/* * This file is part of RawTherapee. * * Copyright (c) 2004-2010 Gabor Horvath * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ // // A class representing a 16 bit rgb image with separate planes and 16 byte aligned data // #ifndef _IMAGEFLOAT_ #define _IMAGEFLOAT_ #include "imageio.h" #include "rtengine.h" namespace rtengine { using namespace procparams; class Image8; class Image16; /* * Image type used by most tools; expected range: [0.0 ; 65535.0] */ class Imagefloat : public IImagefloat, public ImageIO { public: Imagefloat (); Imagefloat (int width, int height); ~Imagefloat () override; Imagefloat* copy () const; Image8* to8() const; Image16* to16() const; void getStdImage (const ColorTemp &ctemp, int tran, Imagefloat* image, PreviewProps pp) const override; const char* getType () const override { return sImagefloat; } int getBPS () const override { return 8 * sizeof(float); } void getScanline (int row, unsigned char* buffer, int bps, bool isFloat = false) const override; void setScanline (int row, unsigned char* buffer, int bps, unsigned int numSamples) override; // functions inherited from IImagefloat: MyMutex& getMutex () override { return mutex (); } cmsHPROFILE getProfile () const override { return getEmbeddedProfile (); } int getBitsPerPixel () const override { return 8 * sizeof(float); } int saveToFile (const Glib::ustring &fname) const override { return save (fname); } int saveAsPNG (const Glib::ustring &fname, int bps = -1) const override { return savePNG (fname, bps); } int saveAsJPEG (const Glib::ustring &fname, int quality = 100, int subSamp = 3) const override { return saveJPEG (fname, quality, subSamp); } int saveAsTIFF (const Glib::ustring &fname, int bps = -1, bool isFloat = false, bool uncompressed = false) const override { return saveTIFF (fname, bps, isFloat, uncompressed); } void setSaveProgressListener (ProgressListener* pl) override { setProgressListener (pl); } void free () override { delete this; } inline uint16_t DNG_FloatToHalf(float f) const { union { float f; uint32_t i; } tmp; tmp.f = f; int32_t sign = (tmp.i >> 16) & 0x00008000; int32_t exponent = ((tmp.i >> 23) & 0x000000ff) - (127 - 15); int32_t mantissa = tmp.i & 0x007fffff; if (exponent <= 0) { if (exponent < -10) { return (uint16_t)sign; } mantissa = (mantissa | 0x00800000) >> (1 - exponent); if (mantissa & 0x00001000) mantissa += 0x00002000; return (uint16_t)(sign | (mantissa >> 13)); } else if (exponent == 0xff - (127 - 15)) { if (mantissa == 0) { return (uint16_t)(sign | 0x7c00); } else { return (uint16_t)(sign | 0x7c00 | (mantissa >> 13)); } } if (mantissa & 0x00001000) { mantissa += 0x00002000; if (mantissa & 0x00800000) { mantissa = 0; // overflow in significand, exponent += 1; // adjust exponent } } if (exponent > 30) { return (uint16_t)(sign | 0x7c00); // infinity with the same sign as f. } return (uint16_t)(sign | (exponent << 10) | (mantissa >> 13)); } // From DNG SDK dng_utils.h inline float DNG_HalfToFloat(uint16_t halfValue) { union { float f; uint32_t i; } tmp; int32_t sign = (halfValue >> 15) & 0x00000001; int32_t exponent = (halfValue >> 10) & 0x0000001f; int32_t mantissa = halfValue & 0x000003ff; if (exponent == 0) { if (mantissa == 0) { // Plus or minus zero tmp.i = (uint32_t) (sign << 31); return tmp.f; } else { // Denormalized number -- renormalize it while (!(mantissa & 0x00000400)) { mantissa <<= 1; exponent -= 1; } exponent += 1; mantissa &= ~0x00000400; } } else if (exponent == 31) { if (mantissa == 0) { // Positive or negative infinity, convert to maximum (16 bit) values. tmp.i = (uint32_t)((sign << 31) | ((0x1eL + 127 - 15) << 23) | (0x3ffL << 13)); return tmp.f; } else { // Nan -- Just set to zero. return 0; } } // Normalized number exponent += (127 - 15); mantissa <<= 13; // Assemble sign, exponent and mantissa. tmp.i = (uint32_t) ((sign << 31) | (exponent << 23) | mantissa); return tmp.f; } inline uint32_t DNG_FP24ToFloat(const uint8_t * input) { int32_t sign = (input [0] >> 7) & 0x01; int32_t exponent = (input [0] ) & 0x7F; int32_t mantissa = (((int32_t) input [1]) << 8) | input[2]; if (exponent == 0) { if (mantissa == 0) { // Plus or minus zero return (uint32_t) (sign << 31); } else { // Denormalized number -- renormalize it while (!(mantissa & 0x00010000)) { mantissa <<= 1; exponent -= 1; } exponent += 1; mantissa &= ~0x00010000; } } else if (exponent == 127) { if (mantissa == 0) { // Positive or negative infinity, convert to maximum (24 bit) values. return (uint32_t) ((sign << 31) | ((0x7eL + 128 - 64) << 23) | (0xffffL << 7)); } else { // Nan -- Just set to zero. return 0; } } // Normalized number exponent += (128 - 64); mantissa <<= 7; // Assemble sign, exponent and mantissa. return (uint32_t) ((sign << 31) | (exponent << 23) | mantissa); } void normalizeFloat(float srcMinVal, float srcMaxVal) override; void normalizeFloatTo1(); void normalizeFloatTo65535(); void calcCroppedHistogram(const ProcParams ¶ms, float scale, LUTu & hist); void ExecCMSTransform(cmsHTRANSFORM hTransform); void ExecCMSTransform(cmsHTRANSFORM hTransform, const LabImage &labImage, int cx, int cy); }; } #endif