (int i = 2; i < hfh - 2; i++) { if(hilite[3][i][0] <= epsilon) { hilite_dir[0 + 3][i - 2][0] += hilite_dir4[3][0][i]; hilite_dir[4 + 3][i + 2][0] += hilite_dir4[3][0][i]; } if(hilite[3][i][1] <= epsilon) { hilite_dir[0 + 3][i - 2][1] += hilite_dir4[3][1][i]; hilite_dir[4 + 3][i + 2][1] += hilite_dir4[3][1][i]; } if(hilite[3][i][hfw - 2] <= epsilon) { hilite_dir[0 + 3][i - 2][hfw - 2] += hilite_dir4[3][hfw - 2][i]; hilite_dir[4 + 3][i + 2][hfw - 2] += hilite_dir4[3][hfw - 2][i]; } } #ifdef _OPENMP #pragma omp parallel for #endif for (int c = 0; c < 3; c++) { for (int j = hfw - 2; j > 0; j--) { for (int i = 2; i < hfh - 2; i++) { //from right if (hilite[3][i][j] > epsilon) { hilite_dir4[c][j][i] = hilite[c][i][j] / hilite[3][i][j]; } else { hilite_dir4[c][j][i] = 0.1 * ((hilite_dir4[c][(j + 1)][(i - 2)] + hilite_dir4[c][(j + 1)][(i - 1)] + hilite_dir4[c][(j + 1)][(i)] + hilite_dir4[c][(j + 1)][(i + 1)] + hilite_dir4[c][(j + 1)][(i + 2)]) / (hilite_dir4[3][(j + 1)][(i - 2)] + hilite_dir4[3][(j + 1)][(i - 1)] + hilite_dir4[3][(j + 1)][(i)] + hilite_dir4[3][(j + 1)][(i + 1)] + hilite_dir4[3][(j + 1)][(i + 2)] + epsilon)); } } if(hilite[3][2][j] <= epsilon) { hilite_dir[0 + c][0][j] += hilite_dir4[c][j][2]; } if(hilite[3][hfh - 3][j] <= epsilon) { hilite_dir[4 + c][hfh - 1][j] += hilite_dir4[c][j][hfh - 3]; } } for (int i = 2; i < hfh - 2; i++) { if(hilite[3][i][0] <= epsilon) { hilite_dir[0 + c][i - 2][0] += hilite_dir4[c][0][i]; hilite_dir[4 + c][i + 2][0] += hilite_dir4[c][0][i]; } if(hilite[3][i][1] <= epsilon) { hilite_dir[0 + c][i - 2][1] += hilite_dir4[c][1][i]; hilite_dir[4 + c][i + 2][1] += hilite_dir4[c][1][i]; } if(hilite[3][i][hfw - 2] <= epsilon) { hilite_dir[0 + c][i - 2][hfw - 2] += hilite_dir4[c][hfw - 2][i]; hilite_dir[4 + c][i + 2][hfw - 2] += hilite_dir4[c][hfw - 2][i]; } } } if(plistener) { progress += 0.05; plistener->setProgress(progress); } for (int i = 1; i < hfh - 1; i++) for (int j = 2; j < hfw - 2; j++) { //from top if (hilite[3][i][j] > epsilon) { hilite_dir[0 + 3][i][j] = 1.f; } else { hilite_dir[0 + 3][i][j] = (hilite_dir[0 + 3][i - 1][j - 2] + hilite_dir[0 + 3][i - 1][j - 1] + hilite_dir[0 + 3][i - 1][j] + hilite_dir[0 + 3][i - 1][j + 1] + hilite_dir[0 + 3][i - 1][j + 2]) == 0.f ? 0.f : 0.1f; } } for (int j = 2; j < hfw - 2; j++) { if(hilite[3][hfh - 2][j] <= epsilon) { hilite_dir[4 + 3][hfh - 1][j] += hilite_dir[0 + 3][hfh - 2][j]; } } #ifdef _OPENMP #pragma omp parallel for #endif for (int c = 0; c < 3; c++) { for (int i = 1; i < hfh - 1; i++) { for (int j = 2; j < hfw - 2; j++) { //from top if (hilite[3][i][j] > epsilon) { hilite_dir[0 + c][i][j] = hilite[c][i][j] / hilite[3][i][j]; } else { hilite_dir[0 + c][i][j] = 0.1 * ((hilite_dir[0 + c][i - 1][j - 2] + hilite_dir[0 + c][i - 1][j - 1] + hilite_dir[0 + c][i - 1][j] + hilite_dir[0 + c][i - 1][j + 1] + hilite_dir[0 + c][i - 1][j + 2]) / (hilite_dir[0 + 3][i - 1][j - 2] + hilite_dir[0 + 3][i - 1][j - 1] + hilite_dir[0 + 3][i - 1][j] + hilite_dir[0 + 3][i - 1][j + 1] + hilite_dir[0 + 3][i - 1][j + 2] + epsilon)); } } } for (int j = 2; j < hfw - 2; j++) { if(hilite[3][hfh - 2][j] <= epsilon) { hilite_dir[4 + c][hfh - 1][j] += hilite_dir[0 + c][hfh - 2][j]; } } } if(plistener) { progress += 0.05; plistener->setProgress(progress); } for (int i = hfh - 2; i > 0; i--) for (int j = 2; j < hfw - 2; j++) { //from bottom if (hilite[3][i][j] > epsilon) { hilite_dir[4 + 3][i][j] = 1.f; } else { hilite_dir[4 + 3][i][j] = (hilite_dir[4 + 3][(i + 1)][(j - 2)] + hilite_dir[4 + 3][(i + 1)][(j - 1)] + hilite_dir[4 + 3][(i + 1)][(j)] + hilite_dir[4 + 3][(i + 1)][(j + 1)] + hilite_dir[4 + 3][(i + 1)][(j + 2)]) == 0.f ? 0.f : 0.1f; } } #ifdef _OPENMP #pragma omp parallel for #endif for (int c = 0; c < 4; c++) { for (int i = hfh - 2; i > 0; i--) { for (int j = 2; j < hfw - 2; j++) { //from bottom if (hilite[3][i][j] > epsilon) { hilite_dir[4 + c][i][j] = hilite[c][i][j] / hilite[3][i][j]; } else { hilite_dir[4 + c][i][j] = 0.1 * ((hilite_dir[4 + c][(i + 1)][(j - 2)] + hilite_dir[4 + c][(i + 1)][(j - 1)] + hilite_dir[4 + c][(i + 1)][(j)] + hilite_dir[4 + c][(i + 1)][(j + 1)] + hilite_dir[4 + c][(i + 1)][(j + 2)]) / (hilite_dir[4 + 3][(i + 1)][(j - 2)] + hilite_dir[4 + 3][(i + 1)][(j - 1)] + hilite_dir[4 + 3][(i + 1)][(j)] + hilite_dir[4 + 3][(i + 1)][(j + 1)] + hilite_dir[4 + 3][(i + 1)][(j + 2)] + epsilon)); } } } } if(plistener) { progress += 0.05; plistener->setProgress(progress); } //fill in edges for (int dir = 0; dir < 2; dir++) { for (int i = 1; i < hfh - 1; i++) for (int c = 0; c < 4; c++) { hilite_dir[dir * 4 + c][i][0] = hilite_dir[dir * 4 + c][i][1]; hilite_dir[dir * 4 + c][i][hfw - 1] = hilite_dir[dir * 4 + c][i][hfw - 2]; } for (int j = 1; j < hfw - 1; j++) for (int c = 0; c < 4; c++) { hilite_dir[dir * 4 + c][0][j] = hilite_dir[dir * 4 + c][1][j]; hilite_dir[dir * 4 + c][hfh - 1][j] = hilite_dir[dir * 4 + c][hfh - 2][j]; } for (int c = 0; c < 4; c++) { hilite_dir[dir * 4 + c][0][0] = hilite_dir[dir * 4 + c][1][0] = hilite_dir[dir * 4 + c][0][1] = hilite_dir[dir * 4 + c][1][1] = hilite_dir[dir * 4 + c][2][2]; hilite_dir[dir * 4 + c][0][hfw - 1] = hilite_dir[dir * 4 + c][1][hfw - 1] = hilite_dir[dir * 4 + c][0][hfw - 2] = hilite_dir[dir * 4 + c][1][hfw - 2] = hilite_dir[dir * 4 + c][2][hfw - 3]; hilite_dir[dir * 4 + c][hfh - 1][0] = hilite_dir[dir * 4 + c][hfh - 2][0] = hilite_dir[dir * 4 + c][hfh - 1][1] = hilite_dir[dir * 4 + c][hfh - 2][1] = hilite_dir[dir * 4 + c][hfh - 3][2]; hilite_dir[dir * 4 + c][hfh - 1][hfw - 1] = hilite_dir[dir * 4 + c][hfh - 2][hfw - 1] = hilite_dir[dir * 4 + c][hfh - 1][hfw - 2] = hilite_dir[dir * 4 + c][hfh - 2][hfw - 2] = hilite_dir[dir * 4 + c][hfh - 3][hfw - 3]; } } for (int i = 1; i < hfh - 1; i++) for (int c = 0; c < 4; c++) { hilite_dir0[c][0][i] = hilite_dir0[c][1][i]; hilite_dir0[c][hfw - 1][i] = hilite_dir0[c][hfw - 2][i]; } for (int j = 1; j < hfw - 1; j++) for (int c = 0; c < 4; c++) { hilite_dir0[c][j][0] = hilite_dir0[c][j][1]; hilite_dir0[c][j][hfh - 1] = hilite_dir0[c][j][hfh - 2]; } for (int c = 0; c < 4; c++) { hilite_dir0[c][0][0] = hilite_dir0[c][0][1] = hilite_dir0[c][1][0] = hilite_dir0[c][1][1] = hilite_dir0[c][2][2]; hilite_dir0[c][hfw - 1][0] = hilite_dir0[c][hfw - 1][1] = hilite_dir0[c][hfw - 2][0] = hilite_dir0[c][hfw - 2][1] = hilite_dir0[c][hfw - 3][2]; hilite_dir0[c][0][hfh - 1] = hilite_dir0[c][0][hfh - 2] = hilite_dir0[c][1][hfh - 1] = hilite_dir0[c][1][hfh - 2] = hilite_dir0[c][2][hfh - 3]; hilite_dir0[c][hfw - 1][hfh - 1] = hilite_dir0[c][hfw - 1][hfh - 2] = hilite_dir0[c][hfw - 2][hfh - 1] = hilite_dir0[c][hfw - 2][hfh - 2] = hilite_dir0[c][hfw - 3][hfh - 3]; } for (int i = 1; i < hfh - 1; i++) for (int c = 0; c < 4; c++) { hilite_dir4[c][0][i] = hilite_dir4[c][1][i]; hilite_dir4[c][hfw - 1][i] = hilite_dir4[c][hfw - 2][i]; } for (int j = 1; j < hfw - 1; j++) for (int c = 0; c < 4; c++) { hilite_dir4[c][j][0] = hilite_dir4[c][j][1]; hilite_dir4[c][j][hfh - 1] = hilite_dir4[c][j][hfh - 2]; } for (int c = 0; c < 4; c++) { hilite_dir4[c][0][0] = hilite_dir4[c][0][1] = hilite_dir4[c][1][0] = hilite_dir4[c][1][1] = hilite_dir4[c][2][2]; hilite_dir4[c][hfw - 1][0] = hilite_dir4[c][hfw - 1][1] = hilite_dir4[c][hfw - 2][0] = hilite_dir4[c][hfw - 2][1] = hilite_dir4[c][hfw - 3][2]; hilite_dir4[c][0][hfh - 1] = hilite_dir4[c][0][hfh - 2] = hilite_dir4[c][1][hfh - 1] = hilite_dir4[c][1][hfh - 2] = hilite_dir4[c][2][hfh - 3]; hilite_dir4[c][hfw - 1][hfh - 1] = hilite_dir4[c][hfw - 1][hfh - 2] = hilite_dir4[c][hfw - 2][hfh - 1] = hilite_dir4[c][hfw - 2][hfh - 2] = hilite_dir4[c][hfw - 3][hfh - 3]; } if(plistener) { progress += 0.05; plistener->setProgress(progress); } //free up some memory for(int c = 0; c < 4; c++) { hilite[c].free(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // now reconstruct clipped channels using color ratios #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for (int i = 0; i < height; i++) { int i1 = min((i - (i % pitch)) / pitch, hfh - 1); for (int j = 0; j < width; j++) { float pixel[3] = {red[i][j], green[i][j], blue[i][j]}; if (pixel[0] < max_f[0] && pixel[1] < max_f[1] && pixel[2] < max_f[2]) { continue; //pixel not clipped } int j1 = min((j - (j % pitch)) / pitch, hfw - 1); //estimate recovered values using modified HLRecovery_blend algorithm float rgb[ColorCount], rgb_blend[ColorCount] = {}, cam[2][ColorCount], lab[2][ColorCount], sum[2], chratio; // Copy input pixel to rgb so it's easier to access in loops rgb[0] = pixel[0]; rgb[1] = pixel[1]; rgb[2] = pixel[2]; // Initialize cam with raw input [0] and potentially clipped input [1] for (int c = 0; c < ColorCount; c++) { cam[0][c] = rgb[c]; cam[1][c] = min(cam[0][c], clippt); } // Calculate the lightness correction ratio (chratio) for (int i2 = 0; i2 < 2; i2++) { for (int c = 0; c < ColorCount; c++) { lab[i2][c] = 0; for (int j = 0; j < ColorCount; j++) { lab[i2][c] += trans[c][j] * cam[i2][j]; } } sum[i2] = 0.f; for (int c = 1; c < ColorCount; c++) { sum[i2] += SQR(lab[i2][c]); } } if(sum[0] == 0.f) { // avoid division by zero sum[0] = epsilon; } chratio = sqrtf(sum[1] / sum[0]); // Apply ratio to lightness in lab space for (int c = 1; c < ColorCount; c++) { lab[0][c] *= chratio; } // Transform back from lab to RGB for (int c = 0; c < ColorCount; c++) { cam[0][c] = 0; for (int j = 0; j < ColorCount; j++) { cam[0][c] += itrans[c][j] * lab[0][j]; } } for (int c = 0; c < ColorCount; c++) { rgb[c] = cam[0][c] / ColorCount; } // Copy converted pixel back float rfrac = max(0.f, min(1.f, medFactor[0] * (pixel[0] - blendpt))); float gfrac = max(0.f, min(1.f, medFactor[1] * (pixel[1] - blendpt))); float bfrac = max(0.f, min(1.f, medFactor[2] * (pixel[2] - blendpt))); if (pixel[0] > blendpt) { rgb_blend[0] = rfrac * rgb[0] + (1.f - rfrac) * pixel[0]; } if (pixel[1] > blendpt) { rgb_blend[1] = gfrac * rgb[1] + (1.f - gfrac) * pixel[1]; } if (pixel[2] > blendpt) { rgb_blend[2] = bfrac * rgb[2] + (1.f - bfrac) * pixel[2]; } //end of HLRecovery_blend estimation //%%%%%%%%%%%%%%%%%%%%%%% //there are clipped highlights //first, determine weighted average of unclipped extensions (weighting is by 'hue' proximity) float totwt = 0.f; float clipfix[3] = {0.f, 0.f, 0.f}; float Y = epsilon + rgb_blend[0] + rgb_blend[1] + rgb_blend[2]; for (int c = 0; c < ColorCount; c++) { rgb_blend[c] /= Y; } float Yhi = 1.f / (hilite_dir0[0][j1][i1] + hilite_dir0[1][j1][i1] + hilite_dir0[2][j1][i1]); if (Yhi < 2.f) { float dirwt = 1.f / (1.f + 65535.f * (SQR(rgb_blend[0] - hilite_dir0[0][j1][i1] * Yhi) + SQR(rgb_blend[1] - hilite_dir0[1][j1][i1] * Yhi) + SQR(rgb_blend[2] - hilite_dir0[2][j1][i1] * Yhi))); totwt = dirwt; dirwt /= (hilite_dir0[3][j1][i1] + epsilon); clipfix[0] = dirwt * hilite_dir0[0][j1][i1]; clipfix[1] = dirwt * hilite_dir0[1][j1][i1]; clipfix[2] = dirwt * hilite_dir0[2][j1][i1]; } for (int dir = 0; dir < 2; dir++) { float Yhi = 1.f / ( hilite_dir[dir * 4 + 0][i1][j1] + hilite_dir[dir * 4 + 1][i1][j1] + hilite_dir[dir * 4 + 2][i1][j1]); if (Yhi < 2.f) { float dirwt = 1.f / (1.f + 65535.f * (SQR(rgb_blend[0] - hilite_dir[dir * 4 + 0][i1][j1] * Yhi) + SQR(rgb_blend[1] - hilite_dir[dir * 4 + 1][i1][j1] * Yhi) + SQR(rgb_blend[2] - hilite_dir[dir * 4 + 2][i1][j1] * Yhi))); totwt += dirwt; dirwt /= (hilite_dir[dir * 4 + 3][i1][j1] + epsilon); clipfix[0] += dirwt * hilite_dir[dir * 4 + 0][i1][j1]; clipfix[1] += dirwt * hilite_dir[dir * 4 + 1][i1][j1]; clipfix[2] += dirwt * hilite_dir[dir * 4 + 2][i1][j1]; } } Yhi = 1.f / (hilite_dir4[0][j1][i1] + hilite_dir4[1][j1][i1] + hilite_dir4[2][j1][i1]); if (Yhi < 2.f) { float dirwt = 1.f / (1.f + 65535.f * (SQR(rgb_blend[0] - hilite_dir4[0][j1][i1] * Yhi) + SQR(rgb_blend[1] - hilite_dir4[1][j1][i1] * Yhi) + SQR(rgb_blend[2] - hilite_dir4[2][j1][i1] * Yhi))); totwt += dirwt; dirwt /= (hilite_dir4[3][j1][i1] + epsilon); clipfix[0] += dirwt * hilite_dir4[0][j1][i1]; clipfix[1] += dirwt * hilite_dir4[1][j1][i1]; clipfix[2] += dirwt * hilite_dir4[2][j1][i1]; } if(totwt == 0.f) { continue; } clipfix[0] /= totwt; clipfix[1] /= totwt; clipfix[2] /= totwt; //now correct clipped channels if (pixel[0] > max_f[0] && pixel[1] > max_f[1] && pixel[2] > max_f[2]) { //all channels clipped float Y = (0.299 * clipfix[0] + 0.587 * clipfix[1] + 0.114 * clipfix[2]); float factor = whitept / Y; red[i][j] = clipfix[0] * factor; green[i][j] = clipfix[1] * factor; blue[i][j] = clipfix[2] * factor; } else {//some channels clipped float notclipped[3] = {pixel[0] <= max_f[0] ? 1.f : 0.f, pixel[1] <= max_f[1] ? 1.f : 0.f, pixel[2] <= max_f[2] ? 1.f : 0.f}; if (notclipped[0] == 0.f) { //red clipped red[i][j] = max(red[i][j], (clipfix[0] * ((notclipped[1] * pixel[1] + notclipped[2] * pixel[2]) / (notclipped[1] * clipfix[1] + notclipped[2] * clipfix[2] + epsilon)))); } if (notclipped[1] == 0.f) { //green clipped green[i][j] = max(green[i][j], (clipfix[1] * ((notclipped[2] * pixel[2] + notclipped[0] * pixel[0]) / (notclipped[2] * clipfix[2] + notclipped[0] * clipfix[0] + epsilon)))); } if (notclipped[2] == 0.f) { //blue clipped blue[i][j] = max(blue[i][j], (clipfix[2] * ((notclipped[0] * pixel[0] + notclipped[1] * pixel[1]) / (notclipped[0] * clipfix[0] + notclipped[1] * clipfix[1] + epsilon)))); } } Y = (0.299 * red[i][j] + 0.587 * green[i][j] + 0.114 * blue[i][j]); if (Y > whitept) { float factor = whitept / Y; red[i][j] *= factor; green[i][j] *= factor; blue[i][j] *= factor; } } } if(plistener) { plistener->setProgress(1.00); } }// end of HLReconstruction }